1
|
Chen S, Jin Y, Yang N, Wei L, Xu D, Xu X. Improving microbial production of value-added products through the intervention of magnetic fields. BIORESOURCE TECHNOLOGY 2024; 393:130087. [PMID: 38042431 DOI: 10.1016/j.biortech.2023.130087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
The magnetic field application is emerging as an auxiliary physical strategy to facilitate rapid biomass accumulation and intracellular production of compounds. However, the underlying mechanisms and principles governing the application of magnetic fields for microbial growth and biotransformation are not yet fully understood. Therefore, a better understanding of interdisciplinary technologies integration, expanded magnetic field application, and scaled-up industrial implementation is crucial. In this review, the magnetic field characteristics, magnetic field-assisted fermentation devices, and the working mechanism of magnetic field have been reviewed comprehensively from both physical and microbiological perspectives. The review suggests that magnetic fields affect the biochemical processes in microorganisms by mediating nutrient transport across membranes, electron transfer during photosynthesis and respiration, enzyme activity and gene expression. Moreover, the recent advances in magnetic field application for microbial fermentation and conversion in biochemical, food and agricultural fields have been summarized.
Collapse
Affiliation(s)
- Sirui Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Yamei Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| | - Na Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Liwen Wei
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Dan Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Xueming Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| |
Collapse
|
2
|
Zhang G, Liu T, Zhao D, Sun X, Xing W, Zhang S, Yan L. External magnetic field have significant effects on diversity of magnetotactic bacteria in sediments from Yangtze River, Chagan Lake and Zhalong Wetland in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115604. [PMID: 37871562 DOI: 10.1016/j.ecoenv.2023.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
Magnetotactic bacteria (MTB) can rapidly relocate to optimal habitats by magnetotaxis, and play an important role in iron biogeochemical cycling. This study aimed to evaluate the contribution of the external magnetostatic field to the diversity of MTB in freshwater sediments from Yangtze River (Changjiang River, CJ), Chagan Lake (CGH) and Zhalong Wetland (ZL). The magnetic field intensity was tightly associated with the community richness of MTB in CJ, whereas it was closely related to the diversity of MTB in CGH and ZL (p < 0.05), elucidating a significant variation in the community composition of MTB. Magnetic exposure time appeared more significant correlation with community richness than diversity for MTB in CJ and CGH (p < 0.05), while an opposite relationship existed in ZL (p < 0.01). Herbaspirillum (93.81-96.48 %) dominated in the sediments of these surfacewatesr regardless of waterbody types, while it shifted to Magnetospirillum in ZL under 100 Gs magnetic field. The network connectivity and stability of MTB deteriorate with the increase of magnetic field intensity. Functional analysis showed that the Two-component system and ABC transporter system of MTB obviously responded to magnetic field intensity and exposure time. Our findings will pave the way to understanding the response mechanism of MTB community in freshwater sediments to the external magnetostatic field.
Collapse
Affiliation(s)
- Guojing Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Key Laboratory of Low‑Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Xindi Sun
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Weijia Xing
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Key Laboratory of Low‑Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| |
Collapse
|
3
|
Wang Y, Gu X, Quan J, Xing G, Yang L, Zhao C, Wu P, Zhao F, Hu B, Hu Y. Application of magnetic fields to wastewater treatment and its mechanisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145476. [PMID: 33588219 DOI: 10.1016/j.scitotenv.2021.145476] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Magnetic field (MF) has been applied widely and successfully as an efficient, low-cost and easy-to-use technique to enhance wastewater treatment (WWT) performance. Although the effects of MF on WWT were revealed and summarized by some works, they are still mysterious and complex. This review summarizes the application of MF in magnetic adsorption-separation of heavy metals and dyes, treatment of domestic wastewater and photo-magnetic coupling technology. Furthermore, the mechanisms of MF-enhanced WWT are critically elaborated from the perspective of magnetic physicochemical and biological effects, such as magnetoresistance, Lorentz force, and intracellular radical pair mechanism. At last, the challenges and opportunities for MF application in WWT are discussed. For overcoming the limitations and taking advantages of MFs in WWT, fundamental research of the mechanisms of the application of MFs should be carried out in the future.
