1
|
Rackerby N, Ahn C, Ball BD, Samant S, Bernstein JS, Bernstein JA. Evolving Paradigms Of Treatment Of Allergic And Non-Allergic Rhinitis. Ann Allergy Asthma Immunol 2025:S1081-1206(25)00180-2. [PMID: 40245980 DOI: 10.1016/j.anai.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
Allergic rhinitis (AR) is a prevalent disease affecting approximately 15% of the US population which is about 50 million individuals. More broadly, it is estimated that 400-500 million people suffer with AR worldwide. Not surprisingly, AR has a significant impact on quality of life (QOL) due to increased fatigue, cognitive impairment, sleep disturbances, presenteeism or absenteeism, impairment of performance leading which all contributed to an increased cost burden to the medical system. Recent studies have identified social determinants of health including income level, age of migration from rural to urban areas or to high-income countries, and access to healthcare as important factors associated with the prevalence of allergic disease. However, up to 25% of individuals suffer from non-allergic rhinitis (NAR) triggered by mechanical, osmotic and chemical irritants and 50% suffer from mixed rhinitis (MR) characterized by allergic and non-allergic triggers. Uncontrolled chronic rhinitis subtypes have all been associated with asthma, eczema, chronic or recurrent sinusitis, cough, and both tension and migraine headaches. This review will address AR and NAR with a focus on evolving treatments in adults.
Collapse
Affiliation(s)
- Nina Rackerby
- Henry Ford Providence Hospital/Michigan State University College of Human Medicine
| | - Curie Ahn
- University of Cincinnati College of Medicine, Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology
| | | | | | - Joshua S Bernstein
- University of Cincinnati College of Medicine, Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology
| | - Jonathan A Bernstein
- University of Cincinnati College of Medicine, Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology.
| |
Collapse
|
2
|
Talukder A, Chowdhury SM. Mapping Binding Domains of Viral and Allergenic Proteins with Dual-Cleavable Cross-Linking Technology. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:721-731. [PMID: 40123104 DOI: 10.1021/jasms.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The dual-cleavable nature of the cross-linking technology (DUCCT) enhances the reliable identification of cross-linked peptides via mass spectrometry. The DUCCT approach uses a cross-linking agent that can be selectively cleaved by two different tandem mass spectrometry techniques: collision-induced dissociation (CID) and electron transfer dissociation (ETD). This results in distinct signatures in two independent mass spectra for the same cross-linked precursor, leading to unambiguous identification and the validation of the spectra. In this study, we expanded the application of the DUCCT cross-linker to evaluate the binding domains of a specific cat dander allergen, Fel d 1, which exists as the Fel d 1 A and B protein complex, and a viral spike protein from SARS-CoV-2, which invades host cells. To assess the cross-linked products obtained by DUCCT, we utilized a software tool called Cleave-XL, which effectively identified cross-linked sites using data from CID and ETD. Dual cleavable cross-linking studies identified cross-linked peptides in these complexes, which have been reported in bioinformatics analysis and proposed for immunotherapy using synthetic peptides. A benchmark study was also conducted using a commercial cross-linker disuccinimidyl suberate (DSS). Overall, we expect that DUCCT cross-linking technology will greatly facilitate the rapid screening of binding interfaces, thereby advancing structural biology and cell signaling investigations.
