1
|
Complex Roles of Neutrophils during Arboviral Infections. Cells 2021; 10:cells10061324. [PMID: 34073501 PMCID: PMC8227388 DOI: 10.3390/cells10061324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Arboviruses are known to cause large-scale epidemics in many parts of the world. These arthropod-borne viruses are a large group consisting of viruses from a wide range of families. The ability of their vector to enhance viral pathogenesis and transmission makes the development of treatments against these viruses challenging. Neutrophils are generally the first leukocytes to be recruited to a site of infection, playing a major role in regulating inflammation and, as a result, viral replication and dissemination. However, the underlying mechanisms through which neutrophils control the progression of inflammation and disease remain to be fully understood. In this review, we highlight the major findings from recent years regarding the role of neutrophils during arboviral infections. We discuss the complex nature of neutrophils in mediating not only protection, but also augmenting disease pathology. Better understanding of neutrophil pathways involved in effective protection against arboviral infections can help identify potential targets for therapeutics.
Collapse
|
2
|
Freire PP, Marques AH, Baiocchi GC, Schimke LF, Fonseca DL, Salgado RC, Filgueiras IS, Napoleao SM, Plaça DR, Akashi KT, Hirata TDC, El Khawanky N, Giil LM, Cabral-Miranda G, Carvalho RF, Ferreira LCS, Condino-Neto A, Nakaya HI, Jurisica I, Ochs HD, Camara NOS, Calich VLG, Cabral-Marques O. The relationship between cytokine and neutrophil gene network distinguishes SARS-CoV-2-infected patients by sex and age. JCI Insight 2021; 6:147535. [PMID: 34027897 PMCID: PMC8262322 DOI: 10.1172/jci.insight.147535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/07/2021] [Indexed: 01/11/2023] Open
Abstract
The fact that the COVID-19 fatality rate varies by sex and age is poorly understood. Notably, the outcome of SARS-CoV-2 infections mostly depends on the control of cytokine storm and the increasingly recognized pathological role of uncontrolled neutrophil activation. Here, we used an integrative approach with publicly available RNA-Seq data sets of nasopharyngeal swabs and peripheral blood leukocytes from patients with SARS-CoV-2, according to sex and age. Female and young patients infected by SARS-CoV-2 exhibited a larger number of differentially expressed genes (DEGs) compared with male and elderly patients, indicating a stronger immune modulation. Among them, we found an association between upregulated cytokine/chemokine- and downregulated neutrophil-related DEGs. This was correlated with a closer relationship between female and young subjects, while the relationship between male and elderly patients was closer still. The association between these cytokine/chemokines and neutrophil DEGs is marked by a strongly correlated interferome network. Here, female patients exhibited reduced transcriptional levels of key proinflammatory/neutrophil-related genes, such as CXCL8 receptors (CXCR1 and CXCR2), IL-1β, S100A9, ITGAM, and DBNL, compared with male patients. These genes are well known to be protective against inflammatory damage. Therefore, our work suggests specific immune-regulatory pathways associated with sex and age of patients infected with SARS-CoV-2 and provides a possible association between inverse modulation of cytokine/chemokine and neutrophil transcriptional signatures.
