1
|
Mukherjee A, Manna S, Singh A, Ray A, Srivastava S. Investigating Cisplatin Resistance in Squamous Cervical Cancer: Proteomic Insights into DNA Repair Pathways and Omics-Based Drug Repurposing. J Proteome Res 2025. [PMID: 40298920 DOI: 10.1021/acs.jproteome.4c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Cisplatin-based chemotherapy is a cornerstone in treating cervical cancer, yet the efficacy is frequently limited by the rapid onset of drug resistance, a major challenge in clinical management. To investigate this, we employed HPV16+ human cervix squamous carcinoma cells, SiHa (CIS/S), and their cisplatin-resistant subline (CIS/R) as a model. Using DIA-based proteomics, we identified 5152 protein groups and over 50,000 peptides with a global FDR <1%. Comparative analysis revealed 123 differentially expressed proteins. Gene Set Enrichment Analysis (GSEA) highlighted proteins involved in DNA damage, metabolism, and repair pathways (RFC4, RFC3, RFC2, DUT, DDX54, CDCA8, CDK7, CHAF1B, and GTF2F1), suggesting a role in developing acquired cisplatin resistance. Pathways related to mitotic spindle assembly and P53 signaling were found to be perturbed in resistant cells. Next, we screened a library of approx. 240 FDA-approved drugs against three protein targets and found four small-molecular ligands as potential hits for further in vitro validation. Cabozantinib and sorafenib gave us positive results in terms of increasing the cisplatin sensitivity of CIS/R cells. In conclusion, our findings provide insights into the molecular mechanisms underpinning cisplatin resistance in cervical cancer and propose novel strategies for combating this resistance through targeted therapies and drug repurposing.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sayan Manna
- Department of Biotechnology, Haldia Institute of Technology, Purba Medinipur, Haldia 721607, West Bengal, India
| | - Avinash Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Adrija Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Yang X, Wang S, Jiang Z, Zhang C, Zhao L, Cui Y. Comprehensive Physiology, Cytology, and Transcriptomics Studies Reveal the Regulatory Mechanisms Behind the High Calyx Abscission Rate in the Bud Variety of Korla Pear ( Pyrus sinkiangensis 'Xinnonglinxiang'). PLANTS (BASEL, SWITZERLAND) 2024; 13:3504. [PMID: 39771202 PMCID: PMC11677287 DOI: 10.3390/plants13243504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Whether the calyx tube of the Korla fragrant pear falls off seriously affects the fruit quality. 'Xinnonglinxiang' is a mutant variety of the Korla fragrant pear, which has a high calyx removal rate under natural conditions, and calyx tube fall seriously affects the fruit quality. The mechanism behind the high calyx removal rate of 'Xinnonglinxiang' remains unclear; thus, Korla fragrant pear (PT) and 'Xinnonglinxiang' (YB) with different degrees of calyx abscission were used as examples and the abscission areas of calyx tubes were collected in the early (21 April), middle (23 April), and late (25 April) shedding stages to explore the regulatory mechanism behind the abscission. The combination of the results of physiological, cytological, and transcriptomic methods indicated the highest number of differentially expressed genes (DEGs) in the middle of shedding. GO (Gene Ontology) enrichment analysis showed that the expression levels of genes related to the CEL (cellulase) and PG (polygalacturonase) activity functional pathways differed significantly in the two varieties during the three periods, whereas Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were significantly concentrated in the plant hormone signal transduction pathway in all three periods. The expression levels of genes related to the plant hormone signal transduction pathway differed significantly for the two varieties during calyx shedding. Five gene modules were obtained using Weighted Gene Co-Expression Network Analysis (WGCNA), and transcriptome data were correlated with five physiological index values. Two key modules that highly correlated with the Eth (ethylene) response were then screened, and 20 core genes were identified, with IRX10, IRX9, and OXI1 likely the hub genes that are involved in the regulation of calyx shedding in the YB variety. The obtained results provide reliable data for the screening of candidate genes for calyx shedding and analysis of the regulatory mechanism behind a high calyx shedding rate, providing a theoretical basis upon which the calyx shedding rate of fruits can be improved through genetic improvement.
Collapse
Affiliation(s)
- Xian’an Yang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China; (X.Y.); (S.W.); (L.Z.); (Y.C.)
- Key Laboratory of Forestry Ecology and Industry Technology in Arid Region, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shiwei Wang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China; (X.Y.); (S.W.); (L.Z.); (Y.C.)
- Key Laboratory of Forestry Ecology and Industry Technology in Arid Region, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhenbin Jiang
- Forest Fruit Technology Research and Promotion Center, Bayingoleng Mongolian Autonomous Prefecture, Korla 841000, China;
| | - Cuifang Zhang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China; (X.Y.); (S.W.); (L.Z.); (Y.C.)