Collapse
Affiliation(s)
- Akash Talukder
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
3
|
Cleveland CW, Davis BW, Khatri K, Pomés A, Chapman MD, Brackett NF. Genetic diversity of the major cat allergen, Fel d 1. PNAS NEXUS 2024; 3:pgae447. [PMID: 39600803 PMCID: PMC11577610 DOI: 10.1093/pnasnexus/pgae447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/27/2024] [Indexed: 11/29/2024]
Abstract
Cat allergy affects ∼15% of the US population and can cause severe symptoms, including asthma. The major cat allergen, Fel d 1, drives IgE antibody responses. We conducted a comparative analysis of Fel d 1 genes, CH1 and CH2, and investigated structural features of Fel d 1 homologs across the family Felidae. The CH1 and CH2 domestic cat DNA references were used to identify homologous sequences in domestic and exotic cat genomes. Variability of these sequences within or across cat species was analyzed. Comprehensive alignments of Fel d 1 sequences and homologs from 276 domestic or exotic cats identified >100 unique, dissimilar substitutions in the protein sequences across Felidae. Selective pressure analyses of 37 exotic cat species revealed that Fel d 1 experienced positive selection, or greater variability over time, in CH1 and CH2. Linear regression of the mean pairwise identities of Fel d 1 DNA or protein sequences indicated that the genes largely reflected the evolution of Felidae. The Fel d 1 genes are highly variable (41 and 58% of the amino acid residues encoded by CH1 and CH2, respectively), suggesting that the biological function of Fel d 1, which is currently unknown, may vary among cat species and/or that Fel d 1 may be nonessential for cats. This is supported by Fel d 1 homology to nonessential proteins and recent evidence of healthy cats with CRISPR-edited CH2 genes. Fel d 1 variability could confer an evolutionary advantage for cats by allowing the allergen to bind different physiological ligands.
Collapse
Affiliation(s)
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kriti Khatri
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Anna Pomés
- InBio, Charlottesville, 700 Harris St, VA 22903, USA
| | | | | |
Collapse
|
4
|
An W, Li T, Tian X, Fu X, Li C, Wang Z, Wang J, Wang X. Allergies to Allergens from Cats and Dogs: A Review and Update on Sources, Pathogenesis, and Strategies. Int J Mol Sci 2024; 25:10520. [PMID: 39408849 PMCID: PMC11476515 DOI: 10.3390/ijms251910520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Inhalation allergies caused by cats and dogs can lead to a range of discomforting symptoms, such as rhinitis and asthma, in humans. With the increasing popularity of and care provided to these companion animals, the allergens they produce pose a growing threat to susceptible patients' health. Allergens from cats and dogs have emerged as significant risk factors for triggering asthma and allergic rhinitis worldwide; however, there remains a lack of systematic measures aimed at assisting individuals in recognizing and preventing allergies caused by these animals. This review provides comprehensive insights into the classification of cat and dog allergens, along with their pathogenic mechanisms. This study also discusses implementation strategies for prevention and control measures, including physical methods, gene-editing technology, and immunological approaches, as well as potential strategies for enhancing allergen immunotherapy combined with immunoinformatics. Finally, it presents future prospects for the prevention and treatment of human allergies caused by cats and dogs. This review will improve knowledge regarding allergies to cats and dogs while providing insights into potential targets for the development of next-generation treatments.
Collapse
Affiliation(s)
- Wei An
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.A.); (X.T.); (X.F.); (C.L.); (Z.W.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Beijing 100071, China;
| | - Xinya Tian
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.A.); (X.T.); (X.F.); (C.L.); (Z.W.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiaoxin Fu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.A.); (X.T.); (X.F.); (C.L.); (Z.W.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Chunxiao Li
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.A.); (X.T.); (X.F.); (C.L.); (Z.W.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.A.); (X.T.); (X.F.); (C.L.); (Z.W.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.A.); (X.T.); (X.F.); (C.L.); (Z.W.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.A.); (X.T.); (X.F.); (C.L.); (Z.W.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
5
|
Wang M, Schedel M, Gelfand EW. Gene editing in allergic diseases: Identification of novel pathways and impact of deleting allergen genes. J Allergy Clin Immunol 2024; 154:51-58. [PMID: 38555980 PMCID: PMC11227406 DOI: 10.1016/j.jaci.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Gene editing technology has emerged as a powerful tool in all aspects of health research and continues to advance our understanding of critical and essential elements in disease pathophysiology. The clustered regularly interspaced short palindromic repeats (CRISPR) gene editing technology has been used with precision to generate gene knockouts, alter genes, and identify genes that cause disease. The full spectrum of allergic/atopic diseases, in part because of shared pathophysiology, is ripe for studies with this technology. In this way, novel culprit genes are being identified and allow for manipulation of triggering allergens to reduce allergenicity and disease. Notwithstanding current limitations on precision and potential off-target effects, newer approaches are rapidly being introduced to more fully understand specific gene functions as well as the consequences of genetic manipulation. In this review, we examine the impact of editing technologies of novel genes relevant to peanut allergy and asthma as well as how gene modification of common allergens may lead to the deletion of allergenic proteins.
