1
|
Spiller PF, Morgan HJN, Navegantes LCC, Machado BH, da Silva MP, Moraes DJA. Short-term sustained hypoxia distinctly affects subpopulations of carotid body glomus cells from rats. Am J Physiol Cell Physiol 2025; 328:C1346-C1365. [PMID: 40094217 DOI: 10.1152/ajpcell.00967.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
The main O2 arterial chemoreceptors are the carotid bodies (CBs), which mediate hyperventilation in response to short-term sustained hypoxia (SH). CBs contain glomus cells expressing K+ channels, which are inhibited by hypoxia, leading to neurotransmitter release. ATP released by CBs and type II cells has been considered essential for chemosensory processing under physiological and pathophysiological conditions. Although the systemic effects of chronic activation of CBs by SH are well known, the early (first 24 h) cellular and molecular mechanisms in CBs as well as the effects of short-term SH on populations of glomus cells are still poorly understood. Here, we show that SH (10% O2 for 24 h) depolarizes the membrane potential of one population of glomus cells, mediated by increases in inward current, but does not affect the ATP release by CBs. In addition, SH promotes a reduction in their maximum outward current, mediated by voltage-gated K+ channels. SH also affected sensitivity to acute hypoxia in one glomus cell subpopulation. As for the content of mitochondrial proteins, we observed increases in the citrate synthase, Tom-20, and succinate dehydrogenase (mitochondrial complex II) per cell of CBs after SH. Our results demonstrate important cellular and molecular mechanisms of plasticity in CBs from rats after only 24 h of SH, which may contribute to the generation of cardiovascular and ventilatory adjustments observed in this experimental model.NEW & NOTEWORTHY Our study revealed two subpopulations of glomus cells of carotid bodies (CBs) with specific electrophysiological properties, which were differentially affected by short-term sustained hypoxia (SH; 10% O2 for 24 h). Our experiments showed that SH also affected the sensitivity to acute hypoxia of these glomus cell subpopulations differently. Our molecular analyses allowed us to identify important adaptations in the content of CB mitochondrial proteins that participate in the Krebs cycle and form the electron transport chain.
Collapse
Affiliation(s)
- Pedro F Spiller
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Henrique J N Morgan
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz C C Navegantes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melina P da Silva
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Hao R, Ao X, Xu Y, Gao M, Jia C, Dong X, Cirenluobu, Shang P, Ye Y, Wei Z. Enhancing oxygen utilization and mitigating oxidative stress in Tibetan chickens for adaptation to high-altitude hypoxia. Poult Sci 2025; 104:104893. [PMID: 40014967 PMCID: PMC11910141 DOI: 10.1016/j.psj.2025.104893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Tibetan chicken (TBC) is one of the native poultry species that is well adapted to the high-altitude environment of the Qinghai-Tibet Plateau. To elucidate the genetic mechanisms underlying adaptation, the transcriptomes of five tissues (heart (HE), lung (LU), liver (LI), ovary (OV), and abdominal fat (AB)) were compared between TBCs and Roman chickens (RMCs) inhabiting the plateau for one year. Moreover, weighted gene co-expression network analysis (WGCNA) was applied to detect tissue-associated modules and hub genes. A total of 1105, 239, 400, 483, and 275 differentially expressed genes (DEGs) were identified in the LI, HE, LU, AB, and OV tissues, respectively. Fifteen tissue-specific modules were identified in TBC and thirteen in RMC. Analysis of transcription factor (TF) binding sites revealed nineteen hub TFs in TBC and twenty in RMC across the pool of hub genes in these two breeds. Functional enrichment analyses demonstrated that TBC exhibited robust capacity for oxygen transport, heme binding, oxidative phosphorylation, and antioxidant responses in high-altitude regions. Further investigation of the function of hub TFs indicated the involvement of ATF4, CEBPA, TCF7L1, and GFI1B in improving oxygen transport in TBCs. These hub TFs were associated with angiogenesis or hematopoiesis and likely linked to various regulatory functions and facilitate communication across multiple tissues. In conclusion, TBCs have developed a systemic adaptive mechanism to cope with high altitudes, involving the coordinated transcriptional regulation in multi-tissues to enhance oxygen transport and utilization, along with amelioration of oxidative stress.
Collapse
Affiliation(s)
- Ruidong Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xianpei Ao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yijing Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mengyu Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Cunling Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Cirenluobu
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 860000, PR China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, PR China
| | - Yourong Ye
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, PR China
| | - Zehui Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
3
|
Wu W, Chen G, Zhang X, Wu H, Wang YE, Li X, Liang Y, Liu D. The effect of long-term exposure to moderate high altitude on adipokines and insulin sensitivity. Cytokine 2025; 185:156823. [PMID: 39626424 DOI: 10.1016/j.cyto.2024.156823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND High altitude area refers to plateau area with an altitude of 1500 m or above. Short-term (less than 30 days) exposure to high-altitude environments (hypoxia, low temperature, low pressure) might affect the adipokines level and insulin sensitivity. However, whether long-term exposure to moderate high altitude would have an impact on adipokines and insulin sensitivity remains unknown. OBJECTIVE This study aimed to explore the effect of long-term exposure (12 months) to moderate high altitudes (2900 m) on changes in adipokines level and insulin sensitivity. METHODS 48 healthy adults from Guangdong Province (the average altitude less than 50 m) to Nyingchi (an average altitude of 2900 m) were included with follow-up of 12 months. Before entering Nyingchi, baseline anthropometric indicators (height, weight, blood pressure), metabolic indicators: fasting plasma glucose (FPG), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), insulin resistance index (HOMA-IR), adipokines: adiponectin and leptin, inflammatory indicators: tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6); hypoxia-inducible factor 1alpha (HIF-1α), oxidative stress indicator: malondialdehyde (MDA), antioxidant indicators: superoxide dismutase (SOD) and glutathione (GSH) were determined. After entering Nyingchi, the above indicators were retested at the 1st, 6th, and 12th month. The control group consist of 47 local residents in Nyingchi. Linear mixed effect model was used to analyze the trend of index changes. Multivariate linear regression analysis was analyzed to explore the influence factors of adiponectin at 12th month. RESULTS After 12 months exposure to high altitude, the body mass index (BMI), systolic blood pressure (SBP) and FPG of subjects decreased from baseline of 23.51 ± 2.68 kg/m2, 123.68 ± 14.94 mmHg and 5.05 ± 0.36 mmol/L to 22.59 ± 2.56 kg/m2, 116.10 ± 14.68 mmHg and 4.65 ± 0.46 mmol/L respectively, HDL-C increased from baseline of 1.30 ± 0.26 mmol/L to 1.37 ± 0.30 mmol/L. HOMA-IR decreased from baseline 1.70 (1.19, 2.22) to 1.25(1.04, 1.78). Adiponectin increased from 3.85(3.05, 4.98) to 4.75(3.33, 5.88) μg/mL, leptin decreased from 1022.10(496.30, 2508.60) to 729.60(308.78, 1670.20) pg/mL. TNFα decreased from 6.81(5.37, 8.49) to 5.50(4.00, 6.74) pg/mL. The level of HIF-1α increased from baseline 1.91 (1.32, 5.09) to 2.94 (1.65, 15.45) pg/mL. SOD increased from 0.20(0.15, 0.24) to 0.25(0.20, 0.28) U/mL. Multivariate linear regression analysis showed that HIF-1α (β = 0.006, 95 %CI, 0.001-0.012, p = 0.033) and SOD (β = 7.318, 95 %CI, 0.486-14.149, p = 0.037) was the factors that influenced adiponectin level at 12th month after exposure to high altitude. CONCLUSION Long-term exposure to moderate high-altitude environments could improve insulin sensitivity and adipocyte function in healthy adults. Elevated HIF-1α and SOD during altitude acclimatization were the beneficial factors for improvement of adipocyte function. It is worthwhile to further explore the effect and the potential therapeutic value of long-term moderate altitude exposure on adults with metabolic disorders.