Collapse
Affiliation(s)
- Yilin Wang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Xin Gu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Jianing Quan
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Guohua Xing
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Liwei Yang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Chuanliang Zhao
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Pei Wu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Fan Zhao
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Bo Hu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China.
| | - Yuansheng Hu
- School of Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| |
Collapse
|
4
|
relA and spoT Gene Expression is Modulated in Salmonella Grown Under Static Magnetic Field. Curr Microbiol 2021; 78:887-893. [PMID: 33515321 DOI: 10.1007/s00284-021-02346-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Virtually all bacterial species synthesize high levels of (p)ppGpp (guanosine penta- or tetraphosphate), a pleiotropic regulator of the stringent response and other stresses in bacteria. relA and spoT genes are, respectively, involved in synthesis and synthesis/biodegradation of (p)ppGpp. We aimed in this work to evaluate the impact of static magnetic field (SMF) 200 mT exposure on the expression of relA and spoT genes in Salmonella enterica Hadar. Bacteria were exposed to a SMF during 9 h, and RNA extraction was followed by reverse transcriptase polymerase chain reaction (RT-PCR). The relative quantification of mRNA expression levels using the 16S rRNA reference gene did not change during the SMF exposure. However, results showed a significant increase in gene expression for relA after 3 h of exposure (P < 0.05) and after 6 h for spoT (P < 0.05). The differential gene expression of relA and spoT could be considered as a potential stress response to a SMF exposure in Salmonella related to the production/degradation of (p)ppGpp.
Collapse
|
5
|
Yang Z, Zhang L, Zhao S, Luo N, Deng Q. Comparison study of static and alternating magnetic field treatments on the quality preservation effect of cherry tomato at low temperature. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhao Yang
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, School of Mechanical EngineeringTianjin University Tianjin China
| | - Lei Zhang
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, School of Mechanical EngineeringTianjin University Tianjin China
| | - Songsong Zhao
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, School of Mechanical EngineeringTianjin University Tianjin China
| | - Na Luo
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, School of Mechanical EngineeringTianjin University Tianjin China
| | - Qiujia Deng
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, School of Mechanical EngineeringTianjin University Tianjin China
| |
Collapse
|
6
|
Effect of static magnetic field (200 mT) on biofilm formation in Pseudomonas aeruginosa. Arch Microbiol 2019; 202:77-83. [DOI: 10.1007/s00203-019-01719-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/20/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
|
7
|
Tang H, Wang P, Wang H, Fang Z, Yang Q, Ni W, Sun X, Liu H, Wang L, Zhao G, Zheng Z. Effect of static magnetic field on morphology and growth metabolism of Flavobacterium sp. m1-14. Bioprocess Biosyst Eng 2019; 42:1923-1933. [PMID: 31444633 DOI: 10.1007/s00449-019-02186-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 11/28/2022]
Abstract
Increasing evidence shows that static magnetic fields (SMFs) can affect microbial growth metabolism, but the specific mechanism is still unclear. In this study, we have investigated the effect of moderate-strength SMFs on growth and vitamin K2 biosynthesis of Flavobacterium sp. m1-14. First, we designed a series of different moderate-strength magnetic field intensities (0, 50, 100, 150, 190 mT) and exposure times (0, 24, 48, 72, 120 h). With the optimization of static magnetic field intensity and exposure time, biomass and vitamin K2 production significantly increased compared to control. The maximum vitamin K2 concentration and biomass were achieved when exposed to 100 mT SMF for 48 h; compared with the control group, they increased by 71.3% and 86.8%, respectively. Interestingly, it was found that both the cell viability and morphology changed significantly after SMF treatment. Second, the adenosine triphosphate (ATP) and glucose-6-phosphate dehydrogenase (G6PDH) metabolism is more vigorous after exposed to 100 mT SMF. This change affects the cell energy metabolism and fermentation behavior, and may partially explain the changes in bacterial biomass and vitamin K2 production. The results show that moderate-strength SMFs may be a promising method to promote bacterial growth and secondary metabolite synthesis.
