1
|
Dmour I, Islam N. Recent advances on chitosan as an adjuvant for vaccine delivery. Int J Biol Macromol 2022; 200:498-519. [PMID: 34973993 DOI: 10.1016/j.ijbiomac.2021.12.129] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/05/2021] [Accepted: 12/19/2021] [Indexed: 12/21/2022]
Abstract
Chitosan (CS) is a natural polymer derived from chitin that has wide applications in drugs, vaccines, and antigen delivery. The distinctive mucoadhesive, biocompatibility, biodegradable, and less toxic properties of chitosan compared to the currently used vaccine adjuvants made it a promising candidate for use as an adjuvant/carrier in vaccine delivery. In addition, chitosan exhibits intrinsic immunomodulating properties making it a suitable adjuvant in preparing vaccines delivery systems. Nanoparticles (NPs) of chitosan and its derivatives loaded with antigen have been shown to induce cellular and humoral responses. Versatility in the physicochemical properties of chitosan can provide an excellent opportunity to engineer antigen-specific adjuvant/delivery systems. This review discusses the recent advances of chitosan and its derivatives as adjuvants in vaccine deliveryand the published literature in the last fifteen years. The impact of physicochemical properties of chitosan on vaccine formulation has been described in detail. Applications of chitosan and its derivatives, their physicochemical properties, and mechanisms in enhancing immune responses have been discussed. Finally, challenges and future aspects of chitosan use has been pointed out.
Collapse
Affiliation(s)
- Isra Dmour
- Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
2
|
Akache B, Stark FC, Agbayani G, Renner TM, McCluskie MJ. Adjuvants: Engineering Protective Immune Responses in Human and Veterinary Vaccines. Methods Mol Biol 2022; 2412:179-231. [PMID: 34918246 DOI: 10.1007/978-1-0716-1892-9_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adjuvants are key components of many vaccines, used to enhance the level and breadth of the immune response to a target antigen, thereby enhancing protection from the associated disease. In recent years, advances in our understanding of the innate and adaptive immune systems have allowed for the development of a number of novel adjuvants with differing mechanisms of action. Herein, we review adjuvants currently approved for human and veterinary use, describing their use and proposed mechanisms of action. In addition, we will discuss additional promising adjuvants currently undergoing preclinical and/or clinical testing.
Collapse
Affiliation(s)
- Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Felicity C Stark
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Tyler M Renner
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Lima BV, Oliveira MJ, Barbosa MA, Gonçalves RM, Castro F. Immunomodulatory potential of chitosan-based materials for cancer therapy: a systematic review of in vitro, in vivo and clinical studies. Biomater Sci 2021; 9:3209-3227. [PMID: 33949372 DOI: 10.1039/d0bm01984d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chitosan (Ch) has recently been used in different studies as a vaccine adjuvant with an ability to modulate the tumor microenvironment (TME). This systematic review aims to elucidate the added value of using Ch-based therapies for immunotherapeutic strategies in cancer treatment, through the exploration of different Ch-based formulations, their capacity to modulate immune cells in vitro and in vivo, and their translational potential for clinical settings. A systematic review was conducted on PubMed, following both inclusion and exclusion steps. Original articles which focused on the immunomodulatory role of Ch-based formulations in the TME were included, as well as its usage as a delivery vehicle for other immunomodulatory molecules. This review illustrates the added value of Ch-based systems to reshape the TME, through the modulation of immune cells using different Ch formulations, namely solutions, films, gels, microneedles and nanoparticles. Generally, Ch-based formulations increase the recruitment and proliferation of cells associated with pro-inflammatory abilities and decrease cells which exert anti-inflammatory activities. These effects correlated with a decreased tumor weight, reduced metastases, reversion of the immunosuppressive TME and increased survival in vivo. Overall, Ch-based formulations present the potential for immunotherapy in cancer. Nevertheless, clinical translation remains challenging, since the majority of the studies use Ch in formulations with other components, implicating that some of the observed effects could result from the combination of the individual effects. More studies on the use of different Ch-based formulations, complementary to standardization and disclosure of the Ch properties used are required to improve the immunomodulatory effects of Ch-based formulations in cancer.