Collapse
Affiliation(s)
- Meiqin Wang
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colo
| | - Michaela Schedel
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colo; Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Essen, Germany; Department of Pulmonary Medicine, University Hospital, Essen, Germany
| | - Erwin W Gelfand
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colo.
| |
Collapse
|
6
|
Murphy WJ, Harris AJ. Toward telomere-to-telomere cat genomes for precision medicine and conservation biology. Genome Res 2024; 34:655-664. [PMID: 38849156 PMCID: PMC11216403 DOI: 10.1101/gr.278546.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Genomic data from species of the cat family Felidae promise to stimulate veterinary and human medical advances, and clarify the coherence of genome organization. We describe how interspecies hybrids have been instrumental in the genetic analysis of cats, from the first genetic maps to propelling cat genomes toward the T2T standard set by the human genome project. Genotype-to-phenotype mapping in cat models has revealed dozens of health-related genetic variants, the molecular basis for mammalian pigmentation and patterning, and species-specific adaptations. Improved genomic surveillance of natural and captive populations across the cat family tree will increase our understanding of the genetic architecture of traits, population dynamics, and guide a future of genome-enabled biodiversity conservation.
Collapse
Affiliation(s)
- William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA;
- Department of Biology, Texas A&M University, College Station, Texas 77843-4458, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Andrew J Harris
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843-4458, USA
| |
Collapse
|
7
|
Pomés A, Smith SA, Chruszcz M, Mueller GA, Brackett NF, Chapman MD. Precision engineering for localization, validation, and modification of allergenic epitopes. J Allergy Clin Immunol 2024; 153:560-571. [PMID: 38181840 PMCID: PMC10939758 DOI: 10.1016/j.jaci.2023.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
The allergen-IgE interaction is essential for the genesis of allergic responses, yet investigation of the molecular basis of these interactions is in its infancy. Precision engineering has unveiled the molecular features of allergen-antibody interactions at the atomic level. High-resolution technologies, including x-ray crystallography, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy, determine allergen-antibody structures. X-ray crystallography of an allergen-antibody complex localizes in detail amino acid residues and interactions that define the epitope-paratope interface. Multiple structures involving murine IgG mAbs have recently been resolved. The number of amino acids forming the epitope broadly correlates with the epitope area. The production of human IgE mAbs from B cells of allergic subjects is an exciting recent development that has for the first time enabled an actual IgE epitope to be defined. The biologic activity of defined IgE epitopes can be validated in vivo in animal models or by measuring mediator release from engineered basophilic cell lines. Finally, gene-editing approaches using the Clustered Regularly Interspaced Short Palindromic Repeats technology to either remove allergen genes or make targeted epitope engineering at the source are on the horizon. This review presents an overview of the identification and validation of allergenic epitopes by precision engineering.