Collapse
Affiliation(s)
- Paula P Freire
- Department of Immunology, Institute of Biomedical Sciences, and
| | | | | | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, and
| | | | | | | | | | - Desirée R Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karen T Akashi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nadia El Khawanky
- Department of Hematology and Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | | | - Robson F Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo
| | - Luis Carlos S Ferreira
- Vaccine Development Laboratory, Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
| | | | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, and Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Canada
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, Washington
| | | | | | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, and.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network, São Paulo, Brazil
| |
Collapse
|
3
|
Hiroki CH, Toller-Kawahisa JE, Fumagalli MJ, Colon DF, Figueiredo LTM, Fonseca BALD, Franca RFO, Cunha FQ. Neutrophil Extracellular Traps Effectively Control Acute Chikungunya Virus Infection. Front Immunol 2020; 10:3108. [PMID: 32082301 PMCID: PMC7005923 DOI: 10.3389/fimmu.2019.03108] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/19/2019] [Indexed: 11/15/2022] Open
Abstract
The Chikungunya virus (CHIKV) is a re-emerging arbovirus, in which its infection causes a febrile illness also commonly associated with severe joint pain and myalgia. Although the immune response to CHIKV has been studied, a better understanding of the virus-host interaction mechanisms may lead to more effective therapeutic interventions. In this context, neutrophil extracellular traps (NETs) have been described as a key mediator involved in the control of many pathogens, including several bacteria and viruses, but no reports of this important protective mechanism were documented during CHIKV infection. Here we demonstrate that the experimental infection of mouse-isolated neutrophils with CHIKV resulted in NETosis (NETs release) through a mechanism dependent on TLR7 activation and reactive oxygen species generation. In vitro, mouse-isolated neutrophils stimulated with phorbol 12-myristate 13-acetate release NETs that once incubated with CHIKV, resulting in further virus capture and neutralization. In vivo, NETs inhibition by the treatment of the mice with DNase resulted in the enhanced susceptibility of IFNAR−/− mice to CHIKV experimental acute infection. Lastly, by accessing the levels of MPO-DNA complex on the acutely CHIKV-infected patients, we found a correlation between the levels of NETs and the viral load in the blood, suggesting that NETs are also released in natural human infection cases. Altogether our findings characterize NETosis as a contributing natural process to control CHIKV acute infection, presenting an antiviral effect that helps to control systemic virus levels.
Collapse
Affiliation(s)
- Carlos H Hiroki
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Juliana E Toller-Kawahisa
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Marcilio J Fumagalli
- Department of Biochemistry and Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - David F Colon
- Department of Biochemistry and Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Luiz T M Figueiredo
- Virology Research Center, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Bendito A L D Fonseca
- Virology Research Center, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Rafael F O Franca
- Department of Virology and Experimental Therapy, Institute Aggeu Magalhaes, Oswaldo Cruz Foundation, Recife, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
4
|
Aw‐Yong KL, NikNadia NMN, Tan CW, Sam I, Chan YF. Immune responses against enterovirus A71 infection: Implications for vaccine success. Rev Med Virol 2019; 29:e2073. [DOI: 10.1002/rmv.2073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Kam Leng Aw‐Yong
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Nik Mohd Nasir NikNadia
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Chee Wah Tan
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - I‐Ching Sam
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
5
|
Soares-Schanoski A, Baptista Cruz N, de Castro-Jorge LA, de Carvalho RVH, dos Santos CA, da Rós N, Oliveira Ú, Costa DD, dos Santos CLS, Cunha MDP, Oliveira MLS, Alves JC, Océa RADLC, Ribeiro DR, Gonçalves ANA, Gonzalez-Dias P, Suhrbier A, Zanotto PMDA, de Azevedo IJ, Zamboni DS, Almeida RP, Ho PL, Kalil J, Nishiyama MY, Nakaya HI. Systems analysis of subjects acutely infected with the Chikungunya virus. PLoS Pathog 2019; 15:e1007880. [PMID: 31211814 PMCID: PMC6599120 DOI: 10.1371/journal.ppat.1007880] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/28/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022] Open
Abstract
The largest ever recorded epidemic of the Chikungunya virus (CHIKV) broke out in 2004 and affected four continents. Acute symptomatic infections are typically associated with the onset of fever and often debilitating polyarthralgia/polyarthritis. In this study, a systems biology approach was adopted to analyze the blood transcriptomes of adults acutely infected with the CHIKV. Gene signatures that were associated with viral RNA levels and the onset of symptoms were identified. Among these genes, the putative role of the Eukaryotic Initiation Factor (eIF) family genes and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC3A) in the CHIKV replication process were displayed. We further compared these signatures with signatures induced by the Dengue virus infection and rheumatoid arthritis. Finally, we demonstrated that the CHIKV in vitro infection of murine bone marrow-derived macrophages induced IL-1 beta production in a mechanism that is significantly dependent on the inflammasome NLRP3 activation. The observations provided valuable insights into virus-host interactions during the acute phase and can be instrumental in the investigation of new and effective therapeutic interventions. The Chikungunya virus (CHIKV) has infected millions of people worldwide and presents a serious public health issue. Acute symptomatic infections caused by contracting this mosquito-transmitted arbovirus are typically associated with an abrupt onset of fever and often debilitating polyarthralgia/ polyarthritis, as well as prolonged periods of disability in some patients. These dramatic effects call for a careful evaluation of the molecular mechanisms involved in this puzzling infection. By analyzing the blood transcriptome of adults acutely infected with CHIKV, we were able to provide a detailed picture of the early molecular events induced by the infection. Additionally, the systems biology approach revealed genes that can be investigated extensively as probable therapeutic targets for the disease.