Collapse
Affiliation(s)
- Wenxia Wu
- Department of General Practice, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of General Practice, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Shanwei, 516600, China
| | - Guishan Chen
- Endocrinology and Metabolism Department, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, 515000, China
| | - Xiaoyun Zhang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hongshi Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yu-E Wang
- Nyingchi People's Hospital, Tibet 860000, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510120, China
| | - Ying Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Dan Liu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
4
|
Su Q, Li YC, Zhuang DH, Liu XY, Gao H, Li D, Chen Y, Ge MX, Han YM, Gao ZL, Yin FQ, Zhao L, Zhang YX, Yang LQ, Zhao Q, Luo YJ, Zhang Z, Kong QP. Rewiring of Uric Acid Metabolism in the Intestine Promotes High-Altitude Hypoxia Adaptation in Humans. Mol Biol Evol 2024; 41:msae233. [PMID: 39494496 DOI: 10.1093/molbev/msae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
Adaptation to high-altitude hypoxia is characterized by systemic and organ-specific metabolic changes. This study investigates whether intestinal metabolic rewiring is a contributing factor to hypoxia adaptation. We conducted a longitudinal analysis over 108 days, with seven time points, examining fecal metabolomic data from a cohort of 46 healthy male adults traveling from Chongqing (a.s.l. 243 m) to Lhasa (a.s.l. 3,658 m) and back. Our findings reveal that short-term hypoxia exposure significantly alters intestinal metabolic pathways, particularly those involving purines, pyrimidines, and amino acids. A notable observation was the significantly reduced level of intestinal uric acid, the end product of purine metabolism, during acclimatization (also called acclimation) and additional two long-term exposed cohorts (Han Chinese and Tibetans) residing in Shigatse, Xizang (a.s.l. 4,700 m), suggesting that low intestinal uric acid levels facilitate adaptation to high-altitude hypoxia. Integrative analyses with gut metagenomic data showed consistent trends in intestinal uric acid levels and the abundance of key uric acid-degrading bacteria, predominantly from the Lachnospiraceae family. The sustained high abundance of these bacteria in the long-term resident cohorts underscores their essential role in maintaining low intestinal uric acid levels. Collectively, these findings suggest that the rewiring of intestinal uric acid metabolism, potentially orchestrated by gut bacteria, is crucial for enhancing human resilience and adaptability in extreme environments.
Collapse
Affiliation(s)
- Qian Su
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Chun Li
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Dao-Hua Zhuang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Xin-Yuan Liu
- Department of Military Medical Geography, Army Health Service Training Base, Army Medical University, Chongqing 400038, China
| | - Han Gao
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Dong Li
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yu Chen
- Department of Military Medical Geography, Army Health Service Training Base, Army Medical University, Chongqing 400038, China
| | - Ming-Xia Ge
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yi-Ming Han
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zong-Liang Gao
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Fan-Qian Yin
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Long Zhao
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yun-Xia Zhang
- The Second Affiliated Hospital, the School of Basic Medicine and Life Sciences, Hainan Medical University, Hainan 570102, China
| | - Li-Qin Yang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qin Zhao
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, China
| | - Yong-Jun Luo
- Department of Military Medical Geography, Army Health Service Training Base, Army Medical University, Chongqing 400038, China
| | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Qing-Peng Kong
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
5
|
Bhardwaj S, Singh S, Ganguly I, Bhatia AK, Dixit SP. Deciphering local adaptation of native Indian cattle ( Bos indicus) breeds using landscape genomics and in-silico prediction of deleterious SNP effects on protein structure and function. 3 Biotech 2023; 13:86. [PMID: 36816754 PMCID: PMC9931982 DOI: 10.1007/s13205-023-03493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
India has 50 registered breeds of native cattle (Bos indicus) which are locally adapted to diverse environmental conditions. This study aimed to investigate the genomic basis of adaptation of native Indian cattle and to predict the impact of key SNPs on the amino acid changes that affect protein function. The Illumina 777 K BovineHD BeadChip was used to genotype 178 native cattle belonging to contrasting landscapes and agro-climatic conditions. The genotype-environment association was investigated with R. SamBada, using 5,74,382 QC passed SNPs and 11 predictor variables (10 multi-collinearity controlled environmental variables and 1 variable as "score of PCA" on ancestry coefficients of individuals). In total, 1,12,780 models were selected as significant (q < 0.05) based on G score. The pathway ontology of the annotated genes revealed many important pathways and genes having a direct and indirect role in cold and hot adaptation. Only ten SNP variants had a SIFT score of < 0.05 (deleterious), and only two of them, each lying in the genes CRYBA1 and USP18, were predicted to be deleterious with high confidence. RaptorX predicted the tertiary structures of proteins encoded by wild and mutant variants of these genes. The quality of the models was determined using Ramachandran plots and RaptorX parameters, indicating that they are accurate. RaptorX and I-Mutant 2.0 softwares revealed significant differences among wild and mutant proteins. Adaptive alleles identified in the present investigation might be responsible for the local adaptation of these cattle breeds. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03493-3.