Collapse
Affiliation(s)
| | - Scott A Smith
- Vanderbilt University Medical Center, Nashville, Tenn
| | | | | | | | | |
Collapse
|
8
|
Lee SR, Lee KL, Song SH, Joo MD, Lee SH, Kang JS, Kang SM, Idrees M, Kim JW, Kong IK. Generation of Fel d 1 chain 2 genome-edited cats by CRISPR-Cas9 system. Sci Rep 2024; 14:4987. [PMID: 38424152 PMCID: PMC10904870 DOI: 10.1038/s41598-024-55464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
Allergens from domestic cats (Felis catus) cause allergy-related health problems worldwide. Fel d 1 is a major allergen that causes severe allergic reactions in humans, including rhinitis, conjunctivitis, and life-threatening asthma. Therefore, patients with cat allergies anticipate hypoallergenic cats. We successfully generated Fel d 1 chain 2 (CH2) genome-edited cats using the CRISPR-Cas9 system in this study. T7 endonuclease 1 assay and Sanger sequencing were used to confirm the mutation in CH2 genome-edited cats. Fel d 1 level in CH2 genome-edited cats were assessed by enzyme-linked immunosorbent assay (ELISA). Remarkably, ELISA showed that the level of Fel d 1 in the CH2 homozygous genome-edited cat (Name: Alsik) was extremely low compared with that in wild type domestic cats and could be hypoallergenic cats. Additionally, we successfully cloned the CH2 homozygous genome-edited cat using cytoplasm injection clone technology. The cloned CH2 homozygous genome-edited cat was verified using microsatellite analysis. Creating hypoallergenic cats using the CRISPR-Cas9 system is a significant step forward because these cats can safely approach allergic patients.
Collapse
Affiliation(s)
- Sang Ryeul Lee
- Animal, Dairy, and Veterinary Sciences Department, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kyung-Lim Lee
- TheKingKong Corp. Ltd., Gyeongsang National University, Jinju, Gyeongnam Province, 52828, Republic of Korea
| | - Seok-Hwan Song
- TheKingKong Corp. Ltd., Gyeongsang National University, Jinju, Gyeongnam Province, 52828, Republic of Korea
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam Province, 52828, Republic of Korea
| | - Seo-Hyun Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam Province, 52828, Republic of Korea
| | - Ji-Su Kang
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam Province, 52828, Republic of Korea
| | - Seon-Min Kang
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam Province, 52828, Republic of Korea
| | - Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam Province, 52828, Republic of Korea
| | - Jae-Wook Kim
- TheKingKong Corp. Ltd., Gyeongsang National University, Jinju, Gyeongnam Province, 52828, Republic of Korea
| | - Il-Keun Kong
- TheKingKong Corp. Ltd., Gyeongsang National University, Jinju, Gyeongnam Province, 52828, Republic of Korea.
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam Province, 52828, Republic of Korea.
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam Province, 52828, Republic of Korea.
| |
Collapse
|
9
|
Zheng W, Xu YF, Hu ZM, Li K, Xu ZQ, Sun JL, Wei JF. Artificial intelligence-driven design of the assembled major cat allergen Fel d 1 to improve its spatial folding and IgE-reactivity. Int Immunopharmacol 2024; 128:111488. [PMID: 38185034 DOI: 10.1016/j.intimp.2024.111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND Cat-derived allergens are considered as one of the most common causes of allergic diseases worldwide. Fel d 1 is a major cat allergen and plays an important role in immunoglobulin E (IgE)-reaction diagnosis. However, the two separate chains of Fel d 1 exhibited lower IgE-reactivity than its complete molecule of an assembled form, which makes it difficult to efficiently prepare and limits the application of Fel d 1 in molecular diagnosis of cat allergy. METHODS We first applied artificial intelligence (AI) based tool AlphaFold2 to build the 3-dimensional structures of Fel d 1 with different connection modes between two chains, which were evaluated by ERRAT program and were expressed in Escherichia coli. We then calculated the expression ratios of soluble form/inclusion bodies form of optimized Fel d 1. The Circular Dichroism (CD), High Performance Liquid Chromatography-Size Exclusion Chromatography (HPLC-SEC) and reducing/non-reducing SDS-PAGE were performed to characterize the folding status and dimerization of the optimized fusion Fel d 1. The improvement of specific-IgE reactivity to optimized fusion Fel d 1 was investigated by enzyme linked immunosorbent assay (ELISA). RESULTS Among several linkers, 2 × GGGGS got the highest scores, with an overall quality factor of 100. The error value of the residues around the junction of 2 × GGGGS was lower than others. It exhibited highest proportion of soluble protein than other Fel d 1 constructs with ERRAT (GGGGS, KK as well as direct fusion Fel d 1). The results of CD and HPLC-SEC showed the consistent folding and dimerization of two fused subunits between the optimized fusion Fel d 1 and previously well-defined direct fusion Fel d 1. The overall IgE-binding absorbance of optimized fusion Fel d 1 tested by ELISA was improved compared with that of the direct fusion Fel d 1. CONCLUSION We firstly provided an AI-design strategy to optimize the Fel d 1, which could spontaneously fold into its native-like structure without additional refolding process or eukaryotic folding factors. The improved IgE-binding activity and simplified preparation method could greatly facilitate it to be a robust allergen material for molecular diagnosis of cat allergy.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yi-Fei Xu
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Ming Hu
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Li
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Qiang Xu
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China.