Collapse
Affiliation(s)
| | - Natália Baptista Cruz
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luíza Antunes de Castro-Jorge
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Renan Villanova Homem de Carvalho
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Cliomar Alves dos Santos
- Health Foundation Parreiras Horta, Central Laboratory of Public Health (LACEN/SE), State Secretary for Health, Sergipe, Brazil
| | - Nancy da Rós
- Special Laboratory for Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | - Úrsula Oliveira
- Special Laboratory for Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | - Danuza Duarte Costa
- Health Foundation Parreiras Horta, Central Laboratory of Public Health (LACEN/SE), State Secretary for Health, Sergipe, Brazil
| | | | - Marielton dos Passos Cunha
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Juliana Cardoso Alves
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe, Sergipe, Brazil
| | | | - Danielle Rodrigues Ribeiro
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe, Sergipe, Brazil
| | - André Nicolau Aquime Gonçalves
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patricia Gonzalez-Dias
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Dario S. Zamboni
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Roque Pacheco Almeida
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe, Sergipe, Brazil
| | - Paulo Lee Ho
- Bacteriology Service, Bioindustrial Division, Butantan Institute, São Paulo, Brazil
| | - Jorge Kalil
- Heart Institute, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
6
|
Whiteman JP, Harlow HJ, Durner GM, Regehr EV, Amstrup SC, Ben-David M. Heightened Immune System Function in Polar Bears Using Terrestrial Habitats. Physiol Biochem Zool 2019; 92:1-11. [DOI: 10.1086/698996] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Strandin T, Mäkelä S, Mustonen J, Vaheri A. Neutrophil Activation in Acute Hemorrhagic Fever With Renal Syndrome Is Mediated by Hantavirus-Infected Microvascular Endothelial Cells. Front Immunol 2018; 9:2098. [PMID: 30283445 PMCID: PMC6157395 DOI: 10.3389/fimmu.2018.02098] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) in humans. Both diseases are considered to be immunologically mediated but the exact pathological mechanisms are still poorly understood. Neutrophils are considered the first line of defense against invading microbes but little is still known of their role in virus infections. We wanted to study the role of neutrophils in HFRS using blood and tissue samples obtained from Puumala hantavirus (PUUV)-infected patients. We found that neutrophil activation products myeloperoxidase and neutrophil elastase, together with interleukin-8 (the major neutrophil chemotactic factor in humans), are strongly elevated in blood of acute PUUV-HFRS and positively correlate with kidney dysfunction, the hallmark clinical finding of HFRS. These markers localized mainly in the tubulointerstitial space in the kidneys of PUUV-HFRS patients suggesting neutrophil activation to be a likely component of the general immune response toward hantaviruses. We also observed increased levels of circulating extracellular histones at the acute stage of the disease supporting previous findings of neutrophil extracellular trap formation in PUUV-HFRS. Mechanistically, we did not find evidence for direct PUUV-mediated activation of neutrophils but instead primary blood microvascular endothelial cells acquired a pro-inflammatory phenotype and promoted neutrophil degranulation in response to PUUV infection in vitro. These results suggest that neutrophils are activated by hantavirus-infected endothelial cells and may contribute to the kidney pathology which determines the severity of HFRS.