- Key Laboratory of Forestry Ecology and Industry Technology in Arid Region, Xinjiang Agricultural University, Urumqi 830052, China
| | - Long Zhao
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China; (X.Y.); (S.W.); (L.Z.); (Y.C.)
- Key Laboratory of Forestry Ecology and Industry Technology in Arid Region, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yutong Cui
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China; (X.Y.); (S.W.); (L.Z.); (Y.C.)
- Key Laboratory of Forestry Ecology and Industry Technology in Arid Region, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
3
|
Yu L, Li J, Zhang M, Li Y, Bai J, Liu P, Yan J, Wang C. Identification of RFC4 as a potential biomarker for pan-cancer involving prognosis, tumour immune microenvironment and drugs. J Cell Mol Med 2024; 28:e18478. [PMID: 39031628 PMCID: PMC11190950 DOI: 10.1111/jcmm.18478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 07/22/2024] Open
Abstract
RFC4 is required for DNA polymerase δ and DNA polymerase ε to initiate DNA template expansion. Downregulated RFC4 inhibits tumour proliferation by causing S-phase arrest and inhibiting mitosis, resulting in the reduction of tumour cells. RFC4 has been implicated that it plays an important role in the initiation and progression of cancers, but a comprehensive analysis of the role of RFC4 in cancer has not been performed. We comprehensively analysed the expression, prognosis, methylation level, splicing level, relationship of RFC4 and immune infiltration, and pan-cancer immunotherapy response used various databases (including TCGA, GTEx, UALCAN, Oncosplicing, TIDE, TISCH, HPA and CAMOIP), and experimented its biological function in HCC. Through pan-cancer analysis, we found that RFC4 is significantly upregulated in most tumours. The tumour patients with high expression of RFC4 have poor prognosis. The methylation level and variable splicing level of RFC4 were abnormal in most tumours compared with the adjacent tissues. Furthermore, RFC4 was closely associated with immune cell infiltration in various cancers. RFC4 was significantly co-expressed with immune checkpoints and other immune-related genes. The expression of RFC4 could indicate the immunotherapy efficacy of some tumours. The RFC4 expression was associated with sensitivity to specific small molecule drugs. Cell experiments have shown that downregulated RFC4 can inhibit cell cycle and tumour cell proliferation. We conducted a systematic pan-cancer analysis of RFC4, and the results showed that RFC4 can serve as a biomarker for cancer diagnosis and prognosis. These findings open new perspectives for precision medicine.
Collapse
Affiliation(s)
- Lei Yu
- School of Life ScienceInner Mongolia UniversityHohhotChina
| | - Jing Li
- School of Life ScienceInner Mongolia UniversityHohhotChina
| | - Mingyang Zhang
- School of Life ScienceInner Mongolia UniversityHohhotChina
| | - Yu Li
- School of Life ScienceInner Mongolia UniversityHohhotChina
| | - Jing Bai
- School of Life ScienceInner Mongolia UniversityHohhotChina
| | - Pengxia Liu
- School of Life ScienceInner Mongolia UniversityHohhotChina
| | - Jia Yan
- School of Basic medicalInner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Changshan Wang
- School of Life ScienceInner Mongolia UniversityHohhotChina
| |
Collapse
|
4
|
Lin JC, Liu TP, Chen YB, Huang TS, Chen TY, Yang PM. Inhibition of CDK9 exhibits anticancer activity in hepatocellular carcinoma cells via targeting ribonucleotide reductase. Toxicol Appl Pharmacol 2023; 471:116568. [PMID: 37245555 DOI: 10.1016/j.taap.2023.116568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Cyclin-dependent kinase 9 (CDK9) inhibitors are a novel category of anticancer treatment for cancers. However, their effects on hepatocellular carcinoma (HCC) are rarely investigated. Human ribonucleotide reductase (RR, which consists of RRM1 and RRM2 subunits) catalyzes the conversion of ribonucleoside diphosphate into 2'-deoxyribonucleoside diphosphate to maintain the homeostasis of nucleotide pools, which play essential roles in DNA synthesis and DNA repair. In this study, we identified that CDK9 protein expression in adjacent non-tumor tissues predicted HCC patients' overall and progression-free survivals. The anticancer activity of a CDK9-selective inhibitor, LDC000067, on HCC cells was positively associated with its ability to inhibit the expression of RRM1 and RRM2. LDC000067 downregulated RRM1 and RRM2 expression through post-transcriptional pathway. Specifically, LDC000067 triggered RRM2 protein degradation via multiple pathways, including proteasome-, lysosome-, and calcium-dependent pathways. Furthermore, CDK9 positively correlates with RRM1 or RRM2 expression in HCC patients, and the expressions of these three genes were associated with the higher infiltration of immune cells in HCC. Taken together, this study identified the prognostic relevance of CDK9 in HCC and the molecular mechanism for the anticancer effect of CDK9 inhibitors on HCC.