| | - Jin-Lyu Sun
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Ji-Fu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China; Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
10
|
Petersen-Jones SM, Komáromy AM. Canine and Feline Models of Inherited Retinal Diseases. Cold Spring Harb Perspect Med 2024; 14:a041286. [PMID: 37217283 PMCID: PMC10835616 DOI: 10.1101/cshperspect.a041286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Naturally occurring inherited retinal diseases (IRDs) in cats and dogs provide a rich source of potential models for human IRDs. In many cases, the phenotypes between the species with mutations of the homologous genes are very similar. Both cats and dogs have a high-acuity retinal region, the area centralis, an equivalent to the human macula, with tightly packed photoreceptors and higher cone density. This and the similarity in globe size to that of humans means these large animal models provide information not obtainable from rodent models. The established cat and dog models include those for Leber congenital amaurosis, retinitis pigmentosa (including recessive, dominant, and X-linked forms), achromatopsia, Best disease, congenital stationary night blindness and other synaptic dysfunctions, RDH5-associated retinopathy, and Stargardt disease. Several of these models have proven to be important in the development of translational therapies such as gene-augmentation therapies. Advances have been made in editing the canine genome, which necessitated overcoming challenges presented by the specifics of canine reproduction. Feline genome editing presents fewer challenges. We can anticipate the generation of specific cat and dog IRD models by genome editing in the future.
Collapse
Affiliation(s)
- Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | - András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
11
|
Qureshi A, Connolly JB. Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control Anopheles gambiae the mosquito vector of human malaria. Malar J 2023; 22:234. [PMID: 37580703 PMCID: PMC10426224 DOI: 10.1186/s12936-023-04665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Population suppression gene drive is currently being evaluated, including via environmental risk assessment (ERA), for malaria vector control. One such gene drive involves the dsxFCRISPRh transgene encoding (i) hCas9 endonuclease, (ii) T1 guide RNA (gRNA) targeting the doublesex locus, and (iii) DsRed fluorescent marker protein, in genetically-modified mosquitoes (GMMs). Problem formulation, the first stage of ERA, for environmental releases of dsxFCRISPRh previously identified nine potential harms to the environment or health that could occur, should expressed products of the transgene cause allergenicity or toxicity. METHODS Amino acid sequences of hCas9 and DsRed were interrogated against those of toxins or allergens from NCBI, UniProt, COMPARE and AllergenOnline bioinformatic databases and the gRNA was compared with microRNAs from the miRBase database for potential impacts on gene expression associated with toxicity or allergenicity. PubMed was also searched for any evidence of toxicity or allergenicity of Cas9 or DsRed, or of the donor organisms from which these products were originally derived. RESULTS While Cas9 nuclease activity can be toxic to some cell types in vitro and hCas9 was found to share homology with the prokaryotic toxin VapC, there was no evidence from previous studies of a risk of toxicity to humans and other animals from hCas9. Although hCas9 did contain an 8-mer epitope found in the latex allergen Hev b 9, the full amino acid sequence of hCas9 was not homologous to any known allergens. Combined with a lack of evidence in the literature of Cas9 allergenicity, this indicated negligible risk to humans of allergenicity from hCas9. No matches were found between the gRNA and microRNAs from either Anopheles or humans. Moreover, potential exposure to dsxFCRISPRh transgenic proteins from environmental releases was assessed as negligible. CONCLUSIONS Bioinformatic and literature assessments found no convincing evidence to suggest that transgenic products expressed from dsxFCRISPRh were allergens or toxins, indicating that environmental releases of this population suppression gene drive for malaria vector control should not result in any increased allergenicity or toxicity in humans or animals. These results should also inform evaluations of other GMMs being developed for vector control and in vivo clinical applications of CRISPR-Cas9.