Collapse
Affiliation(s)
- Hengfang Tang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Han Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Zhiwei Fang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Qiang Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Wenfeng Ni
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Xiaowen Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.,Science Island Branch of Graduate, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Hui Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Li Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Genhai Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| | - Zhiming Zheng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
8
|
Al-Harbi FF, Alkhalifah DHM, Elqahtani ZM, Ali FM, Mohamed SA, Abdelbacki AMM. Nonthermal control of Escherichia coli growth using extremely low frequency electromagnetic (ELF-EM) waves. Biomed Mater Eng 2019; 29:809-820. [PMID: 30282336 DOI: 10.3233/bme-181025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Escherichia coli (E. coli) bacteria normally live in the intestines of people and animals. Most E. coli are harmless and the treatment of the infection could be achieved by using antibiotics, however the effectiveness is still debatable and needs more investigation. OBJECTIVE Researching the inhibition resonance frequency of square amplitude modulating waves (QAMW) that can inhibit the growth activity of E. coli and its ability to make division. METHODS A range of different extremely low frequencies of square amplitude modulated waves (QAMW) from 0.1 to 1.0 Hz from two generators with a constant carrier frequency of 10 MHz, amplitude of 10 Vpp, modulating depth ± 2 Vpp and constant field strength 200 V/m were used to treat E. coli cells at 37 °C. RESULTS The exposure of E. coli to 0.3 Hz QAMW for 90 min was the most inhibited frequency where the bacterial growth inhibited by 42.3%. Furthermore, a significant increase in antibiotic susceptibility to protein and cell wall inhibitors was investigated. Also, results of the chromosomal DNA sequences, dielectric relaxation and TEM indicated highly significant molecular and morphological changes after the exposure. CONCLUSIONS We concluded that the exposure of E. coli to QAMW at the inhibiting frequency interfered with the bioelectric signals generated from the bacteria during the cell division and changed the cellular activity and DNA sequences, and these changes lead to a significant inhibition of the bacterial growth. This is a new promising technique that aids to avoid the repetitive use of antibiotics against the bacterial pathogens.
Collapse
Affiliation(s)
- F F Al-Harbi
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Kingdom of Saudi Arabia
| | - Dalal H M Alkhalifah
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Kingdom of Saudi Arabia
| | - Zainab M Elqahtani
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Kingdom of Saudi Arabia
| | - Fadel M Ali
- Biophysics Department, Faculty of Science, Cairo University, Egypt
| | | | - A M M Abdelbacki
- Plant Pathology Department, Faculty of Agriculture, Cairo University, Egypt
| |
Collapse
|
9
|
Sun L, Li X, Ma H, He R, Donkor PO. Global gene expression changes reflecting pleiotropic effects of Irpex lacteus
induced by low-intensity electromagnetic field. Bioelectromagnetics 2019; 40:104-117. [DOI: 10.1002/bem.22171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Ling Sun
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
| | - Xinyi Li
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
| | - Haile Ma
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
| | - Ronghai He
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
| | - Prince O. Donkor
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
| |
Collapse
|
10
|
Ben Mouhoub R, El May A, Boujezza I, Sethom MM, Feki M, Landoulsi A. Viability and membrane lipid composition under a 57mT static magnetic field in Salmonella Hadar. Bioelectrochemistry 2018; 122:134-141. [PMID: 29627665 DOI: 10.1016/j.bioelechem.2018.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
The aim of this work is to demonstrate the effects of a static magnetic field (SMF) with an induction 12 equal to 57mT on the viability and membrane lipid composition of Salmonella Hadar. Results showed an increase in the viability of exposed bacteria compared to controls after 9h of exposure. Analysis with gas chromatography of total lipids (TLs) and different fractions of phospholipids: phosphatidylglycerols (PGs), phosphatidylethanolamines (PEs), and cardiolipins (CLs), separated by thin layer chromatography revealed changes in fatty acid levels during exposure. For TLs, the unsaturated fatty acids/saturated fatty acids ratio (UFAs/SFAs) had significantly increased after 9 h of exposure. The variation of this ratio seems to be essentially due to the increase of the proportion of unsaturated fatty acids with 18 carbons, in particular C18:1. The analyses of fatty acid composition carried out on the scale of each fraction of phospholipids showed that CLs contributed significantly to the increase of the proportion of the unsaturated fatty acids between 6 and 9h of exposure thanks to their unsaturated chains with 18 carbons (especially C18:2). CLs appear to be the main phospholipid involved in the adaptation of S. Hadar membranes to the SMF.
Collapse
Affiliation(s)
- Ramla Ben Mouhoub
- Biochemistry and Molecular Biology, Code UR13ES34 Research Unit, Faculty of Sciences of Bizerte, Zarzouna 7021, Carthage University, Tunisia.