Collapse
Affiliation(s)
- Tomas Strandin
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Satu Mäkelä
- Department of Internal Medicine, Faculty of Medicine and Life Sciences, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Jukka Mustonen
- Department of Internal Medicine, Faculty of Medicine and Life Sciences, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Innate Immune Basis for Rift Valley Fever Susceptibility in Mouse Models. Sci Rep 2017; 7:7096. [PMID: 28769107 PMCID: PMC5541133 DOI: 10.1038/s41598-017-07543-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022] Open
Abstract
Rift Valley fever virus (RVFV) leads to varied clinical manifestations in animals and in humans that range from moderate fever to fatal illness, suggesting that host immune responses are important determinants of the disease severity. We investigated the immune basis for the extreme susceptibility of MBT/Pas mice that die with mild to acute hepatitis by day 3 post-infection compared to more resistant BALB/cByJ mice that survive up to a week longer. Lower levels of neutrophils observed in the bone marrow and blood of infected MBT/Pas mice are unlikely to be causative of increased RVFV susceptibility as constitutive neutropenia in specific mutant mice did not change survival outcome. However, whereas MBT/Pas mice mounted an earlier inflammatory response accompanied by higher amounts of interferon (IFN)-α in the serum compared to BALB/cByJ mice, they failed to prevent high viral antigen load. Several immunological alterations were uncovered in infected MBT/Pas mice compared to BALB/cByJ mice, including low levels of leukocytes that expressed type I IFN receptor subunit 1 (IFNAR1) in the blood, spleen and liver, delayed leukocyte activation and decreased percentage of IFN-γ-producing leukocytes in the blood. These observations are consistent with the complex mode of inheritance of RVFV susceptibility in genetic studies.
Collapse
|
9
|
Pingen M, Schmid MA, Harris E, McKimmie CS. Mosquito Biting Modulates Skin Response to Virus Infection. Trends Parasitol 2017; 33:645-657. [PMID: 28495485 DOI: 10.1016/j.pt.2017.04.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/19/2023]
Abstract
Mosquito-borne infections are increasing in number and are spreading to new regions at an unprecedented rate. In particular, mosquito-transmitted viruses, such as those that cause Zika, dengue, West Nile encephalitis, and chikungunya, have become endemic or have caused dramatic epidemics in many parts of the world. Aedes and Culex mosquitoes are the main culprits, spreading infection when they bite. Importantly, mosquitoes do not act as simple conduits that passively transfer virus from one individual to another. Instead, host responses to mosquito-derived factors have an important influence on infection and disease, aiding replication and dissemination within the host. Here, we discuss the latest research developments regarding this fascinating interplay between mosquito, virus, and the mammalian host.
Collapse
Affiliation(s)
- Marieke Pingen
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Michael A Schmid
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Immunology and Microbiology, University of Leuven, Leuven, Belgium
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Clive S McKimmie
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
10
|
Cavallaro EC, Liang KK, Lawrence MD, Forsyth KD, Dixon DL. Neutrophil infiltration and activation in bronchiolitic airways are independent of viral etiology. Pediatr Pulmonol 2017; 52:238-246. [PMID: 27410761 DOI: 10.1002/ppul.23514] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hospitalization with bronchiolitis is linked to the development of early childhood chronic wheeze and asthma. Viral etiology and severity of inflammation are potential contributing factors. Previously we observed reduced airway neutrophil infiltration in breastfed bronchiolitic infants, with a corresponding reduction in disease severity. This study aimed to examine whether respiratory viral etiology and co-infection alters the pattern of neutrophil influx, and the inflammatory mediator profile, resulting in epithelial damage in bronchiolitis. METHODS Nasopharyngeal aspirates (NPAs) collected from hospitalized infants were assessed for viruses, soluble