Collapse
Affiliation(s)
- Beatriz V Lima
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Maria J Oliveira
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Mário A Barbosa
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Raquel M Gonçalves
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Flávia Castro
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Kitiyodom S, Trullàs C, Rodkhum C, Thompson KD, Katagiri T, Temisak S, Namdee K, Yata T, Pirarat N. Modulation of the mucosal immune response of red tilapia (Oreochromis sp.) against columnaris disease using a biomimetic-mucoadhesive nanovaccine. FISH & SHELLFISH IMMUNOLOGY 2021; 112:81-91. [PMID: 33675991 DOI: 10.1016/j.fsi.2021.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Columnaris, a highly contagious bacterial disease caused by Flavobacterium columnare, is recognized as one of the most important infectious diseases in farmed tilapia, especially during the fry and fingerling stages of production. The disease is associated with characteristic lesions in the mucosa of affected fish, particularly their skin and gills. Vaccines delivered via the mucosa are therefore of great interest to scientists developing vaccines for this disease. In the present study, we characterized field isolates of F. columnare obtained from clinical columnaris outbreaks in red tilapia to select an isolate to use as a candidate for our vaccine study. This included characterizing its colony morphology, genotype and virulence status. The isolate was incorporated into a mucoadhesive polymer chitosan-complexed nanovaccine (CS-NE), the efficacy of which was determined by experimentally infecting red tilapia that had been vaccinated with the nanoparticles by immersion. The experimental infection was performed 30-days post-vaccination (dpv), which resulted in 89% of the unvaccinated control fish dying, while the relative percentage survival (RPS) of the CS-NE vaccinated group was 78%. Histology of the mucosal associated lymphoid tissue (MALT) showed a significantly higher presence of leucocytes and a greater antigen uptake by the mucosal epithelium in CS-NE vaccinated fish compared to control fish and whole cell vaccinated fish, respectively, and there was statistically significant up-regulation of IgT, IgM, TNF α, IL1-β and MHC-1 genes in the gill of the CS-NE vaccinated group. Overall, the results of our study confirmed that the CS-NE particles achieved better adsorption onto the mucosal surfaces of the fish, elicited great vaccine efficacy and modulated the MALT immune response better than the conventional whole cell-killed vaccine, demonstrating the feasibility of the mucoadhesive nano-immersion vaccine as an effective delivery system for the induction of a mucosal immune response against columnaris disease in tilapia.
Collapse
Affiliation(s)
- Sirikorn Kitiyodom
- Wildlife Exotic Aquatic Animal Pathology-Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Clara Trullàs
- Wildlife Exotic Aquatic Animal Pathology-Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Channarong Rodkhum
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, UK
| | - Takayuki Katagiri
- Laboratory of Fish Health Management, Course of Aquatic Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Sasithon Temisak
- Bio Analysis Group, Chemical Metrology and Biometry Department, National Institute of Metrology (NIMT), Pathum Thani, 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nopadon Pirarat
- Wildlife Exotic Aquatic Animal Pathology-Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Lampe AT, Farris EJ, Brown DM, Pannier AK. High- and low-molecular-weight chitosan act as adjuvants during single-dose influenza A virus protein vaccination through distinct mechanisms. Biotechnol Bioeng 2020; 118:1224-1243. [PMID: 33289090 PMCID: PMC7897297 DOI: 10.1002/bit.27647] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
The investigation of new adjuvants is essential for the development of efficacious vaccines. Chitosan (CS), a derivative of chitin, has been shown to act as an adjuvant, improving vaccine-induced immune responses. However, the effect of CS molecular weight (MW) on this adjuvanticity has not been investigated, despite MW having been shown to impact CS biological properties. Here, two MW variants of CS were investigated for their ability to enhance vaccine-elicited immune responses in vitro and in vivo, using a single-dose influenza A virus (IAV) protein vaccine model. Both low-molecular-weight (LMW) and high-molecular-weight (HMW) CS-induced interferon regulatory factor pathway signaling, antigen-presenting cell activation, and cytokine messenger RNA (mRNA) production, with LMW inducing higher mRNA levels at 24 h and HMW elevating mRNA responses at 48 h. LMW and HMW CS also induced adaptive immune responses after vaccination, indicated by enhanced immunoglobulin G production in mice receiving LMW CS and increased CD4 interleukin 4 (IL-4) and IL-2 production in mice receiving HMW CS. Importantly, both LMW and HMW CS adjuvantation reduced morbidity following homologous IAV challenge. Taken together, these results support that LMW and HMW CS can act as adjuvants, although this protection may be mediated through distinct mechanisms based on CS MW.