Collapse
Affiliation(s)
- Jiunn-Chang Lin
- Department of Surgery, MacKay Memorial Hospital, Taipei 10449, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 11260, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; Liver Medical Center, MacKay Memorial Hospital, Taipei 10449, Taiwan; PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Tsang-Pai Liu
- Department of Surgery, MacKay Memorial Hospital, Taipei 10449, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 11260, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; Liver Medical Center, MacKay Memorial Hospital, Taipei 10449, Taiwan; PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Yan-Bin Chen
- Department of Surgery, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Tun-Sung Huang
- Department of Surgery, MacKay Memorial Hospital, Taipei 10449, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; Liver Medical Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Tung-Ying Chen
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; Department of Pathology, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Pei-Ming Yang
- Liver Medical Center, MacKay Memorial Hospital, Taipei 10449, Taiwan; PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 11031, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; TMU and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
5
|
Screening of Prognostic Markers for Hepatocellular Carcinoma Patients Based on Multichip Combined Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6881600. [PMID: 35872941 PMCID: PMC9303125 DOI: 10.1155/2022/6881600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Methods GSE (14520, 36376, 57957, 76427) datasets were accessed from GEO database. 55 differential mRNAs (DEGs) were obtained by differential analysis based on the datasets. GO and KEGG analysis results indicated that the DEGs were enriched in xenobiotic metabolic process and other pathways. Expression profiles and clinical data of TCGA-LIHC mRNAs were from TCGA database. We established a prognostic model of HCC through univariate and multivariate Cox risk regression analyses. ROC curve analysis was used to examine the prognostic model performance. GSEA analysis was performed between the high- and low-risk score sample groups. Results A 4-gene HCC prognostic model was constructed, in which the gene expressions correlated to HCC patients' survival. The AUC value presented 0.734 in the ROC analysis for the prognostic model. Conclusion The four-gene model could be introduced as an independent prognostic factors to assess HCC patients' survival status.
Collapse
|
6
|
Mao G, Shan C, Li W, Liang B, Ma L, Zhang S. High Expression of RRM1 Mediated by ncRNAs Correlates with Poor Prognosis and Tumor Immune Infiltration of Hepatocellular Carcinoma. Int J Gen Med 2022; 15:2607-2620. [PMID: 35282644 PMCID: PMC8910518 DOI: 10.2147/ijgm.s353362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of several tumors with poor prognosis and causes a significant social burden. A growing number of studies have shown that RRM1 plays a crucial role in the development and progression of multiple human cancers. However, the specific role and mechanism of RRM1 have not been fully defined in HCC. Methods TCGA and GTEx data were used for the first time to conduct a pan-cancer analysis of RRM1 expression and prognosis, and identified RRM1 as a possible potential oncogene in HCC. At the same time, a combination of analyses (including expression analysis, correlation analysis or survival analysis) identified non-coding RNAs (ncRNAs) that contribute to RRM1 overexpression. Results MIR4435-2HG/miR-22-3p and SNHG6/miR-101-3p were identified as the most promising RRM1 upstream ncRNA-related pathways in HCC. In addition, RRM1 levels were significantly and positively correlated with tumor immune cell infiltration, immune cell biomarker or immune checkpoint expression. Conclusion These results suggest that high expression of RRM1 mediated by ncRNAs is associated with poor prognosis and tumor immune infiltration in HCC.
Collapse
Affiliation(s)
- Guochao Mao
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Changyou Shan
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Weimiao Li
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Baobao Liang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Li Ma
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710000, People’s Republic of China
- Correspondence: Shuqun Zhang, Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, Shaanxi, 710000, People’s Republic of China, Tel +8613891841249, Fax +862987679512, Email
| |
Collapse
|
7
|
A Novel Four-Gene Signature as a Potential Prognostic Biomarker for Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:1452801. [PMID: 34950206 PMCID: PMC8691992 DOI: 10.1155/2021/1452801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high incidence and mortality rates. However, a reliable prognostic signature has not yet been confirmed. Thus, the purpose of the present study was to develop a biomarker with high specificity and sensitivity for the diagnosis and prognosis of patients with HCC. The mRNA expression profiles of HCC were obtained from the GSE19665, GSE41804, and TCGA databases. Subsequently, 193 differentially expressed genes (DEGs) were identified from the intersection of the data from the three datasets. Bioinformatics analysis showed that the identified DEGs are related to the cell cycle, oocyte meiosis, and p53 signaling pathway, among other factors, in cancers. A protein-protein interaction (PPI) and a functional analysis were performed to investigate the biological function of the DEGs and obtain the candidate genes using the MCODE of Cytoscape. The candidate genes were introduced into the TCGA database for survival analysis, and the four candidate genes that were hub genes and meaningful for survival were retained for further verification. We validated the gene and protein expression and determined the prognosis of our patient cohort. In addition, we evaluated the biological functions regulating tumor cell proliferation and metastasis in vitro. According to the ROC curve analysis of gene expression in clinical samples, it was found that the four genes can be used to predict the diagnosis. A survival analysis based on data from the TCGA database and clinical samples showed that the four genes may be used as biomarkers for providing prognoses for patients. The cell functional experiments revealed that these four genes were related to tumor proliferation, migration, and invasion. In conclusion, the genes identified in the present study could be used as markers to diagnose and predict the prognosis of patients with HCC and guide targeted therapy.