Collapse
Affiliation(s)
- Alima Qureshi
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK
| | - John B Connolly
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK.
| |
Collapse
|
12
|
Brackett NF. Rosalind Franklin Society Proudly Announces the 2022 Award Recipient for The CRISPR Journal. CRISPR J 2023; 6:401. [PMID: 37594270 DOI: 10.1089/crispr.2023.29162.rfs2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
|
13
|
Durairaj R, Pageat P, Bienboire-Frosini C. Impact of Semiochemicals Binding to Fel d 1 on Its 3D Conformation and Predicted B-Cell Epitopes Using Computational Approaches. Int J Mol Sci 2023; 24:11685. [PMID: 37511444 PMCID: PMC10380945 DOI: 10.3390/ijms241411685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The major cat allergen Fel d 1 is a tetrameric glycoprotein from the secretoglobin superfamily. Fel d 1's biological role is unknown, but it has been previously shown that it participates in semiochemical binding/transportation. Fel d 1 has linear epitopes, but its conformational epitope sites remain unclear. In this study, we predicted the B-cell epitopes of Fel d 1 and explored semiochemical dynamics with epitopes using bioinformatics tools. The epitope residues were tabulated for chains 1 and 2 and the heterodimers of Fel d 1. The residual interactions of Fel d 1 with IgE were evaluated, and the prominent epitope sites were predicted. The molecular dynamics simulation (MDS) of Fel d 1 was performed with seven reported semiochemicals to evaluate the Fel d 1-ligand complex stability and decipher the semiochemical effect on Fel d 1 conformational epitopes. Fel d 1-lauric acid, Fel d 1-oleic acid, and Fel d 1-progesterone showed more stability and less fluctuation than other compounds. Fel d 1-linoleic acid and Fel d 1-pregnenolone displayed the most unstable complex with fluctuations. The effects of conformational changes on epitopes are discussed. All the ligand complexes drive substantial fluctuation towards the functionally exposed IgE-binding epitopes. Fel d 1 could be examined for its ligand-binding and conformational changes caused by mutations of B-cell epitopes.
Collapse
Affiliation(s)
- Rajesh Durairaj
- Department of Bioinformatics and Chemical Communication (D-BICC), Research Institute in Semiochemistry and Applied Ethology (IRSEA), Quartier Salignan, 84400 Apt, France
| | - Patrick Pageat
- Research and Education Board, Research Institute in Semiochemistry and Applied Ethology (IRSEA), Quartier Salignan, 84400 Apt, France
| | - Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication (D-BMCC), Research Institute in Semiochemistry and Applied Ethology (IRSEA), Quartier Salignan, 84400 Apt, France
| |
Collapse
|
14
|
Bergmann K, Raab J, Graessel A, Zwingers T, Becker S, Kugler S, Zuberbier T, Roth‐Walter F, Kramer MF, Jensen‐Jarolim E. The holo beta-lactoglobulin lozenge reduces symptoms in cat allergy-Evaluation in an allergen exposure chamber and by titrated nasal allergen challenge. Clin Transl Allergy 2023; 13:e12274. [PMID: 37488734 PMCID: PMC10314279 DOI: 10.1002/clt2.12274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 06/18/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND The allergists´ tool box in cat allergy management is limited. Clinical studies have shown that holo beta-lactoglobulin (holoBLG) can restore micronutritional deficits in atopic immune cells and alleviate allergic symptoms in a completely allergen-nonspecific manner. With this study, we aimed to provide proof of principle in cat allergy. METHODS A novel challenge protocol for cat allergy in a standardized ECARF allergen exposure chamber (AEC) was developed. In an open pilot study (NCT05455749), patients with clinically relevant cat allergy were provoked with cat allergen for 120 min in the AEC before and after a 