Byeon JH, Shin E, Kim GH, Lee K, Hong YS, Lee JW, Eun BL. Application of array-based comparative genomic hybridization to pediatric neurologic diseases.
Yonsei Med J 2014;
55:30-6. [PMID:
24339284 PMCID:
PMC3874920 DOI:
10.3349/ymj.2014.55.1.30]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE
Array comparative genomic hybridization (array-CGH) is a technique used to analyze quantitative increase or decrease of chromosomes by competitive DNA hybridization of patients and controls. This study aimed to evaluate the benefits and yield of array-CGH in comparison with conventional karyotyping in pediatric neurology patients.
MATERIALS AND METHODS
We included 87 patients from the pediatric neurology clinic with at least one of the following features: developmental delay, mental retardation, dysmorphic face, or epilepsy. DNA extracted from patients and controls was hybridized on the Roche NimbleGen 135K oligonucleotide array and compared with G-band karyotyping. The results were analyzed with findings reported in recent publications and internet databases.
RESULTS
Chromosome imbalances, including 9 cases detected also by G-band karyotyping, were found in 28 patients (32.2%), and at least 19 of them seemed to be causally related to the abnormal phenotypes. Regarding each clinical symptom, 26.2% of 42 developmental delay patients, 44.4% of 18 mental retardation patients, 42.9% of 28 dysmorphic face patients, and 34.6% of 26 epilepsy patients showed abnormal array results.
CONCLUSION
Although there were relatively small number of tests in patients with pediatric neurologic disease, this study demonstrated that array-CGH is a very useful tool for clinical diagnosis of unknown genome abnormalities performed in pediatric neurology clinics.
Collapse