Collapse
|
8
|
Screening Hub Genes of Hepatocellular Carcinoma Based on Public Databases. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7029130. [PMID: 34737790 PMCID: PMC8563136 DOI: 10.1155/2021/7029130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022]
Abstract
Tumor recurrence and metastasis often occur in HCC patients after surgery, and the prognosis is not optimistic. Hence, searching effective biomarkers for prognosis of is of great importance. Firstly, HCC-related data was acquired from the TCGA and GEO databases. Based on GEO data, 256 differentially expressed genes (DEGs) were obtained firstly. Subsequently, to clarify function of DEGs, clusterProfiler package was used to conduct functional enrichment analyses on DEGs. Protein-protein interaction (PPI) network analysis screened 20 key genes. The key genes were filtered via GEPIA database, by which 11 hub genes (F9, CYP3A4, ASPM, AURKA, CDC20, CDCA5, NCAP, PRC1, PTTG1, TOP2A, and KIFC1) were screened out. Then, univariate Cox analysis was applied to construct a prognostic model, followed by a prediction performance validation. With the risk score calculated by the model and common clinical features, univariate and multivariate analyses were carried out to assess whether the prognostic model could be used independently for prognostic prediction. In conclusion, the current study screened HCC prognostic gene signature based on public databases.
Collapse
|
9
|
Chen P, Liu Y, Ma X, Li Q, Zhang Y, Xiong Q, Song T. Replication Factor C4 in human hepatocellular carcinoma: A potent prognostic factor associated with cell proliferation. Biosci Trends 2021; 15:249-256. [PMID: 34053971 DOI: 10.5582/bst.2021.01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Replication Factor c4 (RFC4) has been found to play important roles in many carcinomas and is correlated with poor prognosis. The present study was performed to investigate the specific role of RFC4 in hepatocellular carcinoma (HCC) and the underlying molecular mechanism. Public datasets including TCGA and GTEx were applied to explore the expression of RFC4 in HCC and its association with HCC prognosis. The results of bioinformatics analysis showed that RFC4 was overexpressed in HCC tissues compared with noncancerous tissues and significantly correlated with poor prognosis for HCC. Through immunohistochemistry, the association between RFC4 expression and clinical-pathological features of HCC patients was evaluated. Western blots were applied to investigate relative protein expression. Then in vivo and in vitro experiments were performed to explore the function of RFC4 in HCC tumor cells. The present results suggest that high level expression of RFC4 is associated with tumor size. In addition, RFC4 knockdown suppressed the cell proliferation and sphere formation of hepatoma cells in vitro. Moreover, silencing of RFC4 significantly decreased the growth of tumors in a xenograft tumor model. In conclusion, our study indicates that RFC4 is a potential prognostic predictor associated with poor outcomes for HCC patients. Furthermore, knocking down RFC4 could significantly inhibit tumor progression both in vitro and in vivo. Therefore, the present study can shed new light on the understanding of molecular mechanisms of HCC and may provide molecular targets and diagnostic biomarkers for the treatment of HCC.