Collapse
Affiliation(s)
- Anna T Lampe
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Eric J Farris
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Trudeau Institute, Saranac Lake, NY, USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
6
|
Kuznetsova TA, Persiyanova EV, Zaporozhets TS, Besednova NN. [Adjuvants of influenza vaccines: new possibilities of using sulphated polysaccharides from marine brown algae.]. Vopr Virusol 2020; 64:5-11. [PMID: 30893523 DOI: 10.18821/0507-4088-2019-64-1-5-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The review article presents the characteristics of the main adjuvant groups (mineral salts of aluminum, synthetic squalenebased adjuvants - MF59 and AS03, CpG-oligodeoxynucleotides, virosomes, polyoxidonium, sovidone) included in the licensed influenza vaccine. The main mechanisms of adjuvant action, advantages and disadvantages of these adjuvants are shown. The vaccines adjuvants in the phase of experimental studies and clinical trials (ISCOMs, Advax™, chitosan) are described too. Particular attention is paid to sulfated polysaccharides (fucoidans) from marine brown algae as vaccine adjuvants. Numerous results of their application in compositions of experimental vaccines are presented. The prospects of sulfated polysaccharides using in the design of influenza vaccines are estimated. These prospects are determined by high biocompatibility, low toxicity and good tolerance of the human body to fucoidans, as well as mechanisms of their adjuvant activity. Sulfated polysaccharides are agonists of toll-like receptors of innate immunity cells and powerful inducers of the cellular and humoral immune response, which is important for the development of influenza vaccines. The review is based on the information presented in the bibliographic and abstract databases of scientific publications, search engines and publishers: RSCI, Web of Science, Scopus, MEDLINE, Google Scholar, PubMed, Springer Nature, Elsevier and others.
Collapse
Affiliation(s)
- T A Kuznetsova
- Research Somov Institute of Epidemiology and Microbiology, Vladivostok, 690087, Russian Federation
| | - E V Persiyanova
- Research Somov Institute of Epidemiology and Microbiology, Vladivostok, 690087, Russian Federation
- Medical Association of Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russian Federation
| | - T S Zaporozhets
- Research Somov Institute of Epidemiology and Microbiology, Vladivostok, 690087, Russian Federation
| | - N N Besednova
- Research Somov Institute of Epidemiology and Microbiology, Vladivostok, 690087, Russian Federation
| |
Collapse
|
7
|
AbdelAllah NH, Gaber Y, Rashed ME, Azmy AF, Abou-Taleb HA, AbdelGhani S. Alginate-coated chitosan nanoparticles act as effective adjuvant for hepatitis A vaccine in mice. Int J Biol Macromol 2020; 152:904-912. [PMID: 32114177 DOI: 10.1016/j.ijbiomac.2020.02.287] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/28/2023]
Abstract
The numerous recent hepatitis A outbreaks emphasize the need for vaccination; despite the effectiveness of the current ones, developments are needed to overcome its high cost plus some immune response limitations. Our study aims to evaluate the use of chitosan and alginate-coated chitosan nanoparticles as an adjuvant/carrier for the hepatitis A vaccine (HAV) against the traditional adjuvant alum. Immune responses towards (HAV-Al) with alum, (HAV-Ch) with chitosan, and (HAV-aCNP) with alginate-coated chitosan nanoparticles, were assessed in mice. HAV-aCNP significantly improved the immunogenicity by increasing the seroconversion rate (100%), the hepatitis A antibodies level, and the splenocytes proliferation. Thus, the HAV-aCNP adjuvant was superior to other classes in IFN-γ and IL-10 development. Meanwhile, the solution formula of HAV with chitosan showed comparable humoral and cellular immune responses to alum-adjuvanted suspension with a balanced Th1/Th2 immune pathway. The current study showed the potential of alginate-coated chitosan nanoparticles as an effective carrier for HAV. Consequently, this would impact the cost of HAV production positively.