| | - Alya El May
- Biochemistry and Molecular Biology, Code UR13ES34 Research Unit, Faculty of Sciences of Bizerte, Zarzouna 7021, Carthage University, Tunisia
| | - Imen Boujezza
- Biochemistry and Molecular Biology, Code UR13ES34 Research Unit, Faculty of Sciences of Bizerte, Zarzouna 7021, Carthage University, Tunisia
| | - Mohamed Marouen Sethom
- Université de Tunis El Manar, Faculté de Médecine de Tunis, CHU La Rabta, Laboratoire de Biochimie, LR99ES11, Jebbari, 1007 Tunis, Tunisia
| | - Moncef Feki
- Université de Tunis El Manar, Faculté de Médecine de Tunis, CHU La Rabta, Laboratoire de Biochimie, LR99ES11, Jebbari, 1007 Tunis, Tunisia
| | - Ahmed Landoulsi
- Biochemistry and Molecular Biology, Code UR13ES34 Research Unit, Faculty of Sciences of Bizerte, Zarzouna 7021, Carthage University, Tunisia
| |
Collapse
|
11
|
Belhaj Abdallah B, Landoulsi A, Chatti A. Combined static electromagnetic radiation and plant extract contribute to the biosynthesis of instable nanosilver responsible for the growth of microstructures. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2017.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Fan W, Huang Z, Fan B. Effects of prolonged exposure to moderate static magnetic field and its synergistic effects with alkaline pH on Enterococcus faecalis. Microb Pathog 2017; 115:117-122. [PMID: 29241767 DOI: 10.1016/j.micpath.2017.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/09/2017] [Accepted: 12/09/2017] [Indexed: 01/02/2023]
Abstract
Static magnetic field (SMF) has been shown to biologically affect various microorganisms, but its effects on Enterococcus faecalis, which is associated with multiple dental infections, have not been reported yet. Besides, Enterococcus faecalis was found to be resistant to the alkaline environment provided by a major dental antimicrobial, calcium hydroxide. Therefore, the antibacterial activity of prolonged exposure to moderate SMF (170 mT) and its possible synergistic activity with alkaline pH (pH = 9) were evaluated in the study. The ability to form a biofilm under these conditions was examined by crystal violet assay. Real-time quantitative PCR was performed to evaluate the relative expression of stress (dnaK and groEL) and virulence (efaA, ace, gelE and fsrC) related genes. As the results indicated, cell proliferation was inhibited after 120 h of SMF exposure. What's more, the combined treatment of SMF and alkaline pH showed significantly improved antimicrobial action when compared to single SMF and alkaline pH treatment for more than 24 h and 72 h respectively. However, the ability to form a biofilm was also enhanced under SMF and alkaline pH treatments. SMF can induce stress response by up-regulating the expression of dnaK and elevate virulence gene expression (efaA and ace). These responses were more significant and more genes were up-regulated including groEL, gelE and fsrC when exposed to SMF and alkaline pH simultaneously. Hence, combination of SMF and alkaline pH could be a promising disinfection strategy in dental area and other areas associated with Enterococcus faecalis infections.
Collapse
Affiliation(s)
- Wei Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, People's Republic of China
| | - Zhuo Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, People's Republic of China
| | - Bing Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, People's Republic of China.
| |
Collapse
|
13
|
Mansouri A, Abbes C, Landoulsi A. Combined intervention of static magnetic field and growth rate of Microbacterium maritypicum CB7 for Benzo( a )Pyrene biodegradation. Microb Pathog 2017; 113:40-44. [DOI: 10.1016/j.micpath.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
|
14
|
Biophysical control of the growth of Agrobacterium tumefaciens using extremely low frequency electromagnetic waves at resonance frequency. Biochem Biophys Res Commun 2017; 494:365-371. [PMID: 28988110 DOI: 10.1016/j.bbrc.2017.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 11/23/2022]
Abstract
Isolated Agrobacterium tumefaciens was exposed to different extremely low frequencies of square amplitude modulated waves (QAMW) from two generators to determine the resonance frequency that causes growth inhibition. The carrier was 10 MHz sine wave with amplitude ±10 Vpp which was modulated by a second wave generator with a modulation depth of ± 2Vpp and constant field strength of 200 V/m at 28 °C. The exposure of A. tumefaciens to 1.0 Hz QAMW for 90 min inhibited the bacterial growth by 49.2%. In addition, the tested antibiotics became more effective against A. tumefaciens after the exposure. Furthermore, results of DNA, dielectric relaxation and TEM showed highly significant molecular and morphological changes due to the exposure to 1.0 Hz QAMW for 90 min. An in-vivo study has been carried out on healthy tomato plants to test the pathogenicity of A. tumefaciens before and after the exposure to QAMW at the inhibiting frequency. Symptoms of crown gall and all pathological symptoms were more aggressive in tomato plants treated with non-exposed bacteria, comparing with those treated with exposed bacteria. We concluded that, the exposure of A. tumefaciens to 1.0 Hz QAMW for 90 min modified its cellular activity and DNA structure, which inhibited the growth and affected the microbe pathogenicity.