3-month intervention phase (holoBLG lozenge 2x daily). Nasal, conjunctival, bronchial, and pruritus symptoms were scored every 10 min- constituting the total symptom score (TSS). Peak nasal inspiratory flow (PNIF) was measured every 30 min. In addition, a titrated nasal provocation test (NPT) was performed before and after the intervention. Primary endpoint was change in TSS at the end of final exposure compared to baseline. Secondary endpoints included changes in PNIF, NPT, and occurrence of late reactions up to 24 h after exposure. RESULTS 35 patients (mean age: 40 years) completed the study. Compared to baseline, holoBLG supplementation resulted in significant improvement in median TSS of 50% (p < 0.001), as well as in median nasal flow by 20 L/min (p = 0.0035). 20% of patients reported late reactions after baseline exposure, but 0% after the final exposure. CONCLUSIONS Cat allergic patients profited from targeted micronutrition with the holoBLG lozenge. As previously seen in other allergies, holoBLG supplementation also induced immune resilience in cat allergies, resulting in significant symptom amelioration.
Collapse
Affiliation(s)
- Karl‐Christian Bergmann
- Institute of AllergologyCharité—Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPAllergology and ImmunologyBerlinGermany
- ECARF—European Centre for Allergy Research FoundationBerlinGermany
| | | | - Anke Graessel
- Bencard Allergie GmbHMunichGermany
- Allergy Therapeutics (UK) plcWorthingUK
| | | | - Sylvia Becker
- ECARF—European Centre for Allergy Research FoundationBerlinGermany
| | - Sebastian Kugler
- ECARF—European Centre for Allergy Research FoundationBerlinGermany
| | - Torsten Zuberbier
- Institute of AllergologyCharité—Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPAllergology and ImmunologyBerlinGermany
| | - Franziska Roth‐Walter
- The Interuniversity Messerli Research Institute of the Medical University ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University ViennaViennaAustria
| | - Matthias F. Kramer
- Bencard Allergie GmbHMunichGermany
- Allergy Therapeutics (UK) plcWorthingUK
| | - Erika Jensen‐Jarolim
- The Interuniversity Messerli Research Institute of the Medical University ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University ViennaViennaAustria
- Biomedical International R+D GmbHViennaAustria
| |
Collapse
|
15
|
Birand A, Cassey P, Ross JV, Thomas PQ, Prowse TAA. Scalability of genetic biocontrols for eradicating invasive alien mammals. NEOBIOTA 2022. [DOI: 10.3897/neobiota.74.82394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
CRISPR-based gene drives offer novel solutions for controlling invasive alien species, which could ultimately extend eradication efforts to continental scales. Gene drives for suppressing invasive alien vertebrates are now under development. Using a landscape-scale individual-based model, we present the first estimates of times to eradication for long-lived alien mammals. We show that demography and life-history traits interact to determine the scalability of gene drives for vertebrate pest eradication. Notably, optimism around eradicating smaller-bodied pests (rodents and rabbits) with gene-drive technologies does not easily translate into eradication of larger-bodied alien species (cats and foxes).
Collapse
|
16
|
30 years of progress from positional cloning to precision genome editing. Nat Genet 2022; 54:908-910. [PMID: 35817985 DOI: 10.1038/s41588-022-01128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Lyons LA. It's a Knockout for Cat Allergies? CRISPR J 2022; 5:356-357. [PMID: 35686981 DOI: 10.1089/crispr.2022.29148.lal] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Leslie A Lyons
- Gilbreath-McLorn Endowed Professor of Comparative Medicine, Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|