Collapse
Affiliation(s)
- Nourhan H AbdelAllah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt; Viral Control Unit, National Organization for Research and Control of Biologicals (NORCB), Cairo 12654, Egypt
| | - Yasser Gaber
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-karak 61710, Jordan
| | - Mohamed E Rashed
- Microbiology Department, National Organization for Research and Control of Biologicals (NORCB), Cairo 12654, Egypt
| | - Ahmed F Azmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Heba A Abou-Taleb
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Sameh AbdelGhani
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt; Department of Pathology and Medical Laboratory, University of Louisville, KY 40202, USA.
| |
Collapse
|
8
|
Kitiyodom S, Yata T, Yostawornkul J, Kaewmalun S, Nittayasut N, Suktham K, Surassmo S, Namdee K, Rodkhum C, Pirarat N. Enhanced efficacy of immersion vaccination in tilapia against columnaris disease by chitosan-coated "pathogen-like" mucoadhesive nanovaccines. FISH & SHELLFISH IMMUNOLOGY 2019; 95:213-219. [PMID: 31585248 DOI: 10.1016/j.fsi.2019.09.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Red tilapia (Oreochromis sp.) has become one of the most important fish in aquaculture. Bacterial infection caused by Flavobacterium columnare, the causative agent of columnaris disease, has been now identified as one of the most serious infectious diseases in farmed red tilapia and cause major financial damage to the producers. Among the effective prevention and control strategies, vaccination is one of the most effective approach. As the surface of living fish is covered by mucus and directly associated with the mucosal immunity, we therefore hypothesized that better adsorption on mucosal surfaces and more efficient vaccine efficacy could be enhanced biomimetic nanoparticles mimicking the mucoadhesive characteristic of live F. columnare. In this work, we describe an effective approach to targeted antigen delivery by coating the surface of nanoparticles with mucoadhesive chitosan biopolymer to provide "pathogen-like" properties that ensure nanoparticles binding on fish mucosal membrane. The physiochemical properties of nanovaccines were analyzed, and their mucoadhesive characteristics and immune response against pathogens were also evaluated. The prepared vaccines were nano-sized and spherical as confirmed by scanning electron microscope (SEM). The analysis of hydrodynamic diameter and zeta-potential also suggested the successful modification of nanovaccines by chitosan as indicated by positively charged and the overall increased diameter of chitosan-modified nanovaccines. In vivo mucoadhesive study demonstrated the excellent affinity of the chitosan-modified nanovaccines toward fish gills as confirmed by bioluminescence imaging, fluorescent microscopy, and spectrophotometric quantitative measurement. Following vaccination with the prepared nanovaccines by immersion 30 min, the challenge test was then carried out 30 and 60 days post-vaccination and resulted in high mortalities in the control. The relative percent survival (RPS) of vaccinated fish was greater than 60% for mucoadhesive nanovaccine. Our results also suggested that whole-cell vaccines failed to protect fish from columnaris infection, which is consistent with the mucoadhesive assays showing that whole-cell bacteria were unable to bind to mucosal surfaces. In conclusion, we could use this system to deliver antigen preparation to the mucosal membrane of tilapia and obtained a significant increase in survival compared to controls, suggesting that targeting mucoadhesive nanovaccines to the mucosal surface could be exploited as an effective method for immersion vaccination.
Collapse
Affiliation(s)
- Sirikorn Kitiyodom
- Wildlife Exotic Aquatic Animal Pathology-Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jakarwan Yostawornkul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Somrudee Kaewmalun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Naiyaphat Nittayasut
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kunat Suktham
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Suvimol Surassmo
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Channarong Rodkhum
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nopadon Pirarat
- Wildlife Exotic Aquatic Animal Pathology-Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Bose RJC, Kim M, Chang JH, Paulmurugan R, Moon JJ, Koh WG, Lee SH, Park H. Biodegradable polymers for modern vaccine development. J IND ENG CHEM 2019; 77:12-24. [PMID: 32288512 PMCID: PMC7129903 DOI: 10.1016/j.jiec.2019.04.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023]
Abstract
Most traditional vaccines are composed either of a whole pathogen or its parts; these vaccines, however, are not always effective and can even be harmful. As such, additional agents known as adjuvants are necessary to increase vaccine safety and efficacy. This review summarizes the potential of biodegradable materials, including synthetic and natural polymers, for vaccine delivery. These materials are highly biocompatible and have minimal toxicity, and most biomaterial-based vaccines delivering antigens or adjuvants have been shown to improve immune response, compared to formulations consisting of the antigen alone. Therefore, these materials can be applied in modern vaccine development.