Collapse
|
15
|
Ben Mouhoub R, Mansouri A, Aliliche K, Beghalem H, Landoulsi A, El May A. Unraveling the expression of genes involved in the biosynthesis pathway of cardiolipin and phosphatidylethanolamine in Salmonella Hadar grown under static magnetic field 200 mT. Microb Pathog 2017; 111:414-421. [PMID: 28923603 DOI: 10.1016/j.micpath.2017.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 01/07/2023]
Abstract
We aimed in this work to evaluate the effect of static magnetic field 200 mT (SMF) on the expression of genes involved in the biosynthetic pathway of cardiolipin: g3pd, plsB, cdsA, pgsA, pgpA, cls and phosphatidylethanolamine: pssA and psd in Salmonella enterica subsp enterica serovar Hadar. Bacteria were exposed to a SMF during 3, 6 and 9 h. RNA extraction was followed by Reverse Transcriptase Polymerase Chain Reaction RT-PCR. The relative quantification of mRNA expression levels using 16S rRNA doesn't change during the time exposure. RT-PCR was done for two exposure experiments. The gene expression using RT-PCR present no significant difference in case of plsB, cdsA, pgpA, pgsA and psd genes during the different exposure times. However, a significant increase was observed in the expression of g3pd and pssA genes after 6 h and for cls gene after 3 h of exposure, but any variation was notified after 9 h of exposure. So we can conclude from this study that cls, g3pd and pssA genes are required in the adaptation of Salmonella Hadar to SMF.
Collapse
Affiliation(s)
- Ramla Ben Mouhoub
- Biochemistry and Molecular Biology, Code UR13ES34 Research Unit, Faculty of Sciences of Bizerte, Zarzouna 7021, Carthage University, Tunisia.
| | - Ahlem Mansouri
- Biochemistry and Molecular Biology, Code UR13ES34 Research Unit, Faculty of Sciences of Bizerte, Zarzouna 7021, Carthage University, Tunisia
| | - Khadidja Aliliche
- Laboratory of Genetics, Faculty of Science of Bizerte, Zarzouna 7021, Tunisia
| | - Hamida Beghalem
- Laboratory of Genetics, Faculty of Science of Bizerte, Zarzouna 7021, Tunisia
| | - Ahmed Landoulsi
- Biochemistry and Molecular Biology, Code UR13ES34 Research Unit, Faculty of Sciences of Bizerte, Zarzouna 7021, Carthage University, Tunisia
| | - Alya El May
- Biochemistry and Molecular Biology, Code UR13ES34 Research Unit, Faculty of Sciences of Bizerte, Zarzouna 7021, Carthage University, Tunisia
| |
Collapse
|
16
|
Hanini R, Chatti A, Ghorbel SB, Landoulsi A. Role of Sod Gene in Response to Static Magnetic Fields in Pseudomonas aeruginosa. Curr Microbiol 2017; 74:930-937. [PMID: 28523373 DOI: 10.1007/s00284-017-1264-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
The protective role of superoxide dismutase (SOD) against non-ionizing radiation such as static electromagnetic field (200 mT) has been studied in wild-type and mutant strain of Pseudomonas aeruginosa lacking cytosolic Mn-SOD (sodM), Fe-SOD (sodB), or both SODs (sodMB). Our results showed that inactivation of sodM and/or sodB genes increases the sensitivity of P. aeruginosa toward stress induced by the static magnetic field (200 mT). Furthermore, our results showed an enhancement of SOD, catalase, and peroxidases after exposure to the magnetic field. However, wild-type cells maintained significantly higher activities of antioxidant enzymes than mutant strains. The malondialdehyde produced by the oxidative degradation of unsaturated lipids and fatty acids showed significant increase in mutant strains compared to the wild-type. The overall results showed that the SOD has a protective role against a stress induced by static electromagnetic field in P. aeruginosa.
Collapse
Affiliation(s)
- Raouia Hanini
- Unité de Biochimie des lipides et interactions des macromolécules en Biologie (03/UR/0902), Laboratoire de Biochimie et biologie moléculaire, Faculté des Sciences de Bizerte, Zarzouna 7021, Bizerte, Tunisia.