Collapse
Affiliation(s)
- Shivam Bhardwaj
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001 India
| | - Sanjeev Singh
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| | - Indrajit Ganguly
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| | - Avnish Kumar Bhatia
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| | - S. P. Dixit
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| |
Collapse
|
6
|
Proskurnina E, Martynov D, Yakushkin A, Zelenkova I. Non-enzymatic antioxidant blood plasma profile in the period of high training loads in elite speed skaters at the altituda. SPORTS MEDICINE AND HEALTH SCIENCE 2023. [DOI: 10.1016/j.smhs.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
7
|
Mallet RT, Burtscher J, Pialoux V, Pasha Q, Ahmad Y, Millet GP, Burtscher M. Molecular Mechanisms of High-Altitude Acclimatization. Int J Mol Sci 2023; 24:ijms24021698. [PMID: 36675214 PMCID: PMC9866500 DOI: 10.3390/ijms24021698] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
High-altitude illnesses (HAIs) result from acute exposure to high altitude/hypoxia. Numerous molecular mechanisms affect appropriate acclimatization to hypobaric and/or normobaric hypoxia and curtail the development of HAIs. The understanding of these mechanisms is essential to optimize hypoxic acclimatization for efficient prophylaxis and treatment of HAIs. This review aims to link outcomes of molecular mechanisms to either adverse effects of acute high-altitude/hypoxia exposure or the developing tolerance with acclimatization. After summarizing systemic physiological responses to acute high-altitude exposure, the associated acclimatization, and the epidemiology and pathophysiology of various HAIs, the article focuses on molecular adjustments and maladjustments during acute exposure and acclimatization to high altitude/hypoxia. Pivotal modifying mechanisms include molecular responses orchestrated by transcription factors, most notably hypoxia inducible factors, and reciprocal effects on mitochondrial functions and REDOX homeostasis. In addition, discussed are genetic factors and the resultant proteomic profiles determining these hypoxia-modifying mechanisms culminating in successful high-altitude acclimatization. Lastly, the article discusses practical considerations related to the molecular aspects of acclimatization and altitude training strategies.
Collapse
Affiliation(s)
- Robert T. Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Vincent Pialoux
- Inter-University Laboratory of Human Movement Biology EA7424, University Claude Bernard Lyon 1, University of Lyon, FR-69008 Lyon, France
| | - Qadar Pasha
- Institute of Hypoxia Research, New Delhi 110067, India
| | - Yasmin Ahmad
- Defense Institute of Physiology & Allied Sciences (DIPAS), Defense Research & Development Organization(DRDO), New Delhi 110054, India
| | - Grégoire P. Millet
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria
- Austrian Society for Alpine and High-Altitude Medicine, A-6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
8
|
Fenk S, Melnikova EV, Anashkina AA, Poluektov YM, Zaripov PI, Mitkevich VA, Tkachev YV, Kaestner L, Minetti G, Mairbäurl H, Goede JS, Makarov AA, Petrushanko IY, Bogdanova A. Hemoglobin is an oxygen-dependent glutathione buffer adapting the intracellular reduced glutathione levels to oxygen availability. Redox Biol 2022; 58:102535. [PMID: 36413919 PMCID: PMC9679038 DOI: 10.1016/j.redox.2022.102535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Fast changes in environmental oxygen availability translate into shifts in mitochondrial free radical production. An increase in intraerythrocytic reduced glutathione (GSH) during deoxygenation would support the detoxification of exogenous oxidants released into the circulation from hypoxic peripheral tissues. Although reported, the mechanism behind this acute oxygen-dependent regulation of GSH in red blood cells remains unknown. This study explores the role of hemoglobin (Hb) in the oxygen-dependent modulation of GSH levels in red blood cells. We have demonstrated that a decrease in Hb O2 saturation to 50% or less observed in healthy humans while at high altitude, or in red blood cell suspensions results in rising of the intraerythrocytic GSH level that is proportional to the reduction in Hb O2 saturation. This effect was not caused by the stimulation of GSH de novo synthesis or its release during deglutathionylation of Hb's cysteines. Using isothermal titration calorimetry and in silico modeling, we observed the non-covalent binding of four molecules of GSH to oxy-Hb and the release of two of them upon deoxygenation. Localization of the GSH binding sites within the Hb molecule was identified. Oxygen-dependent binding of GSH to oxy-Hb and its release upon deoxygenation occurred reciprocally to the binding and release of 2,3-bisphosphoglycerate. Furthermore, noncovalent binding of GSH to Hb moderately increased Hb oxygen affinity. Taken together, our findings have identified an adaptive mechanism by which red blood cells may provide an advanced antioxidant defense to respond to oxidative challenges immediately upon deoxygenation.
Collapse
Affiliation(s)
- Simone Fenk
- Red Blood Cell Research Group, Institute of Veterinary Physiology, and Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Elizaveta V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anastasia A Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yuri M Poluektov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel I Zaripov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yaroslav V Tkachev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Lars Kaestner
- Theoretical Medicine and Biosciences and Experimental Physics, Dynamics of Fluids Group, Saarland University, Saarland and Homburg, Germany
| | - Giampaolo Minetti
- Department of Biology and Biotechnology "L Spallanzani", Laboratories of Biochemistry, University of Pavia, Italy
| | - Heimo Mairbäurl
- Medical Clinic VII, Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jeroen S Goede
- Department of Internal Medicine, Division of Oncology and Hematology, Cantonal Hospital Winterthur, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), Switzerland
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, and Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), Switzerland.
| |
Collapse
|
9
|
Rytz CL, Pun M, Mawhinney JA, Mounsey CA, Mura M, Martin A, Pialoux V, Hartmann SE, Furian M, Rawling JM, Lopez I, Soza D, Moraga FA, Lichtblau M, Bader PR, Ulrich S, Bloch KE, Frise MC, Poulin MJ. Differential Effects of High-Altitude Exposure on Markers of Oxidative Stress, Antioxidant Capacity and Iron Profiles. Am J Physiol Regul Integr Comp Physiol 2022; 323:R445-R456. [PMID: 35938686 DOI: 10.1152/ajpregu.00321.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
High altitude (HA) exposure may stimulate significant physiological and molecular changes, resulting in HA-related illnesses. HA may impact oxidative stress, antioxidant capacity and iron homeostasis, yet it is unclear how both repeated exposure and HA acclimatization may modulate such effects. Therefore, we assessed the effects of weeklong repeated daily HA exposure (2,900m to 5,050m) in altitude-naïve individuals (n=21, 13 females, mean ± SD, 25.3 ± 3.7 years) to mirror the working schedule of HA workers (n=19, all males, 40.1 ± 2.1 years) at the Atacama Large Millimeter Array (ALMA) Observatory (San Pedro de Atacama, Chile). Markers of oxidative stress, antioxidant capacity and iron homeostasis were measured in blood plasma. Levels of protein oxidation (p<0.001) and catalase activity (p=0.023) increased and serum iron (p<0.001), serum ferritin (p<0.001) and transferrin saturation (p<0.001) levels decreased with HA exposure in both groups. HA workers had lower levels of oxidative stress, and higher levels of antioxidant capacity, iron supply and hemoglobin concentration as compared to altitude-naïve individuals. Upon a second week of daily HA exposure, changes in levels of protein oxidation, glutathione peroxidase and nitric oxide metabolites were lower as compared to the first week in altitude-naïve individuals. These results indicate that repeated exposure to HA may significantly alter oxidative stress and iron homeostasis, and the degree of such changes may be dependent on if HA is visited naïvely or routinely. Further studies are required to fully elucidate differences in HA-induced changes in oxidative stress and iron homeostasis profiles amongst visitors of HA.