Collapse
Affiliation(s)
- Rajendran JC Bose
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, South Korea
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305-5427, United States
| | - Minwoo Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Ji Hyun Chang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305-5427, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, Department of Biomedical Engineering & Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, YONSEI University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, South Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University Biomedical, Campus 32, Gyeonggi 10326, South Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
10
|
Cohen E, Merzendorfer H. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. EXTRACELLULAR SUGAR-BASED BIOPOLYMERS MATRICES 2019; 12. [PMCID: PMC7115017 DOI: 10.1007/978-3-030-12919-4_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply and cost-effectively extracted from waste material of fish industry, mainly crab and shrimp shells. Research over the past five decades has revealed that chitosan, in particular, possesses unique and useful characteristics such as chemical versatility, polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity, antimicrobial and antioxidative properties, low toxicity, and biocompatibility and biodegradability features. A plethora of chemical chitosan derivatives have been synthesized yielding improved materials with suggested or effective applications in water treatment, biosensor engineering, agriculture, food processing and storage, textile additives, cosmetics fabrication, and in veterinary and human medicine. The number of studies in this research field has exploded particularly during the last two decades. Here, we review recent advances in utilizing chitosan and chitosan derivatives in different technical, agricultural, and biomedical fields.
Collapse
Affiliation(s)
- Ephraim Cohen
- Department of Entomology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hans Merzendorfer
- School of Science and Technology, Institute of Biology – Molecular Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
11
|
Kitiyodom S, Kaewmalun S, Nittayasut N, Suktham K, Surassmo S, Namdee K, Rodkhum C, Pirarat N, Yata T. The potential of mucoadhesive polymer in enhancing efficacy of direct immersion vaccination against Flavobacterium columnare infection in tilapia. FISH & SHELLFISH IMMUNOLOGY 2019; 86:635-640. [PMID: 30528659 DOI: 10.1016/j.fsi.2018.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Vaccination is the most effective approach for prevention of infectious diseases in aquaculture. Although immersion vaccination is more applicable compared to in-feed/oral administration and injection, this method suffers from low potency as the efficiency of uptake of antigens through mucosal membranes is limited. In this study, we have successfully developed a mucoadhesive vaccine delivery system to enhance the efficacy of direct immersion vaccination against Flavobacterium columnare, the causative agent of columnaris disease in red tilapia. A formalin-killed negatively charged, bacterial cell suspension was used to prepare a mucoadhesive vaccine by electrostatic coating with positively charged chitosan. Our results demonstrate that the chitosan-complexed vaccine greatly increases its mucoadhesiveness, thus increasing the chances of vaccine uptake by the gill mucosa and improving the protection obtained against columnaris infection. The surface charge of the chitosan-complexed vaccine was altered from anionic to cationic after chitosan modification. Tilapia were vaccinated with the prepared chitosan-complexed vaccine by immersion. The challenge test was then carried out 30 and 60 days post vaccination, which resulted in a high level of mortalities in the non-vaccinated and uncomplexed vaccine groups. A high relative percentage survival (RPS) of vaccinated fish was noted with the mucoadhesive vaccine. Our results indicated that the naked vaccine failed to protect the fish from columnaris infection, which is consistent with the mucoadhesive assays performed during the study showing that the naked vaccine was unable to bind to mucosal surfaces. This system is therefore an effective method for immersion vaccination in order to deliver the antigen preparation to the mucosal surface membrane of the fish.
Collapse
Affiliation(s)
- Sirikorn Kitiyodom
- Wildlife Exotic and Aquatic Pathology-Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somrudee Kaewmalun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Naiyaphat Nittayasut
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kunat Suktham
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Suvimol Surassmo
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Channarong Rodkhum
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nopadon Pirarat
- Wildlife Exotic and Aquatic Pathology-Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Teerapong Yata
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
12
|
Malik A, Gupta M, Gupta V, Gogoi H, Bhatnagar R. Novel application of trimethyl chitosan as an adjuvant in vaccine delivery. Int J Nanomedicine 2018; 13:7959-7970. [PMID: 30538470 PMCID: PMC6260144 DOI: 10.2147/ijn.s165876] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The application of natural carbohydrate polysaccharides for antigen delivery and its adjuvanation potential has garnered interest in the scientific community in the recent years. These biomaterials are considered favorable candidates for adjuvant development due to their desirable properties like enormous bioavailability, non-toxicity, biodegradability, stability, affordability, and immunostimulating ability. Chitosan is the one such extensively studied natural polymer which has been appreciated for its excellent applications in pharmaceuticals. Trimethyl chitosan (TMC), a derivative of chitosan, possesses these properties. In addition it has the properties of high aqueous solubility, high charge density, mucoadhesive, permeation enhancing (ability to cross tight junction), and stability over a range of ionic conditions which makes the spectrum of its applicability much broader. It has also been seen to perform analogously to alum, complete Freund’s adjuvant, incomplete Freund’s adjuvant, and cyclic guanosine monophosphate adjuvanation, which justifies its role as a potent adjuvant. Although many review articles detailing the applications of chitosan in vaccine delivery are available, a comprehensive review of the applications of TMC as an adjuvant is not available to date. This article provides a comprehensive overview of structural and chemical properties of TMC which affect its adjuvant characteristics; the efficacy of various delivery routes for TMC antigen combination; and the recent advances in the elucidation of its mechanism of action.