Collapse
Affiliation(s)
- Ping Chen
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yayue Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaochen Ma
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingli Li
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yangfan Zhang
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingqing Xiong
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tianqiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
10
|
Meng X, Nie Y, Wang K, Fan C, Zhao J, Yuan Y. Identification of Atrial Fibrillation-Associated Genes ERBB2 and MYPN Using Genome-Wide Association and Transcriptome Expression Profile Data on Left-Right Atrial Appendages. Front Genet 2021; 12:696591. [PMID: 34276800 PMCID: PMC8278573 DOI: 10.3389/fgene.2021.696591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
More reliable methods are needed to uncover novel biomarkers associated with atrial fibrillation (AF). Our objective is to identify significant network modules and newly AF-associated genes by integrative genetic analysis approaches. The single nucleotide polymorphisms with nominal relevance significance from the AF-associated genome-wide association study (GWAS) data were converted into the GWAS discovery set using ProxyGeneLD, followed by merging with significant network modules constructed by weighted gene coexpression network analysis (WGCNA) from one expression profile data set, composed of left and right atrial appendages (LAA and RAA). In LAA, two distinct network modules were identified (blue: p = 0.0076; yellow: p = 0.023). Five AF-associated biomarkers were identified (ERBB2, HERC4, MYH7, MYPN, and PBXIP1), combined with the GWAS test set. In RAA, three distinct network modules were identified and only one AF-associated gene LOXL1 was determined. Using human LAA tissues by real-time quantitative polymerase chain reaction, the differentially expressive results of ERBB2, MYH7, and MYPN were observed (p < 0.05). This study first demonstrated the feasibility of fusing GWAS with expression profile data by ProxyGeneLD and WGCNA to explore AF-associated genes. In particular, two newly identified genes ERBB2 and MYPN via this approach contribute to further understanding the occurrence and development of AF, thereby offering preliminary data for subsequent studies.
Collapse
Affiliation(s)
- Xiangguang Meng
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, China
| | - Yali Nie
- Department of Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Keke Wang
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, China
| | - Chen Fan
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Juntao Zhao
- Department of Cardiac Surgery, Zhengzhou No. 7 People's Hospital, Zhengzhou, China
| | - Yiqiang Yuan
- Department of Cardiovascular Internal Medicine, Henan Provincial Chest Hospital, Zhengzhou, China
| |
Collapse
|
11
|
Yang L, Yin W, Liu X, Li F, Ma L, Wang D, Li H. Identification of a five-gene signature in association with overall survival for hepatocellular carcinoma. PeerJ 2021; 9:e11273. [PMID: 33986994 PMCID: PMC8088210 DOI: 10.7717/peerj.11273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is considered to be a malignant tumor with a high incidence and a high mortality. Accurate prognostic models are urgently needed. The present study was aimed at screening the critical genes for prognosis of HCC. Methods The GSE25097, GSE14520, GSE36376 and GSE76427 datasets were obtained from Gene Expression Omnibus (GEO). We used GEO2R to screen differentially expressed genes (DEGs). A protein-protein interaction network of the DEGs was constructed by Cytoscape in order to find hub genes by module analysis. The Metascape was performed to discover biological functions and pathway enrichment of DEGs. MCODE components were calculated to construct a module complex of DEGs. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. ONCOMINE was employed to assess the mRNA expression levels of key genes in HCC, and the survival analysis was conducted using the array from The Cancer Genome Atlas (TCGA) of HCC. Then, the LASSO Cox regression model was performed to establish and identify the prognostic gene signature. We validated the prognostic value of the gene signature in the TCGA cohort. Results We screened out 10 hub genes which were all up-regulated in HCC tissue. They mainly enrich in mitotic cell cycle process. The GSEA results showed that these data sets had good enrichment score and significance in the cell cycle pathway. Each candidate gene may be an indicator of prognostic factors in the development of HCC. However, hub genes expression was weekly associated with overall survival in HCC patients. LASSO Cox regression analysis validated a five-gene signature (including CDC20, CCNB2, NCAPG, ASPM and NUSAP1). These results suggest that five-gene signature model may provide clues for clinical prognostic biomarker of HCC.
Collapse
Affiliation(s)
- Lei Yang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Weilong Yin
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Xuechen Liu
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Fangcun Li
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Li Ma
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Dong Wang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Hongxing Li
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
12
|
Jiang N, Zhang X, Qin D, Yang J, Wu A, Wang L, Sun Y, Li H, Shen X, Lin J, Kantawong F, Wu J. Identification of Core Genes Related to Progression and Prognosis of Hepatocellular Carcinoma and Small-Molecule Drug Predication. Front Genet 2021; 12:608017. [PMID: 33708237 PMCID: PMC7940693 DOI: 10.3389/fgene.2021.608017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most leading causes of cancer death with a poor prognosis. However, the underlying molecular mechanisms are largely unclear, and effective treatment for it is limited. Using an integrated bioinformatics method, the present study aimed to identify the key candidate prognostic genes that are involved in HCC development and identify small-molecule drugs with treatment potential. Methods and Results In this study, by using three expression profile datasets from Gene Expression Omnibus database, 1,704 differentially expressed genes were identified, including 671 upregulated and 1,033 downregulated genes. Then, weighted co-expression network analysis revealed nine modules are related with pathological stage; turquoise module was the most associated module. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analyses (KEGG) indicated that these genes were enriched in cell division, cell cycle, and metabolic related pathways. Furthermore, by analyzing the turquoise module, 22 genes were identified as hub genes. Based on HCC data from gene expression profiling interactive analysis (GEPIA) database, nine genes associated with progression and prognosis of HCC were screened, including ANLN, BIRC5, BUB1B, CDC20, CDCA5, CDK1, NCAPG, NEK2, and TOP2A. According to the Human Protein Atlas and the Oncomine database, these genes were highly upregulated in HCC tumor samples. Moreover, multivariate Cox regression analysis showed that the risk score based on the gene expression signature of these nine genes was an independent prognostic factor for overall survival and disease-free survival in HCC patients. In addition, the candidate small-molecule drugs for HCC were identified by the CMap database. Conclusion In conclusion, the nine key gene signatures related to HCC progression and prognosis were identified and validated. The cell cycle pathway was the core pathway enriched with these key genes. Moreover, several candidate molecule drugs were identified, providing insights into novel therapeutic approaches for HCC.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,School of Pharmacy, Southwest Medical University, Luzhou, China.,International Education School, Southwest Medical University, Luzhou, China
| | - Xinzhuo Zhang
- International Education School, Southwest Medical University, Luzhou, China
| | - Dalian Qin
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jing Yang
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Long Wang
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Yueshan Sun
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Hong Li
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Xin Shen
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jing Lin
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Wang PP, Ding SY, Sun YY, Li YH, Fu WN. MYCT1 Inhibits the Adhesion and Migration of Laryngeal Cancer Cells Potentially Through Repressing Collagen VI. Front Oncol 2021; 10:564733. [PMID: 33680912 PMCID: PMC7931689 DOI: 10.3389/fonc.2020.564733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022] Open
Abstract
MYCT1, a target of c-Myc, inhibits laryngeal cancer cell migration, but the underlying mechanism remains unclear. In the study, we detected differentially expressed genes (DEGs) from laryngeal cancer cells transfected by MYCT1 using RNA-seq (GSE123275). DEGs from head and neck squamous cell carcinoma (HNSCC) were first screened by comparison of transcription data from the Gene Expression Omnibus (GSE6631) and the Cancer Genome Atlas (TCGA) datasets using weighted gene co-expression network analysis (WGCNA). GO and KEGG pathway analysis explained the functions of the DEGs. The DEGs overlapped between GSE6631and TCGA datasets were then compared with ours to find the key DEGs downstream of MYCT1 related to the adhesion and migration of laryngeal cancer cells. qRT-PCR and Western blot were applied to validate gene expression at mRNA and protein levels, respectively. Finally, the cell adhesion, migration, and wound healing assays were to check cell adhesion and migration abilities, respectively. As results, 39 overlapping genes were enriched in the GSE6631 and TCGA datasets, and most of them revealed adhesion function. Thirteen of 39 genes including COL6 members COL6A1, COL6A2, and COL6A3 were overlapped in GSE6631, TCGA, and GSE123275 datasets. Similar to our RNA-seq results, we confirmed that COL6 is a target of MYCT1 in laryngeal cancer cells. We also found that MYCT1 inhibited the adhesion and migration of laryngeal cancer cells via COL6. These indicate that COL6 is a potential target of MYCT1 and participates the adhesion and migration of laryngeal cancer cells, which provides an important clue for further study on how MYCT1 regulating COL6 in laryngeal cancer progression.
Collapse
Affiliation(s)
- Peng-Peng Wang
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Si-Yu Ding
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Yuan-Yuan Sun
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Yun-Hui Li
- Department of Laboratory Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Zhu W, Zhang Q, Liu M, Yan M, Chu X, Li Y. Identification of DNA repair-related genes predicting pathogenesis and prognosis for liver cancer. Cancer Cell Int 2021; 21:81. [PMID: 33516217 PMCID: PMC7847017 DOI: 10.1186/s12935-021-01779-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
Background Liver cancer (LC) is one of the most fatal cancers throughout the world. More efficient and sensitive gene signatures that could accurately predict survival in LC patients are vitally needed to promote a better individualized and effective treatment. Material/methods 422 LC and adjacent normal tissues with both RNA-Seq and clinical data in TCGA were embedded in our study. Gene set enrichment analysis (GSEA) was applied to identify genes and hallmark gene sets that are more valuable for liver cancer therapy. Cox regression analysis was used to identify genes related to overall survival (OS) and build the prediction model. cBioPortal database was used to examine the alterations of the panel mRNA signature. ROC curves and Kaplan–Meier curves were used to validate the prediction model. Besides, the expression of the genes in the model were validated using quantitative real-time PCR in clinical tissue specimens. Results The panel of DNA repair-related mRNA signature consisted of seven mRNAs: RFC4 (replication factor C subunit 4), ZWINT (ZW10 interacting kinetochore protein), UPF3B (UPF3B regulator of nonsense mediated mRNA decay), NCBP2 (nuclear cap binding protein subunit 2), ADA (adenosine deaminase), SF3A3 (splicing factor 3a subunit 3) and GTF2H1 (general transcription factor IIH subunit 1). On-line analysis of cBioPortal database found that the expression of the panel mRNA has a wide variation ranging from 7 to 10%. All the mRNAs were significantly upregulated in LC tissues compared to normal tissues (P < 0.05). The risk model is closely related to the OS of LC patients. The hazard ratio (HR) is 2.184 [95% CI (confidence interval) 1.523–3.132] and log-rank P-value < 0.0001. For clinical specimen validation, we found that all of the genes in the model upregulated in liver cancer tissues versus normal liver tissues, which was consistent with the results predicted. Conclusions Our study demonstrated a mRNA signature including seven mRNA for prognosis prediction of LC. This panel gene signature provides a new criterion for accurate diagnosis and therapeutic target of LC.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Pharmacy, School of Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266011, Shandong, China
| | - Qiliang Zhang
- Department of Orthopedics and Sports Medicine and Joint Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Min Liu
- Department of Pharmacy, School of Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266011, Shandong, China
| | - Meixing Yan
- Department of Pharmacy, Women and Children's Hospital, Qingdao, Shandong, China
| | - Xiao Chu
- Department of Pharmacy, School of Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266011, Shandong, China.