Collapse
Affiliation(s)
- Chantal L Rytz
- Libin Cardiovascular Institute, Calgary, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Matiram Pun
- Cumming School of Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jamie A Mawhinney
- Department of Plastic Surgery, Queen Alexandra Hospital, Portsmouth University Hospital NHS Foundation Trust, UK
| | | | - Mathilde Mura
- Univ Lyon, University Lyon 1, Team "Atherosclerosis, Thrombosis and Physical Activity", Lyon, France
| | - Agnès Martin
- Univ Lyon, University Lyon 1, Team "Atherosclerosis, Thrombosis and Physical Activity", Lyon, France
| | - Vincent Pialoux
- Univ Lyon, University Lyon 1, Team "Atherosclerosis, Thrombosis and Physical Activity", Lyon, France
| | - Sara E Hartmann
- Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Michael Furian
- Pulmonary Division, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Jean M Rawling
- Department of Family Medicine at the University of Calgary, Calgary, Canada
| | - Ivan Lopez
- Safety Group, Atacama Large Millimeter Submillimeter Array, Calama, Chile
| | - Daniel Soza
- Safety Group, Atacama Large Millimeter Submillimeter Array, Calama, Chile
| | - Fernando A Moraga
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Mona Lichtblau
- Pulmonary Division, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Patrick R Bader
- Pulmonary Division, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Silvia Ulrich
- Pulmonary Division, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Konrad E Bloch
- Pulmonary Division, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Matthew C Frise
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Intensive Care Unit, Royal Berkshire Hospitals NHS Foundation Trust, Reading, UK
| | - Marc J Poulin
- Libin Cardiovascular Institute, Calgary, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
10
|
Effects of Prolonged Exposure to Hypobaric Hypoxia on Oxidative Stress: Overwintering in Antarctic Concordia Station. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4430032. [PMID: 35535360 PMCID: PMC9078816 DOI: 10.1155/2022/4430032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/25/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Concordia Station is the permanent, research station on the Antarctic Plateau at 3230 m. During the eleventh winter-over campaign (DC11-2015; February 2015 to November 2015) at Antarctic Concordia Station, 13 healthy team members were studied and blood samples were collected at six different time points: baseline measurements (T0), performed at sea level before the departure, and during the campaign at 3, 7, 20, 90, and 300 days after arrival at Concordia Station. Reducing the partial pressure of O2 as barometric pressure falls, hypobaric hypoxia (HH) triggers several physiological adaptations. Among the others, increased oxidative stress and enhanced generation of reactive oxygen/nitrogen species (ROS/RNS), resulting in severe oxidative damage, were observed, which can share potential physiopathological mechanisms associated with many diseases. This study characterized the extent and time-course changes after acute and chronic HH exposure, elucidating possible fundamental mechanisms of adaptation. ROS, oxidative stress biomarkers, nitric oxide, and proinflammatory cytokines significantly increased (range 24-135%) during acute and chronic hypoxia exposure (peak 20th day) with a decrease in antioxidant capacity (peak 90th day: -52%). Results suggest that the adaptive response of oxidative stress balance to HH requires a relatively long time, more than 300th days, as all the observed variables do not return to the preexposition level. These findings may also be relevant to patients in whom oxygen availability is limited through disease (i.e., chronic heart and lung and/or kidney disease) and/or during long-duration space missions.
Collapse
|
11
|
Wan Y, Zhu D, He B, Guo Y, Wang L, Dingda D, Laji A, Wang C, Zhang Y, Gao F. Protective effect of a chronic hypobaric hypoxic environment at high altitude on cardiotoxicity induced by doxorubicin in rats: a 7 T magnetic resonance study. Quant Imaging Med Surg 2022; 12:711-725. [PMID: 34993113 DOI: 10.21037/qims-21-360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023]
Abstract
Background Doxorubicin (DOX)-induced cardiotoxicity (DIC), a major clinical problem, has no effective preventive therapies. We hypothesized that left ventricular (LV) systolic function would be improved in a chronic hypobaric hypoxia environment at high altitude. The purpose of this study was to investigate whether cardiovascular magnetic resonance could reveal the cardioprotective effect of chronic hypobaric hypoxia on DIC. Methods In total, 60 rats were randomly assigned to 1 of 6 groups (n=10 per group): the P group (plain), PD group (plain + DOX), HH group (high altitude), HHD4 group (high altitude + DOX for 4 weeks), HHD8 group (high altitude + DOX for 8 weeks), and HHD12 group (high altitude + DOX for 12 weeks). The rats were transported to either Yushu (altitude: 4,250 m) or Chengdu (altitude: 500 m) where they underwent intraperitoneal injection of DOX (5 mg/kg/week for 3 weeks) or saline. Preclinical 7 T cardiovascular magnetic resonance was performed at weeks 4, 8, and 12. Tissue tracking was used to measure LV cardiac function and to analyze global and segmental strains. Subsequently, histological and oxidative stress tests were performed to evaluate the protective effect of a high-altitude environment on DIC. Results The left ventricular ejection fraction (LVEF) and global and regional strains in the middle, apical, anterior, septal, inferior, and lateral segments (all P<0.05) were improved in the HHD4 group compared with the PD group. The global strain was significantly greater in absolute value in the HHD8 and HHD12 groups than in the HHD4 group (all P<0.05). Additionally, histological and enzyme-linked immunosorbent assay evaluations supported the in vivo results. Conclusions A chronic hypobaric and hypoxic environment at high altitude partially prevented cardiac dysfunction and increased global and regional strain in DIC rat models, thereby minimizing myocardial injury and fibrosis. In addition, by increasing the total duration of chronic hypobaric hypoxia, the global strain was further increased, which was likely due to reduced oxidative stress.