Collapse
Affiliation(s)
- Anshu Malik
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| | - Manish Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| | - Vatika Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| | - Himanshu Gogoi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,
| |
Collapse
|
13
|
Kuznetsova TA, Persiyanova EV, Ermakova SP, Khotimchenko MY, Besednova NN. The Sulfated Polysaccharides of Brown Algae and Products of Their Enzymatic Transformation as Potential Vaccine Adjuvants. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The review is devoted to critical analysis of literature data, deal with effects and mechanisms of action of sulfated polysaccharides (PSs) – fucoidans from brown algae and products of their enzymatic transformation as potential adjuvants for enhancement of anti-infective and antitumor immune response. Numerous experimental data indicate that sulfated PSs demonstrate properties of vaccine adjuvants. Application perspectiveness of fucoidans as vaccine adjuvants is defined by their high biocompatibility, low-toxicity, safety and good tolerance by macroorganism, and also mechanisms of their immunomodulatory action. In particular, fucoidans are agonists of receptors of innate immunity and strong inducers of cellular and humoral immune response. At presenting the data of structural - functional interrelations, attention focused to the defining role of degree of sulfation, uronic acids and polyphenols contents, and also molecular mass in actions of fucoidans to innate and adaptive immunity cells. Insufficiency of literary data on studying of correlation of structure – physicochemical characteristics with adjuvanticities of the sulfated PSs, and also the problem of standardization of their active fractions are noted. Special attention is paid to the analysis of immunomodulatory and adjuvant activity of fucoidan oligosaccharides. Presented here results of experimental trial indicate that, despite the difficulties due to preparation of highly purified structurally characterized fractions and complex structure of fucoidans, these substances can be used as safe and effective adjuvants in vaccines against various pathogens including viruses, and also in antitumor vaccines.
Collapse
Affiliation(s)
- Tatyana A. Kuznetsova
- Federal State Budgetary Scientific Institution «Research Somov Institute of Epidemiology and Microbiology», Sel'skaya street, 1, 690087, Vladivostok, Russian Federation
- Far Eastern Federal University, School of Biomedicine, bldg. M25 FEFU Campus, Ajax Bay, Russky Isl., 690922 Vladivostok, Russian Federation
| | - Elena V. Persiyanova
- Federal State Budgetary Scientific Institution «Research Somov Institute of Epidemiology and Microbiology», Sel'skaya street, 1, 690087, Vladivostok, Russian Federation
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Maxim Yu. Khotimchenko
- Far Eastern Federal University, School of Biomedicine, bldg. M25 FEFU Campus, Ajax Bay, Russky Isl., 690922 Vladivostok, Russian Federation
| | - Natalya N. Besednova
- Federal State Budgetary Scientific Institution «Research Somov Institute of Epidemiology and Microbiology», Sel'skaya street, 1, 690087, Vladivostok, Russian Federation
| |
Collapse
|
14
|
Epitope selection and their placement for increased virus neutralization in a novel vaccination strategy for porcine epidemic diarrhea virus utilizing the Hepatitis B virus core antigen. Vaccine 2018; 36:4507-4516. [PMID: 29914846 PMCID: PMC7172244 DOI: 10.1016/j.vaccine.2018.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 11/08/2022]
Abstract
Hepatitis B core antigen (HBcAg) protein with PEDV epitopes can assemble into virus like particles. Epitope placement within HBcAg can affect the immunogenicity of a vaccine. The YSNIGVCK antigen from PEDV has a strong correlation with virus neutralization.