| | - Abdelwaheb Chatti
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux, Technopole Borj Cedria, Tunis, Tunisia
| | - Selma Ben Ghorbel
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux, Technopole Borj Cedria, Tunis, Tunisia
| | - Ahmed Landoulsi
- Unité de Biochimie des lipides et interactions des macromolécules en Biologie (03/UR/0902), Laboratoire de Biochimie et biologie moléculaire, Faculté des Sciences de Bizerte, Zarzouna 7021, Bizerte, Tunisia
| |
Collapse
|
17
|
Influence of static magnetic field exposure on fatty acid composition in Salmonella Hadar. Microb Pathog 2017; 108:13-20. [PMID: 28455137 DOI: 10.1016/j.micpath.2017.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 11/20/2022]
Abstract
We have been interested, in this work, to investigate the effect of the exposure to static magnetic field at 200 mT (SMF) on the fatty acid (FA) composition of Salmonella enterica subsp Enterica serovar Hadar isolate 287: effects on the proportion of saturated and unsaturated fatty acids (SFAs, UFAs), cyclopropane fatty acids (CFAs) and hydroxy fatty acids after exposure to the static magnetic field at 200 mT (SMF). Analysis with Gas Chromatography-Mass Spectrometry (GC-MS) of total lipid showed that the proportion of the most fatty acids was clearly affected. The comparison of UFAs/SFAs ratio in exposed bacteria and controls showed a diminution after 3 and 6 h of exposure. This ration reached a balance after 9 h of treatment with SMF. So we can conclude that S. Hadar tries to adapt to magnetic stress by changing the proportions of SFAs and UFAs over time to maintain an equilibrium after 9 h of exposure, thus to maintain the inner membranes fluidity. Also, a decrease in the proportion of hydroxy FAs was observed after 6 h but an increase of this proportion after 9 h of exposure. Concerning CFAs, its proportion raised after 6 h of exposure to the SMF but it decreased after 9 h of exposure. These results are strongly correlated with those of cfa (cyclopropane fatty acid synthase) gene expression which showed a decrease of its expression after 9 h of exposure.
Collapse
|
18
|
Zhang J, Xu C, Wan Y, Gao M. Effects of extremely low frequency magnetic field on production of mannatide byα-hemolytic Streptococcus. Bioelectromagnetics 2016; 37:331-7. [DOI: 10.1002/bem.21984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 05/12/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jialan Zhang
- College of Animal Science; Yangtze University; Jingzhou Hubei China
| | - Cui Xu
- College of Life Science; Yangtze University; Jingzhou Hubei China
| | - Yunlei Wan
- College of Life Science; Yangtze University; Jingzhou Hubei China
| | - Mengxiang Gao
- College of Life Science; Yangtze University; Jingzhou Hubei China
- Jingchu Food Research and Development Center; Yangtze University; Jingzhou Hubei China
| |
Collapse
|
19
|
Albuquerque WWC, Costa RMPB, Fernandes TDSE, Porto ALF. Evidences of the static magnetic field influence on cellular systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:16-28. [DOI: 10.1016/j.pbiomolbio.2016.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 03/10/2016] [Indexed: 01/29/2023]
|
20
|
Snoussi S, El May A, Coquet L, Chan P, Jouenne T, Dé E, Landoulsi A. Unraveling the effects of static magnetic field stress on cytosolic proteins of Salmonella by using a proteomic approach. Can J Microbiol 2015; 62:338-48. [PMID: 26928316 DOI: 10.1139/cjm-2015-0532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated the adaptation of Salmonella enterica subsp. enterica serovar Hadar to static magnetic field (SMF) exposure (200 mT, 9 h). The proteomic analysis provides an overview of potentially important cytosolic proteins that Salmonella needs to regulate to survive and adapt to magnetic stress. Via 2-dimensional electrophoresis and liquid chromatography tandem mass spectrometry, we compared cytosolic proteomes before and after exposure to magnetic field. A total of 35 proteins displaying more than a 2-fold change were differentially expressed in exposed cells, among which 25 were upregulated and 10 were downregulated. These proteins can be classified mainly into 6 categories: (i) proteins involved in metabolic pathways of carbohydrates, (ii) chaperones and proteins produced in response to oxidative stress, (iii) proteins involved in energy homeostasis, (iv) elongation factors (EF-Tu and EF-Ts), (v) proteins involved in motility, and (vi) proteins involved in molecules transport. Many of the presented observations could be explained, while some represent still-unknown mechanisms. In addition, this study reveals 5 hypothetical proteins. It seems that the stress response to SMF (200 mT) is essentially set up to avoid oxidative damages, with the overexpression of proteins directly involved in oxidative stress response and metabolic switches to counteract oxidative stress. Interestingly, several proteins induced under SMF exposure are found to overlap with those induced by other stresses, such as heat shock and starvation.