Collapse
Affiliation(s)
- Yixuan Wan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongyong Zhu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Guo
- Department of Radiology, Yushu People's Hospital, Qinghai, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, China
| | - Duojie Dingda
- Department of Radiology, Yushu People's Hospital, Qinghai, China
| | - Angwen Laji
- Department of Clinical Laboratory, Yushu People's Hospital, Yushu, China
| | - Chunhua Wang
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yonghai Zhang
- Department of Radiology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Gangwar A, Paul S, Arya A, Ahmad Y, Bhargava K. Altitude acclimatization via hypoxia-mediated oxidative eustress involves interplay of protein nitrosylation and carbonylation: A redoxomics perspective. Life Sci 2021; 296:120021. [PMID: 34626604 DOI: 10.1016/j.lfs.2021.120021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
AIM Hypoxia is an important feature of multiple diseases like cancer and obesity and also an environmental stressor to high altitude travelers. Emerging research suggests the importance of redox signaling in physiological responses transforming the notion of oxidative stress into eustress and distress. However, the behavior of redox protein post-translational modifications (PTMs), and their correlation with stress acclimatization in humans remains sketchy. Scant information exists about modifications in redoxome during physiological exposure to environmental hypoxia. In this study, we investigated redox PTMs, nitrosylation and carbonylation, in context of extended environmental hypoxia exposure. METHODS The volunteers were confirmed to be free of any medical conditions and matched for age and weight. The human global redoxome and the affected networks were investigated using TMT-labeled quantitative proteo-bioinformatics and biochemical assays. The percolator PSM algorithm was used for peptide-spectrum match (PSM) validation in database searches. The FDR for peptide matches was set to 0.01. 1-way ANOVA and Tukey's Multiple Comparison test were used for biochemical assays. p-value<0.05 was considered statistically significant. Three independent experiments (biological replicates) were performed. Results were presented as Mean ± standard error of mean (SEM). KEY FINDINGS This investigation revealed direct and indirect interplay between nitrosylation and carbonylation especially within coagulation and inflammation networks; interlinked redox signaling (via nitrosylation‑carbonylation); and novel nitrosylation and carbonylation sites in individual proteins. SIGNIFICANCE This study elucidates the role of redox PTMs in hypoxia signaling favoring tolerance and survival. Also, we demonstrated direct and indirect interplay between nitrosylation and carbonylation is crucial to extended hypoxia tolerance.
Collapse
Affiliation(s)
- Anamika Gangwar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Subhojit Paul
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Aditya Arya
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| | - Kalpana Bhargava
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| |
Collapse
|
13
|
Sharma HS, Lafuente JV, Feng L, Muresanu DF, Menon PK, Castellani RJ, Nozari A, Sahib S, Tian ZR, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Methamphetamine exacerbates pathophysiology of traumatic brain injury at high altitude. Neuroprotective effects of nanodelivery of a potent antioxidant compound H-290/51. PROGRESS IN BRAIN RESEARCH 2021; 266:123-193. [PMID: 34689858 DOI: 10.1016/bs.pbr.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are often exposed to high altitude (HA, ca. 4500-5000m) for combat operations associated with neurological dysfunctions. HA is a severe stressful situation and people frequently use methamphetamine (METH) or other psychostimulants to cope stress. Since military personnel are prone to different kinds of traumatic brain injury (TBI), in this review we discuss possible effects of METH on concussive head injury (CHI) at HA based on our own observations. METH exposure at HA exacerbates pathophysiology of CHI as compared to normobaric laboratory environment comparable to sea level. Increased blood-brain barrier (BBB) breakdown, edema formation and reductions in the cerebral blood flow (CBF) following CHI were exacerbated by METH intoxication at HA. Damage to cerebral microvasculature and expression of beta catenin was also exacerbated following CHI in METH treated group at HA. TiO2-nanowired delivery of H-290/51 (150mg/kg, i.p.), a potent chain-breaking antioxidant significantly enhanced CBF and reduced BBB breakdown, edema formation, beta catenin expression and brain pathology in METH exposed rats after CHI at HA. These observations are the first to point out that METH exposure in CHI exacerbated brain pathology at HA and this appears to be related with greater production of oxidative stress induced brain pathology, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Gaur P, Prasad S, Kumar B, Sharma SK, Vats P. High-altitude hypoxia induced reactive oxygen species generation, signaling, and mitigation approaches. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:601-615. [PMID: 33156424 DOI: 10.1007/s00484-020-02037-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Homeostasis between pro-oxidants and anti-oxidants is necessary for aerobic life, which if perturbed and shifted towards pro-oxidants results in oxidative stress. It is generally agreed that reactive oxygen species (ROS) production is accelerated with mountainous elevation, which may play a role in spawning serious health crisis. Exposure to increasing terrestrial altitude leads to a reduction in ambient O2 availability in cells producing a series of hypoxic oxidative stress reactions and altering the redox balance in humans. Enormous literature on redox signaling drove research activity towards understanding the role of oxidative stress under normal and challenging conditions like high-altitude hypoxia which grounds for disturbed redox signaling. Excessive ROS production and accumulation of free radicals in cells and tissues can cause various pulmonary, cardiovascular, and metabolic pathophysiological conditions. In order to counteract this oxidative stress and maintain the balance of pro-oxidants and anti-oxidants, an anti-oxidant system exists in the human body, which, however, gets surpassed by elevated ROS levels, but can be strengthened through the use of anti-oxidant supplements. Such cumulative studies of fundamentals on a global concept like oxidative stress and role of anti-oxidants can act as a foundation to further smoothen for researchers to study over health, disease, and other pathophysiological conditions. This review highlights the interconnection between high altitude and oxidative stress and the role of anti-oxidants to protect cells from oxidative damages and to lower the risk of altitude-associated sickness.
Collapse
Affiliation(s)
- Priya Gaur
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi, 110054,, India
| | - Suchita Prasad
- Department of Chemistry, University of Delhi, Delhi, 110007,, India
| | - Bhuvnesh Kumar
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi, 110054,, India
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi, 110007,, India.
| | - Praveen Vats
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi, 110054,, India.
| |
Collapse
|
15
|
Zhang KQ, Chu XD. GANT61 plays antitumor effects by inducing oxidative stress through the miRNA-1286/RAB31 axis in osteosarcoma. Cell Biol Int 2021; 45:61-73. [PMID: 32936498 DOI: 10.1002/cbin.11467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/18/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022]
Abstract
Osteosarcoma (OS) is a rare malignancy of bone associated with poor clinical outcomes. The antitumor effects of GANT61 on OS is unclear. To investigate antitumor effects and mechanism of GANT61 in OS cells and xenograft model. Effects of GANT61 on cell viability, clone formation, cell cycle, apoptosis, migration, and invasion ability of OS cells were assessed. Reactive oxygen species (ROS) levels measured by dichlorofluorescein fluorescence were used to evaluate oxidative stress. The Xenograft model was constructed to investigate the antitumor effects of GANT61 in vivo. The microRNA (miRNA)-1286 was downregulated, while RAB31 upregulated in OS tissues and cells. GANT61 inhibited viability, migration, and invasion ability of OS cells (SaOS-2 and U2OS), and induced apoptosis and the ROS production, along with miRNA-1286 upregulation and RAB13 downregulation. After knockdown of miRNA-1286, GANT6-induced cell inhibition was attenuated, along with RAB31 upregulation. Inversely, miRNA-1286 overexpression downregulated RAB31. Dual-luciferase reporter assay verified that miR-1286 negatively targeted RAB13. Moreover, the knockdown of RAB31 stimulated apoptosis and ROS production while inhibited viability, migration, and invasion of GANT61-treated cells. In vivo experiments further confirmed that GANT61 inhibited tumor growth and RAB13 expression, but enhanced miRNA-1286. The study demonstrated that GANT61 inhibited cell aggressive phenotype and tumor growth by inducing oxidative stress through the miRNA-1286/RAB31 axis. Our findings provided a potential antitumor agent for the OS clinical treatment.