Porcine epidemic diarrhea virus (PEDV) is a member of the Alphacoronaviridae genus within the Coronaviridae family. It is the causative agent of porcine epidemic diarrhea, a disease that can have mortality rates as high as 100% in suckling piglets. PEDV causes severe economic loss, and has been in existence for decades. A panzootic starting in 2010 renewed interest in the development of a universal vaccine toward PEDV. This report details several design changes made to a Hepatitis B virus core antigen (HBcAg)-based recombinant vaccine strategy, and their effect in vivo. Initially, several multi-antigen vaccine candidates were able to elicit antibodies specific to three out of four B-cell epitopes inserted into the chimeric proteins. However, a lack of virus neutralization led to a redesign of the vaccines. The focus of the newly redesigned vaccines was to elicit a strong immune response to the YSNIGVCK amino acid motif from PEDV. Genetically modified new vaccine candidates were able to elicit a strong antibody (Ab) response to the YSNIGVCK epitope, which correlated with an increased ability to neutralize the CO strain of PEDV. Additionally, the location of the inserted PEDV epitopes within the vector protein was shown to affect the immune recognition toward the native HBcAg during vaccination.
Collapse
|
15
|
Wang M, Zhang L, Yang R, Fei C, Wang X, Zhang K, Wang C, Zheng W, Xue F. Improvement of immune responses to influenza vaccine (H5N1) by sulfated yeast beta-glucan. Int J Biol Macromol 2016; 93:203-207. [DOI: 10.1016/j.ijbiomac.2016.06.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/12/2016] [Accepted: 06/18/2016] [Indexed: 12/09/2022]
|
16
|
Anti-botulism single-shot vaccine using chitosan for protein encapsulation by simple coacervation. Anaerobe 2016; 42:182-187. [DOI: 10.1016/j.anaerobe.2016.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022]
|
17
|
Wang H, Yao Y, Huang C, Fu X, Chen Q, Zhang H, Chen J, Fang F, Xie Z, Chen Z. An adjuvanted inactivated murine cytomegalovirus (MCMV) vaccine induces potent and long-term protective immunity against a lethal challenge with virulent MCMV. BMC Infect Dis 2014; 14:195. [PMID: 24720840 PMCID: PMC4005462 DOI: 10.1186/1471-2334-14-195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes serious problems in immunocompromised or immunologically immature hosts. Vaccination is the preferred approach for prevention of HCMV infection, but so far no approved HCMV vaccine is available. In this study, we assessed the immunogenicity and protective immunity of a formalin-inactivated murine cytomegalovirus vaccine (FI-MCMV) in a mouse model in combination with adjuvants MF59, alum, or chitosan. Methods Specific-pathogen-free BALB/c mice aged 6–8 weeks were immunized twice, 3 weeks apart, with various doses of FI-MCMV (0.25 μg, 1 μg, 4 μg) with or without adjuvant. Mice were challenged with a lethal dose (5 × LD50) of a more virulent mouse salivary gland-passaged MCMV 3 weeks after the second immunization. The protective immunity of the vaccine was evaluated by determining the survival rates, residual spleen and salivary gland viral loads, body weight changes, and serum anti-MCMV IgG titers. Results Immunization with FI-MCMV vaccine induced a high level of specific antibody response. Antigen sparing was achieved by the addition of an adjuvant, which significantly enhanced the humoral response to vaccine antigens with a wide range of doses. The level of live virus detected in the spleen on day 5 and in the salivary glands on day 21 after the lethal challenge was significantly lower in adjuvant-treated groups than in controls. Survival rates in adjuvant-treated groups also increased significantly. Furthermore, these protective immune responses were sustained for at least 6 months following immunization. Conclusions These results show that inactivated MCMV vaccine is effective, and that the adjuvanted FI-MCMV vaccine provides more effective and longer-term protection than the adjuvant-free vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ze Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
| |
Collapse
|
18
|
Intranasal immunization with live attenuated influenza vaccine plus chitosan as an adjuvant protects mice against homologous and heterologous virus challenge. Arch Virol 2012; 157:1451-61. [DOI: 10.1007/s00705-012-1318-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
|
19
|
Lemke CD, Graham JB, Geary SM, Zamba G, Lubaroff DM, Salem AK. Chitosan is a surprising negative modulator of cytotoxic CD8+ T cell responses elicited by adenovirus cancer vaccines. Mol Pharm 2011; 8:1652-61. [PMID: 21780831 DOI: 10.1021/mp100464y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adjuvants modulate protective CD8(+) T cell responses generated by cancer vaccines. We have previously shown that immunostimulatory cytosine-phosphodiester-guanine (CpG) oligodeoxynucleotide (ODN) significantly augments tumor protection in mice given adenovirus cancer vaccines. Here, we examined the impact of chitosan, another candidate vaccine adjuvant, on protection conferred by adenovirus cancer vaccines. Unexpectedly, immunization of mice with adenovirus cancer vaccines in combination with chitosan provided little protection against tumor challenge. This directly correlated with the reduced detection of Ag-specific CD8(+) T cells, interferon-γ (IFN-γ) production, and cytotoxic T cell activity. We ruled out immunosuppressive regulatory T cells since the frequency did not change regardless of whether chitosan was delivered. In mammalian cell lines, chitosan did not interfere with adenovirus transgene expression. However, infection of primary murine bone marrow-derived dendritic cells with adenovirus complexed with chitosan significantly reduced viability, transgene expression, and upregulation of major histocompatability (MHC) class I and CD86. Our in vitro observations indicate that chitosan dramatically inhibits adenovirus-mediated transgene expression and antigen presenting cell activation, which could prevent CD8(+) T cell activation from occurring in vivo. These surprising data demonstrate for the first time that chitosan vaccine formulations can negatively impact the induction of CD8(+) T cell responses via its effect on dendritic cells, which is clinically important since consideration of chitosan as an adjuvant for vaccine formulations is growing.