protein, cellular infiltrate, interleukin (IL)-6, -8, and myeloperoxidase (MPO). RESULTS NPAs were collected from 228 bronchiolitic and 14 non-bronchiolitic infants. In the bronchiolitic cohort, human rhinovirus was most prevalent (38%), followed by respiratory syncytial virus (36%), adenovirus (10%), and human metapneumovirus (6%), with 25% positive for viral co-infections and 25% negative for all screened viruses. Viral-induced bronchiolitis was associated with increased cellular infiltrate and protein, above control, and virus-negative infants (P < 0.05). Cellular infiltrate correlated to IL-6, -8, and MPO (r = 0.331, 0.669, and 0.661; P < 0.01). Protein, IL-6, -8, and MPO differed significantly between viral groups; however, the majority of marker values for all groups fall within an overlapping, indistinguishable range, precluding their use as biomarkers of viral etiology. No significant difference was found between single and viral co-infections for any parameter. CONCLUSION Bronchiolitic infants presenting with a detectable respiratory virus during hospitalization demonstrated elevated markers of airway tissue inflammation and injury. In this cohort, viral etiology did not discernibly modulate chemokine-mediated neutrophil infiltration and activation. Pediatr Pulmonol. 2017;52:238-246. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Kar-Kate Liang
- Department of Critical Care Medicine, Adelaide, Australia
| | | | - Kevin D Forsyth
- Department of Paediatrics and Child Health, Flinders University, Adelaide, Australia
| | - Dani-Louise Dixon
- Department of Critical Care Medicine, Adelaide, Australia.,Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia
| |
Collapse
|
11
|
Abstract
Bovine viral diarrhea virus (BVDV) has long been associated with a wide variety of clinical syndromes and immune dysregulation, many which result in secondary bacterial infections. Current understanding of immune cell interactions that result in activation and tolerance are explored in light of BVDV infection including: depletion of lymphocytes, effects on neutrophils, natural killer cells, and the role of receptors and cytokines. In addition, we review some new information on the effect of BVDV on immune development in the fetal liver, the role of resident macrophages, and greater implications for persistent infection.
Collapse
|
12
|
Reiss CS. Innate Immunity in Viral Encephalitis. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153449 DOI: 10.1007/978-3-319-33189-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
13
|
Geerdink RJ, Pillay J, Meyaard L, Bont L. Neutrophils in respiratory syncytial virus infection: A target for asthma prevention. J Allergy Clin Immunol 2015; 136:838-47. [PMID: 26277597 PMCID: PMC7112351 DOI: 10.1016/j.jaci.2015.06.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/30/2015] [Accepted: 06/05/2015] [Indexed: 12/25/2022]
Abstract
Lower respiratory tract infections by respiratory syncytial virus (RSV) are the foremost cause of infant hospitalization and are implicated in lasting pulmonary impairment and the development of asthma. Neutrophils infiltrate the airways of pediatric patients with RSV-induced bronchiolitis in vast numbers: approximately 80% of infiltrated cells are neutrophils. However, why neutrophils are recruited to the site of viral respiratory tract infection is not clear. In this review we discuss the beneficial and pathologic contributions of neutrophils to the immune response against RSV infection. Neutrophils can limit viral replication and spread, as well as stimulate an effective antiviral adaptive immune response. However, low specificity of neutrophil antimicrobial armaments allows for collateral tissue damage. Neutrophil-induced injury to the airways during the delicate period of infant lung development has lasting adverse consequences for pulmonary architecture and might promote the onset of asthma in susceptible subjects. We suggest that pharmacologic modulation of neutrophils should be explored as a viable future therapy for severe RSV-induced bronchiolitis and thereby prevent the inception of subsequent asthma. The antiviral functions of neutrophils suggest that targeting of neutrophils in patients with RSV-induced bronchiolitis is best performed under the umbrella of antiviral treatment.