Collapse
Affiliation(s)
- Kuai-Qiang Zhang
- Department of Orthopedic, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Xiang-Dong Chu
- Department of Orthopedic, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
16
|
Effects of acute and sub-acute hypobaric hypoxia on oxidative stress: a field study in the Alps. Eur J Appl Physiol 2020; 121:297-306. [PMID: 33057877 DOI: 10.1007/s00421-020-04527-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/06/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE High altitude results in lower barometric pressure and hence partial pressure of O2 decrease can lead to several molecular and cellular changes, such as generation of reactive oxygen species (ROS). Electron Paramagnetic Resonance technique was adopted in the field, to evaluate the effects of acute and sub-acute hypobaric hypoxia (HH) on ROS production by micro-invasive method. Biological biomarkers, indicators of oxidative stress, renal function and inflammation were investigated too. METHODS Fourteen lowlander subjects (mean age 27.3 ± 5.9 years) were exposed to HH at 3269 m s.l. ROS production, related oxidative damage to cellular components, systemic inflammatory response and renal function were determined through blood and urine profile performed at 1st, 2nd, 4th, 7th, and 14th days during sojourn. RESULTS Kinetics of changes during HH exposition showed out significant (range p < 0.05-0.0001) increases that at max corresponds to 38% for ROS production rate, 140% for protein carbonyl, 44% for lipid peroxidation, 42% for DNA damage, 200% for inflammatory cytokines and modifications in renal function (assessed by neopterin concentration: 48%). Conversely, antioxidant capacity significantly (p < 0.0001) decreased - 17% at max. CONCLUSION This 14 days in-field study describes changes of oxidative-stress biomarkers during HH exposure in lowlanders. The results show an overproduction of ROS and consequent oxidative damage to protein, lipids and DNA with a decrease in antioxidant capacity and the involvement of inflammatory status and a transient renal dysfunction. Exposure at high altitude induces a hypoxic condition during acute and sub-acute phases accompanied by molecular adaptation mechanism indicating acclimatization.
Collapse
|
17
|
Downregulated Recycling Process but Not De Novo Synthesis of Glutathione Limits Antioxidant Capacity of Erythrocytes in Hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7834252. [PMID: 32963701 PMCID: PMC7492869 DOI: 10.1155/2020/7834252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022]
Abstract
Red blood cells (RBCs) are susceptible to sustained free radical damage during circulation, while the changes of antioxidant capacity and regulatory mechanism of RBCs under different oxygen gradients remain unclear. Here, we investigated the changes of oxidative damage and antioxidant capacity of RBCs in different oxygen gradients and identified the underlying mechanisms using an in vitro model of the hypoxanthine/xanthine oxidase (HX/XO) system. In the present study, we reported that the hypoxic RBCs showed much higher oxidative stress injury and lower antioxidant capacity compared with normoxic RBCs. In addition, we found that the disturbance of the recycling process, but not de novo synthesis of glutathione (GSH), accounted for the significantly decreased antioxidant capacity of hypoxic RBCs compared to normoxic RBCs. We further elucidated the underlying molecular mechanism by which oxidative phosphorylation of Band 3 blocked the hexose monophosphate pathway (HMP) and decreased NADPH production aggravating the dysfunction of GSH synthesis in hypoxic RBCs under oxidative conditions.
Collapse
|
18
|
Jain S, Paul S, Meena RN, Gangwar A, Panjwani U, Ahmad Y, Bhargava K. Saliva panel of protein candidates: A comprehensive study for assessing high altitude acclimatization. Nitric Oxide 2019; 95:1-11. [PMID: 31778801 DOI: 10.1016/j.niox.2019.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023]
Abstract
Altitude acclimatization describes the processes whereby lowland humans respond to decreased partial pressure of oxygen. It refers to the changes seen as beneficial and involves a series of physiological adjustments that compensate for reduced ambient PO2, as opposed to changes that are pathological. Although numerous reports document the physiological effects of exposure to hypobaric hypoxia of varying durations but an interesting aspect overlooked by many researchers is that of acclimatization related studies. As proteome, a dynamic entity responds immediately to external stimuli, protein markers and their trends can be studied to assess acclimatization status of an individual. Compared to blood, the use of saliva is advantageous because sample collection and processing are easy, minimally invasive, low cost and better tolerated by individuals. In this study, we employed iTRAQ based LC-MS/MS technique for comparing saliva samples from humans exposed to hypobaric hypoxia from 7 to 120 days with normoxic controls followed by analysis using Ingenuity Pathway Analysis software and validation by immunoassays. Nearly 67 proteins were found to be differentially expressed in the exposed groups as compared to normoxia indicating modulated canonical pathways as lipid metabolism; acute phase response signalling and proteins as carbonic anhydrase 6, alpha-enolase, albumin, and prolactin inducible protein. Collectively, this study provides the proof of concept for the non-invasive assessment of high altitude acclimatization.
Collapse
Affiliation(s)
- Shikha Jain
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Subhojit Paul
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Ram Niwas Meena
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Anamika Gangwar
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Usha Panjwani
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Yasmin Ahmad
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India.
| | - Kalpana Bhargava
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India.
| |
Collapse
|
19
|
Salivary proteome patterns of individuals exposed to High Altitude. Arch Oral Biol 2018; 96:104-112. [DOI: 10.1016/j.archoralbio.2018.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/09/2018] [Accepted: 09/05/2018] [Indexed: 11/18/2022]
|
20
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
21
|
Tang XG, Wen J, Zhang XS, Jiang DC. Association between decreased osteopontin and acute mountain sickness upon rapid ascent to 3500 m among young Chinese men. J Travel Med 2018; 25:5079665. [PMID: 30165389 DOI: 10.1093/jtm/tay075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hypoxia causes oxidative stress and a decrease in osteopontin (OPN) in rats; however, little is known about the change in OPN in lowlander humans during hypobaric hypoxia. We explore the role of the predicted decrease in plasma OPN levels in humans upon high-altitude exposure and its relationship with acute mountain sickness (AMS), as well as superoxide dismutase (SOD) and malondialdehyde (MDA). METHODS Before and during acute altitude exposure, 261 men's plasma OPN, SOD, MDA, heart rate and pulse oximeter saturation (SpO2) were measured. AMS as assessed using the Lake Louise score (LLS) was defined as headache with a total LLS ≥3. Subjects were divided into AMS-0 (non-AMS subjects), mild AMS (headache with total LLS = 3 or 4) and severe AMS groups (headache with total LLS ≥5). RESULTS At 600 m, no difference in plasma OPN, SOD and MDA was observed between groups. At 3500 m, plasma OPN in severe AMS group was significantly decreased as compared with 600 m. Plasma SOD showed a tendency to decrease during altitude exposure. The opposite trend was observed for plasma MDA. Correlation analysis showed that total LLS was significantly correlated with OPN (ρ = -0.247, P < 0.001) and SOD (ρ = -0.224, P < 0.001). OPN showed significant correlation with SOD (r = 0.235, P < 0.001). Multivariate logistic regression analysis showed that higher plasma OPN was a protective factor for AMS [adjusted odds ratio (OR) 0.924, 95% confidence interval (CI) 0.884-0.966, P < 0.01]. CONCLUSION Our results suggest that decreased plasma OPN is correlated with AMS, and oxidative stress may be implicated in this phenomenon. Decreased plasma SOD is also correlated with AMS.