Collapse
Affiliation(s)
- Caitlin D Lemke
- College of Pharmacy, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | | | | | | | | | | |
Collapse
|
20
|
de Geus ED, van Haarlem DA, Poetri ON, de Wit JJS, Vervelde L. A lack of antibody formation against inactivated influenza virus after aerosol vaccination in presence or absence of adjuvantia. Vet Immunol Immunopathol 2011; 143:143-7. [PMID: 21683456 DOI: 10.1016/j.vetimm.2011.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/29/2011] [Accepted: 05/17/2011] [Indexed: 01/08/2023]
Abstract
In the poultry industry, infections with avian influenza virus (AIV) can result in significant economic losses. The risk and the size of an outbreak might be restricted by vaccination of poultry. A vaccine that would be used for rapid intervention during an outbreak should be safe to use, highly effective after a single administration and be suitable for mass application. A vaccine that could be applied by spray or aerosol would be suitable for mass application, but respiratory applied inactivated influenza is poorly immunogenic and needs to be adjuvanted. We chose aluminum OH, chitosan, cholera toxin B subunit (CT-B), and Stimune as adjuvant for an aerosolized vaccine with inactivated H9N2. Each adjuvant was tested in two doses. None of the adjuvanted vaccines induced AIV-specific antibodies after single vaccination, measured 1 and 3 weeks after vaccination by aerosol, in contrast to the intramuscularly applied vaccine. The aerosolized vaccine did enter the chickens' respiratory tract as CT-B-specific serum antibodies were detected after 1 week in chickens vaccinated with the CT-B-adjuvanted vaccine. Chickens showed no adverse effects after the aerosol vaccination based on weight gain and clinical signs. The failure to detect AIV-specific antibodies might be due to the concentration of the inactivated virus.
Collapse
Affiliation(s)
- Eveline D de Geus
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Abstract
The role for adjuvants in human vaccines has been a matter of vigorous scientific debate, with the field hindered by the fact that for over 80 years, aluminum salts were the only adjuvants approved for human use. To this day, alum-based adjuvants, alone or combined with additional immune activators, remain the only adjuvants approved for use in the USA. This situation has not been helped by the fact that the mechanism of action of most adjuvants has been poorly understood. A relative lack of resources and funding for adjuvant development has only helped to maintain alum's relative monopoly. To seriously challenge alum's supremacy a new adjuvant has many major hurdles to overcome, not least being alum's simplicity, tolerability, safety record and minimal cost. Carbohydrate structures play critical roles in immune system function and carbohydrates also have the virtue of a strong safety and tolerability record. A number of carbohydrate compounds from plant, bacterial, yeast and synthetic sources have emerged as promising vaccine adjuvant candidates. Carbohydrates are readily biodegradable and therefore unlikely to cause problems of long-term tissue deposits seen with alum adjuvants. Above all, the Holy Grail of human adjuvant development is to identify a compound that combines potent vaccine enhancement with maximum tolerability and safety. This has proved to be a tough challenge for many adjuvant contenders. Nevertheless, carbohydrate-based compounds have many favorable properties that could place them in a unique position to challenge alum's monopoly over human vaccine usage.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide, 5042 Australia.
| | | |
Collapse
|