| | - Yongchun Li
- Department of Pulmonary Medicine, School of Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266011, Shandong, China.
| |
Collapse
|
15
|
Chen SW, Zhou HF, Zhang HJ, He RQ, Huang ZG, Dang YW, Yang X, Liu J, Fu ZW, Mo JX, Tang ZQ, Li CB, Li R, Yang LH, Ma J, Yang LJ, Chen G. The Clinical Significance and Potential Molecular Mechanism of PTTG1 in Esophageal Squamous Cell Carcinoma. Front Genet 2021; 11:583085. [PMID: 33552118 PMCID: PMC7863988 DOI: 10.3389/fgene.2020.583085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the major histological type of esophageal cancers worldwide. Transcription factor PTTG1 was seen highly expressed in a variety of tumors and was related to the degree of tumor differentiation, invasion, and metastasis. However, the clinical significance of PTTG1 had yet to be verified, and the mechanism of abnormal PTTG1 expression in ESCC was not clear. In this study, the comprehensive analysis and evaluation of PTTG1 expression in ESCC were completed by synthesizing in-house immunohistochemistry (IHC), clinical sample tissue RNA-seq (in-house RNA-seq), public high-throughput data, and literature data. We also explored the possible signaling pathways and target genes of PTTG1 in ESCC by combining the target genes of PTTG1 (displayed by ChIP-seq), differentially expressed genes (DEGs) of ESCC, and PTTG1-related genes, revealing the potential molecular mechanism of PTTG1 in ESCC. In the present study, PTTG1 protein and mRNA expression levels in ESCC tissues were all significantly higher than in non-cancerous tissues. The pool standard mean difference (SMD) of the overall PTTG1 expression was 1.17 (95% CI: 0.72-1.62, P < 0.01), and the area under curve (AUC) of the summary receiver operating characteristic (SROC) was 0.86 (95% CI: 0.83-0.89). By combining the target genes displayed by ChIP-seq of PTTG1, DEGs of ESCC, and PTTG1-related genes, it was observed that PTTG1 may interact with these genes through chemokines and cytokine signaling pathways. By constructing a protein-protein interaction (PPI) network and combining ChIP-seq data, we obtained four PTTG1 potential target genes, SPTAN1, SLC25A17, IKBKB, and ERH. The gene expression of PTTG1 had a strong positive correlation with SLC25A17 and ERH, which suggested that PTTG1 might positively regulate the expression of these two genes. In summary, the high expression of PTTG1 may play an important role in the formation of ESCC. These roles may be completed by PTTG1 regulating the downstream target genes SLC25A17 and ERH.