Collapse
Affiliation(s)
- Xu-Gang Tang
- Department of Cardiology, No. 37 Hospital of People's Liberation Army, Ya'an, Sichuan Province, People's Republic of China
| | - Jing Wen
- Department of Pediatrics, People's Hospital of Hechuan district, Chongqing, People's Republic of China
| | - Xue-Sen Zhang
- Department of Cardiology, No. 37 Hospital of People's Liberation Army, Ya'an, Sichuan Province, People's Republic of China
| | - Da-Chun Jiang
- Department of Cardiology, No. 37 Hospital of People's Liberation Army, Ya'an, Sichuan Province, People's Republic of China
| |
Collapse
|
22
|
Saka T, Karakus M. ACUTE PHASE PROTEIN INCREASE IN HIGH ALTITUDE MOUNTAINEERS. REV BRAS MED ESPORTE 2017. [DOI: 10.1590/1517-869220172306172268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Many middle-aged Turks go hiking in mountains to breathe some fresh air or to maintain fitness. Objective: This study investigated the effects of regular high altitude mountain climbing on the metabolic and hematological responses of mountaineers. Methods: Hematological and biochemical parameters were studied, as well as some hormonal values of 21 mountaineers and 16 healthy age-matched sedentary volunteers. Results: The neutrophil to lymphocyte ratio (NLR) was significantly lower (p<0.04) in mountaineers compared with the sedentary group. Total protein (p<0.001) and albumin (p<0.001) were lower, while the levels of ferritin (p<0.04), creatine (p<0.03) and creatine phosphokinase (p<0.01) were higher in mountaineers. Other hematological and biochemical parameters, i.e., erythrocytes, leukocytes, hemoglobin and hematocrit, did not change significantly. Conclusion: Our results show that regular exposure to high altitude increased the serum levels of some acute phase proteins with anti-inflammatory properties.
Collapse
|
23
|
Chen L, Cai C, Yang T, Lin J, Cai S, Zhang J, Chen Z. Changes in brain iron concentration after exposure to high-altitude hypoxia measured by quantitative susceptibility mapping. Neuroimage 2016; 147:488-499. [PMID: 27986608 DOI: 10.1016/j.neuroimage.2016.12.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 01/20/2023] Open
Abstract
Hypoxia can induce physiological changes. This study aims to explore effects of high-altitude (HA) hypoxia on cerebral iron concentration. Twenty-nine healthy sea-level participants were tested shortly before and after approximately 4-week adaptation to the HA environment at fQinghai-Tibet Plateau (4200m), and were re-investigated after re-adaptation to the sea-level environment one year later. Iron concentration was quantified with quantitative susceptibility mapping (QSM), and the results were compared with transverse relaxation rate (R*2) measurements. The variations of magnetic susceptibility indicate that the iron concentration in gray matter regions, especially in basal ganglia, including caudate nucleus, putamen, globus pallidus and substantia nigra, increases significantly after HA exposure. This increase appears consistent with the conclusion from R*2 value variations. However, unlike QSM, the R*2 value fails to demonstrate the statistical difference of iron content in red nucleus. The re-investigation results show that most variations are recovered after sea-level re-adaptation for one year. Additionally, hemisphere- and gender-related differences in iron concentration changes were analyzed among cerebral regions. The results show greater possibilities in the right hemisphere and females. Further studies based on diffusion tensor imaging (DTI) suggest that the fractional anisotropy increases and the mean diffusivity decreases after HA exposure in six deep gray matter nuclei, with linear dependence on iron concentration only in putamen. In conclusion, the magnetic susceptibility value can serve as a quantitative marker of brain iron, and variations of regional susceptibility reported herein indicate that HA hypoxia can result in significant iron deposition in most deep gray matter regions. Additionally, the linear dependence of DTI metrics on iron concentration in putamen indicates a potential relationship between ferritin and water diffusion.
Collapse
Affiliation(s)
- Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Congbo Cai
- Department of Communication Engineering, Xiamen University, Xiamen 361005, China
| | - Tianhe Yang
- Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University, Xiamen 361004, China
| | - Jianzhong Lin
- Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University, Xiamen 361004, China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| | - Jiaxing Zhang
- Department of Physiology and Neurobiology, Medical College of Xiamen University, Xiamen 361102, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| |
Collapse
|
24
|
Effects of 12-Week Endurance Training at Natural Low Altitude on the Blood Redox Homeostasis of Professional Adolescent Athletes: A Quasi-Experimental Field Trial. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4848015. [PMID: 26783415 PMCID: PMC4691516 DOI: 10.1155/2016/4848015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022]
Abstract
This field study investigated the influences of exposure to natural low altitude on endurance training-induced alterations of redox homeostasis in professional adolescent runners undergoing 12-week off-season conditioning program at an altitude of 1700 m (Alt), by comparison with that of their counterparts completing the program at sea-level (SL). For age-, gender-, and Tanner-stage-matched comparison, 26 runners (n = 13 in each group) were selected and studied. Following the conditioning program, unaltered serum levels of thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (T-AOC), and superoxide dismutase accompanied with an increase in oxidized glutathione (GSSG) and decreases of xanthine oxidase, reduced glutathione (GSH), and GSH/GSSG ratio were observed in both Alt and SL groups. Serum glutathione peroxidase and catalase did not change in SL, whereas these enzymes, respectively, decreased and increased in Alt. Uric acid (UA) decreased in SL and increased in Alt. Moreover, the decreases in GSH and GSH/GSSG ratio in Alt were relatively lower compared to those in SL. Further, significant interindividual correlations were found between changes in catalase and TBARS, as well as between UA and T-AOC. These findings suggest that long-term training at natural low altitude is unlikely to cause retained oxidative stress in professional adolescent runners.