Collapse
Affiliation(s)
- Sarra Snoussi
- a Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisie.,b UMR 6270 CNRS, Faculté des sciences, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Alya El May
- a Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisie
| | - Laurent Coquet
- b UMR 6270 CNRS, Faculté des sciences, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Philippe Chan
- b UMR 6270 CNRS, Faculté des sciences, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Thierry Jouenne
- b UMR 6270 CNRS, Faculté des sciences, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Emmanuelle Dé
- b UMR 6270 CNRS, Faculté des sciences, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Ahmed Landoulsi
- a Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisie
| |
Collapse
|
21
|
Baraúna RA, Santos AV, Graças DA, Santos DM, Ghilardi R, Pimenta AMC, Carepo MSP, Schneider MPC, Silva A. Exposure to an extremely low-frequency electromagnetic field only slightly modifies the proteome of Chromobacterium violaceumATCC 12472. Genet Mol Biol 2015; 38:227-30. [PMID: 26273227 PMCID: PMC4530650 DOI: 10.1590/s1415-4757382220140240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/30/2014] [Indexed: 11/21/2022] Open
Abstract
Several studies of the physiological responses of different organisms exposed to extremely low-frequency electromagnetic fields (ELF-EMF) have been described. In this work, we report the minimal effects of in situ exposure to ELF-EMF on the global protein expression of Chromobacterium violaceum using a gel-based proteomic approach. The protein expression profile was only slightly altered, with five differentially expressed proteins detected in the exposed cultures; two of these proteins (DNA-binding stress protein, Dps, and alcohol dehydrogenase) were identified by MS/MS. The enhanced expression of Dps possibly helped to prevent physical damage to DNA. Although small, the changes in protein expression observed here were probably beneficial in helping the bacteria to adapt to the stress generated by the electromagnetic field.
Collapse
Affiliation(s)
- Rafael A Baraúna
- Laboratório de Polimorfismo de DNA, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Agenor V Santos
- Laboratório de Polimorfismo de DNA, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Diego A Graças
- Laboratório de Polimorfismo de DNA, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Daniel M Santos
- Laboratório de Venenos e Toxinas, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rubens Ghilardi
- Superintendência do Meio Ambiente, Centrais Elétricas do Norte do Brasil S/A, Brasília, DF, Brazil
| | - Adriano M C Pimenta
- Laboratório de Venenos e Toxinas, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marta S P Carepo
- Rede de Química e Tecnologia, Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Maria P C Schneider
- Laboratório de Polimorfismo de DNA, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Artur Silva
- Laboratório de Polimorfismo de DNA, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| |
Collapse
|
22
|
Mihoub M, El May A, Aloui A, Chatti A, Landoulsi A. Effects of static magnetic fields on growth and membrane lipid composition of Salmonella typhimurium wild-type and dam mutant strains. Int J Food Microbiol 2012; 157:259-66. [PMID: 22682582 DOI: 10.1016/j.ijfoodmicro.2012.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 04/22/2012] [Accepted: 05/18/2012] [Indexed: 01/12/2023]
Abstract
This study was carried out to explore the adaptive mechanisms of S. typhimurium particularly, the implication of the Dam methyltransferase in the remodelling of membrane lipid composition to overcome magnetic field stress. With this aim, we focused our analyses on the increase in viable numbers and membrane lipid modifications of S. typhimurium wild-type and dam mutant cells exposed for 10h to static magnetic fields (SMF; 200 mT). For the wild-type strain, exposure to SMF induced a significant decrease (p<0.05) of CFU at 6h, followed by an increase between 8 and 10h. Growth of the dam mutant was significantly affected (p<0.05) after 6h and no recovery was observed until 10h, highlighting a different behavior of SMF stressed wild-type and dam mutant strains. SMF significantly affected the phospholipid proportions in the two strains. The most affected were those of the acidic phospholipids, cardiolipins (CL). In the dam strain the phospholipid response to SMF followed a globally similar trend as in the wild-type with however lower effects, leading mainly to an unusual accumulation of CL. This would in part explain the different behavior of the wild-type and the dam strain. Results showed a significant increase of membrane cyclic fatty acids Cyc17 and Cyc19 in the wild-type strain but only the Cyc17 in the dam strain and a meaningful increase of the total unsaturated fatty acids (UFAs) to total saturated fatty acids (SFAs) ratios of the exposed cells compared to controls from 3 to 9h (p<0.05) for both strains. The net increase of the total UFAs to total SFAs ratios seemed to result mainly from the increase of (C18:1) proportion (p<0.05) and to a lower extent from that of (C16:1) (p<0.05). These modifications of cyclic and unsaturated fatty acid proportions constitute an adaptive response to SMF stress in S. typhimurium wild-type and dam mutants to maintain an optimum level of membrane fluidity under SMF.