Collapse
Affiliation(s)
- Ruben J Geerdink
- Department of Immunology, Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Janesh Pillay
- Department of Respiratory Medicine, Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands; Department of Anaesthesiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Linde Meyaard
- Department of Immunology, Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Louis Bont
- Department of Immunology, Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands; Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Boutard B, Vankerckhove S, Markine-Goriaynoff N, Sarlet M, Desmecht D, McFadden G, Vanderplasschen A, Gillet L. The α2,3-sialyltransferase encoded by myxoma virus is a virulence factor that contributes to immunosuppression. PLoS One 2015; 10:e0118806. [PMID: 25705900 PMCID: PMC4338283 DOI: 10.1371/journal.pone.0118806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/23/2015] [Indexed: 11/18/2022] Open
Abstract
Myxoma virus (MYXV) induces a lethal disease called Myxomatosis in European rabbits. MYXV is one of the rare viruses that encodes an α2,3-sialyltransferase through its M138L gene. In this study, we showed that although the absence of the enzyme was not associated with any in vitro deficit, the M138L deficient strains are highly attenuated in vivo. Indeed, while all rabbits infected with the parental and the revertant strains died within 9 days post-infection from severe myxomatosis, all but one rabbit inoculated with the M138L deficient strains survived the infection. In primary lesions, this resistance to the infection was associated with an increased ability of innate immune cells, mostly neutrophils, to migrate to the site of virus replication at 4 days post-infection. This was followed by the development of a better specific immune response against MYXV. Indeed, at day 9 post-infection, we observed an important proliferation of lymphocytes and an intense congestion of blood vessels in lymph nodes after M138L knockouts infection. Accordingly, in these rabbits, we observed an intense mononuclear cell infiltration throughout the dermis in primary lesions and higher titers of neutralizing antibodies. Finally, this adaptive immune response provided protection to these surviving rabbits against a challenge with the MYXV WT strain. Altogether, these results show that expression of the M138L gene contributes directly or indirectly to immune evasion by MYXV. In the future, these results could help us to better understand the pathogenesis of myxomatosis but also the importance of glycans in regulation of immune responses.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- DNA, Viral/blood
- DNA, Viral/genetics
- DNA, Viral/immunology
- Gene Knockout Techniques
- Host-Pathogen Interactions/immunology
- Immune Tolerance/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Male
- Myxoma virus/immunology
- Myxoma virus/pathogenicity
- Myxoma virus/physiology
- Myxomatosis, Infectious/blood
- Myxomatosis, Infectious/immunology
- Myxomatosis, Infectious/virology
- Rabbits
- Sialyltransferases/genetics
- Sialyltransferases/immunology
- Sialyltransferases/metabolism
- Survival Analysis
- Time Factors
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
- Virulence/genetics
- Virulence/immunology
- Virulence Factors/genetics
- Virulence Factors/immunology
- Virulence Factors/metabolism
Collapse
Affiliation(s)
- Bérengère Boutard
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Sophie Vankerckhove
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Nicolas Markine-Goriaynoff
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Mickaël Sarlet
- Pathology, Department of Morphology and Pathology, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Daniel Desmecht
- Pathology, Department of Morphology and Pathology, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
15
|
Abstract
Neutrophils are endowed with a plethora of toxic molecules that are mobilized in immune responses. These cells evolved to fight infections, but when deployed at the wrong time and in the wrong place, they cause damage to the host. Here, we review the generalities of these cells as well as the difficulties encountered when trying to unravel them mechanistically. We then focus on how neutrophils develop and their function in infection. We center our attention on human neutrophils and what we learn from clinical immunodeficiencies. Finally, we use autoimmune disease to illustrate the harmful potential of dysregulated neutrophil responses.
Collapse
Affiliation(s)
- Bart W Bardoel
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Elaine F Kenny
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Gabriel Sollberger
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
16
|
Abstract
It is now widely recognized that neutrophils are highly versatile and sophisticated cells that display de novo synthetic capacity and may greatly extend their lifespan. In addition, concepts such as "neutrophil heterogeneity" and "neutrophil plasticity" have started to emerge, implying that, under pathological conditions, neutrophils may differentiate into discrete subsets defined by distinct phenotypic and functional profiles. A number of studies have shown that neutrophils act as effectors in both innate and adaptive immunoregulatory networks. In fact, once recruited into inflamed tissues, neutrophils engage into complex bidirectional interactions with macrophages, natural killer, dendritic and mesenchymal stem cells, B and T lymphocytes, or platelets. As a result of this cross-talk, mediated either by contact-dependent mechanisms or cell-derived soluble factors, neutrophils and target cells reciprocally modulate their survival and activation status. Altogether, these novel aspects of neutrophil biology have shed new light not only on the potential complex roles that neutrophils play during inflammation and immune responses, but also in the pathogenesis of several inflammatory disorders including infection, autoimmunity, and cancer.
Collapse
|