Collapse
Affiliation(s)
- Shang-Wei Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Han-Jie Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun Liu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zong-Wang Fu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Xian Mo
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University/Wuzhou Gongren Hospital, Wuzhou, China
| | - Zhong-Qing Tang
- Department of Pathology, Wuzhou Gongren Hospital/The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China
| | - Chang-Bo Li
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University/Wuzhou Gongren Hospital, Wuzhou, China
| | - Rong Li
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li-Hua Yang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin-Jie Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Proliferating cell nuclear antigen (PCNA) overexpression in hepatocellular carcinoma predicts poor prognosis as determined by bioinformatic analysis. Chin Med J (Engl) 2020; 134:848-850. [PMID: 33797470 PMCID: PMC8104276 DOI: 10.1097/cm9.0000000000001192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Song H, Ding N, Li S, Liao J, Xie A, Yu Y, Zhang C, Ni C. Identification of Hub Genes Associated With Hepatocellular Carcinoma Using Robust Rank Aggregation Combined With Weighted Gene Co-expression Network Analysis. Front Genet 2020; 11:895. [PMID: 33133125 PMCID: PMC7561391 DOI: 10.3389/fgene.2020.00895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background Bioinformatics provides a valuable tool to explore the molecular mechanisms underlying pathogenesis of hepatocellular carcinoma (HCC). To improve prognosis of patients, identification of robust biomarkers associated with the pathogenic pathways of HCC remains an urgent research priority. Methods We employed the Robust Rank Aggregation method to integrate nine qualified HCC datasets from the Gene Expression Omnibus. A robust set of differentially expressed genes (DEGs) between tumor and normal tissue samples were screened. Weighted gene co-expression network analysis was applied to cluster DEGs and the key modules related to clinical traits identified. Based on network topology analysis, novel risk genes derived from key modules were mined and biological verification performed. The potential functions of these risk genes were further explored with the aid of miRNA–mRNA regulatory networks. Finally, the prognostic ability of these genes was assessed by constructing a clinical prediction model. Results Two key modules showed significant association with clinical traits. In combination with protein–protein interaction analysis, 29 hub genes were identified. Among these genes, 19 from one module showed a pattern of upregulation in HCC and were associated with the tumor node metastasis stage, and 10 from the other module displayed the opposite trend. Survival analyses indicated that all these genes were significantly related to patient prognosis. Based on the miRNA-mRNA regulatory network, 29 genes strongly linked to tumor activity were identified. Notably, five of the novel risk genes, ABAT, DAO, PCK2, SLC27A2, and HAO1, have rarely been reported in previous studies. Gene set enrichment analysis for each gene revealed regulatory roles in proliferation and prognosis of HCC. Least absolute shrinkage and selection operator regression analysis further validated DAO, PCK2, and HAO1 as prognostic factors in an external HCC dataset. Conclusion Analysis of multiple datasets combined with global network information presents a successful approach to uncover the complex biological mechanisms of HCC. More importantly, this novel integrated strategy facilitates identification of risk hub genes as candidate biomarkers for HCC, which could effectively guide clinical treatments.
Collapse
Affiliation(s)
- Hao Song
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Na Ding
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shang Li
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jianlong Liao
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Aimin Xie
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Youtao Yu
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Chunlong Zhang
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Zhang J, Lou W. A Key mRNA-miRNA-lncRNA Competing Endogenous RNA Triple Sub-network Linked to Diagnosis and Prognosis of Hepatocellular Carcinoma. Front Oncol 2020; 10:340. [PMID: 32257949 PMCID: PMC7092636 DOI: 10.3389/fonc.2020.00340] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/26/2020] [Indexed: 01/27/2023] Open
Abstract
Growing evidence has illustrated critical roles of competing endogenous RNA (ceRNA) regulatory network in human cancers including hepatocellular carcinoma. In this study, we aimed to find promising diagnostic and prognostic biomarkers for patients with hepatocellular carcinoma. Three novel unfavorable prognosis-associated genes (CELSR3, GPSM2, and CHEK1) was first identified. We also demonstrated that these genes were significantly upregulated in hepatocellular carcinoma cell lines and tissues. Next, 154 potential miRNAs of CELSR3, GPSM2, and CHEK1 were predicted. CHEK1-hsa-mir-195-5p/hsa-mir-497-5p and GPSM2-hsa-mir-122-5p axes were defined as two key pathways in carcinogenesis of hepatocellular carcinoma by combination of in silico analysis and experimental validation. Subsequently, lncRNAs binding to hsa-mir-195-5p, hsa-mir-497-5p, and hsa-mir-122-5p were predicted via starBase and miRNet databases. After performing expression analysis and survival analysis for these predicted lncRNAs, we showed that nine lncRNAs (SNHG1, SNHG12, LINC00511, HCG18, FGD5-AS1, CERS6-AS1, NUTM2A-AS1, SNHG16, and ASB16-AS1) were markedly increased in hepatocellular carcinoma and their upregulation indicated poor prognosis. Moreover, a similar mRNA-miRNA-lncRNA analysis for six “known” genes (CLEC3B, DNASE1L3, PTTG1, KIF2C, XPO5, and UBE2S) was performed. Subsequently, a comprehensive mRNA-miRNA-lncRNA triple ceRNA network linked to prognosis of patients with hepatocellular carcinoma was established. Moreover, all RNAs in this network exhibited significantly diagnostic values for patients with hepatocellular carcinoma. In summary, the current study constructed a mRNA-miRNA-lncRNA ceRNA network associated with diagnosis and prognosis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Hepatobiliary Surgery, The First People's Hospital of Fuyang Hangzhou, Hangzhou, China
| | - Weiyang Lou
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|