Collapse
Affiliation(s)
- Mouadh Mihoub
- Unité de Biochimie des Lipides et Interaction des Macromolécules en Biologie (03/UR/0902), Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Zarzouna, Bizerte, Tunisia.
| | | | | | | | | |
Collapse
|
23
|
Snoussi S, May AE, Coquet L, Chan P, Jouenne T, Landoulsi A, Dé E. Adaptation of Salmonella enterica Hadar under static magnetic field: effects on outer membrane protein pattern. Proteome Sci 2012; 10:6. [PMID: 22304719 PMCID: PMC3292939 DOI: 10.1186/1477-5956-10-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 02/03/2012] [Indexed: 12/29/2022] Open
Abstract
Background Salmonella enterica serovar Hadar (S. Hadar) is a highly prevalent foodborne pathogen and therefore a major cause of human gastroenteritis worldwide. Outer membrane proteins whose production is often regulated by environmental conditions also play important roles in the adaptability of bacterial pathogens to various environments. Results The present study investigated the adaptation of S. Hadar under the effect of acute static magnetic field exposure (200 mT, 9 h) and the impact on the outer membrane protein pattern. Via two-dimensional electrophoresis (2-DE) and LC-MS/MS spectrometry, we compared the proteome of enriched-outer membrane fraction before and after exposure to a magnetic field. A total of 11 proteins, displaying more than a two-fold change, were differentially expressed in exposed cells, among which 7 were up-regulated and 4 down-regulated. These proteins were involved in the integrity of cell envelope (TolB, Pal), in the response to oxidative stress (OmpW, dihydrolipoamide dehydrogenase, UspF), in the oxidative stress status (bacterioferritin), in virulence (OmpX, Yfgl) or in motility (FlgE and UspF). Complementary experiments associated the down-regulation of FlgE and UspF with an alteration of swarming, a flagella-driven motility, under SMF. Furthermore, the antibiotic disc diffusion method confirmed a decrease of gentamicin susceptibility in exposed cells. This decrease could be partly associated with the up-regulation of TolC, outer membrane component of an efflux pump. OmpA, a multifunctional protein, was up-regulated. Conclusions SMF (200 mT) seems to maintain the cell envelope integrity and to submit the exposed cells to an oxidative stress. Some alterations suggest an increase of the ability of exposed cells to form biofilms.
Collapse
Affiliation(s)
- Sarra Snoussi
- Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, Bizerte, Tunisie.
| | | | | | | | | | | | | |
Collapse
|
24
|
Dini L, Panzarini E. The influence of a 6 mT static magnetic field on apoptotic cell phagocytosis depends on monocyte/macrophage differentiation. Exp Biol Med (Maywood) 2011; 235:1432-41. [PMID: 21127341 DOI: 10.1258/ebm.2010.010122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a previous work we showed that a 6 mT static magnetic field (SMF) interferes with monocyte/macrophage 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced differentiation of promonocytes (U937 cells) and monocytes (THP-1 cells). In this study we investigated whether in the same cells and under the same conditions, phagocytosis of apoptotic cells is influenced by 6 mT SMF exposure. Fluid phase endocytosis and phagocytosis of latex particles were also analyzed for comparison. The results indicate that SMF exposure has effects on phagocytosis but not on fluid phase endocytosis, and that these effects are greater at the late stages of macrophage differentiation (THP-1 > U937 cells). The phagocytosis index and rate of phagocytosis decreased under SMF exposure while the number of latex particles bound to the plasma membrane of TPA-differentiated U937 and THP-1 cells increased. Conversely, the rate of phagocytosis of apoptotic cells increased under SMF exposure, while the number of apoptotic cells bound to the plasma membrane of isolated human Kupffer cells, Raw 264.7 macrophages and TPA-differentiated THP-1 and U937 cells decreased. In non-differentiated U937 and THP-1 cells, the SMF exposure enhanced the number of cell-surface bound apoptotic cells and latex beads.
Collapse
Affiliation(s)
- Luciana Dini
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Via per Monteroni, 73100 Lecce, Italy.
| | | |
Collapse
|
25
|
Gao M, Zhang J, Feng H. Extremely low frequency magnetic field effects on metabolite of Aspergillus niger. Bioelectromagnetics 2010; 32:73-8. [DOI: 10.1002/bem.20619] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 08/26/2010] [Indexed: 11/09/2022]
|
26
|
Tagourti J, El May A, Aloui A, Chatti A, Ben Aissa R, Landoulsi A. Static magnetic field increases the sensitivity of Salmonella to gentamicin. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0081-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|