Collapse
|
25
|
Oxidative stress and antioxidant status in a lizard Phrynocephalus vlangalii at different altitudes or acclimated to hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2015; 190:9-14. [DOI: 10.1016/j.cbpa.2015.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 11/19/2022]
|
26
|
Morabito C, Lanuti P, Caprara GA, Guarnieri S, Verratti V, Ricci G, Catizone A, Marchisio M, Fanò-Illic G, Mariggiò MA. Responses of peripheral blood mononuclear cells to moderate exercise and hypoxia. Scand J Med Sci Sports 2015; 26:1188-99. [PMID: 26432186 DOI: 10.1111/sms.12557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to analyze the physiological features of peripheral blood mononuclear cells (PBMCs) isolated from healthy female trekkers before and after physical activity carried out under both normoxia (low altitude, < 2000 m a.s.l.) and hypobaric hypoxia (high altitude, > 3700 m a.s.l.). The experimental design was to differentiate effects induced by exercise and those related to external environmental conditions. PBMCs were isolated from seven female subjects before and after each training period. The PBMCs were phenotypically and functionally characterized using fluorimetric and densitometric analyses, to determine cellular activation, and their intracellular Ca(2+) levels and oxidative status. After a period of normoxic physical exercise, the PBMCs showed an increase in fully activated T lymphocytes (CD3(+) CD69(+) ) and a reduction in intracellular Ca(2+) levels. On the other hand, with physical exercise performed under hypobaric hypoxia, there was a reduction in T lymphocytes and an increase in nonactivated B lymphocytes, accompanied by a reduction in O2 (-) levels in the mitochondria. These outcomes reveal that in women, low- to moderate-intensity aerobic trekking induces CD69 T cell activation and promotes anti-stress effects on the high-altitude-induced impairment of the immune responses and the oxidative balance.
Collapse
Affiliation(s)
- C Morabito
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - P Lanuti
- Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - G A Caprara
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - S Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - V Verratti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - G Ricci
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - A Catizone
- Section of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic and Orthopaedic Medicine, "Sapienza" University of Rome, Rome, Italy
| | - M Marchisio
- Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - G Fanò-Illic
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - M A Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. .,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy.
| |
Collapse
|
27
|
Padhy G, Sethy NK, Ganju L, Bhargava K. Abundance of plasma antioxidant proteins confers tolerance to acute hypobaric hypoxia exposure. High Alt Med Biol 2014; 14:289-97. [PMID: 24067188 DOI: 10.1089/ham.2012.1095] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Systematic identification of molecular signatures for hypobaric hypoxia can aid in better understanding of human adaptation to high altitude. In an attempt to identify proteins promoting hypoxia tolerance during acute exposure to high altitude, we screened and identified hypoxia tolerant and susceptible rats based on hyperventilation time to a simulated altitude of 32,000 ft (9754 m). The hypoxia tolerance was further validated by estimating 8-isoprotane levels and protein carbonyls, which revealed that hypoxia tolerant rats possessed significant lower plasma levels as compared to susceptible rats. We used a comparative plasma proteome profiling approach using 2-dimensional gel electrophoresis (2-DGE) combined with MALDI TOF/TOF for both groups, along with an hypoxic control group. This resulted in the identification of 19 differentially expressed proteins. Seven proteins (TTR, GPx-3, PON1, Rab-3D, CLC11, CRP, and Hp) were upregulated in hypoxia tolerant rats, while apolipoprotein A-I (APOA1) was upregulated in hypoxia susceptible rats. We further confirmed the consistent higher expression levels of three antioxidant proteins (PON1, TTR, and GPx-3) in hypoxia-tolerant animals using ELISA and immunoblotting. Collectively, these proteomics-based results highlight the role of antioxidant enzymes in conferring hypoxia tolerance during acute hypobaric hypoxia. The expression of these antioxidant enzymes could be used as putative biomarkers for screening altitude adaptation as well as aiding in better management of altered oxygen pathophysiologies.
Collapse
Affiliation(s)
- Gayatri Padhy
- 1 Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences , Defence Research and Development Organization, Timarpur, Delhi, India
| | | | | | | |
Collapse
|
28
|
Siervo M, Riley HL, Fernandez BO, Leckstrom CA, Martin DS, Mitchell K, Levett DZH, Montgomery HE, Mythen MG, Grocott MPW, Feelisch M. Effects of prolonged exposure to hypobaric hypoxia on oxidative stress, inflammation and gluco-insular regulation: the not-so-sweet price for good regulation. PLoS One 2014; 9:e94915. [PMID: 24733551 PMCID: PMC3986261 DOI: 10.1371/journal.pone.0094915] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 03/21/2014] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES The mechanisms by which low oxygen availability are associated with the development of insulin resistance remain obscure. We thus investigated the relationship between such gluco-insular derangements in response to sustained (hypobaric) hypoxemia, and changes in biomarkers of oxidative stress, inflammation and counter-regulatory hormone responses. METHODS After baseline testing in London (75 m), 24 subjects ascended from Kathmandu (1,300 m) to Everest Base Camp (EBC;5,300 m) over 13 days. Of these, 14 ascended higher, with 8 reaching the summit (8,848 m). Assessments were conducted at baseline, during ascent to EBC, and 1, 6 and 8 week(s) thereafter. Changes in body weight and indices of gluco-insular control were measured (glucose, insulin, C-Peptide, homeostasis model assessment of insulin resistance [HOMA-IR]) along with biomarkers of oxidative stress (4-hydroxy-2-nonenal-HNE), inflammation (Interleukin-6 [IL-6]) and counter-regulatory hormones (glucagon, adrenalin, noradrenalin). In addition, peripheral oxygen saturation (SpO2) and venous blood lactate concentrations were determined. RESULTS SpO2 fell significantly from 98.0% at sea level to 82.0% on arrival at 5,300 m. Whilst glucose levels remained stable, insulin and C-Peptide concentrations increased by >200% during the last 2 weeks. Increases in fasting insulin, HOMA-IR and glucagon correlated with increases in markers of oxidative stress (4-HNE) and inflammation (IL-6). Lactate levels progressively increased during ascent and remained significantly elevated until week 8. Subjects lost on average 7.3 kg in body weight. CONCLUSIONS Sustained hypoxemia is associated with insulin resistance, whose magnitude correlates with the degree of oxidative stress and inflammation. The role of 4-HNE and IL-6 as key players in modifying the association between sustained hypoxia and insulin resistance merits further investigation.
Collapse
Affiliation(s)
- Mario Siervo
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Newcastle on Tyne, United Kingdom
| | - Heather L. Riley
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Bernadette O. Fernandez
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- University of Southampton, Clinical & Experimental Sciences, Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Carl A. Leckstrom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Daniel S. Martin
- Centre for Altitude Space and Extreme Environment Medicine, Portex Unit, UCL Institute of Child Health, London, United Kingdom
- Division of Surgery and Interventional Science, University College London, Royal Free Hospital, London, United Kingdom
| | - Kay Mitchell
- Centre for Altitude Space and Extreme Environment Medicine, Portex Unit, UCL Institute of Child Health, London, United Kingdom
- University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, United Kingdom
| | - Denny Z. H. Levett
- Centre for Altitude Space and Extreme Environment Medicine, Portex Unit, UCL Institute of Child Health, London, United Kingdom
- University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, United Kingdom
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton, United Kingdom
| | - Hugh E. Montgomery
- Centre for Altitude Space and Extreme Environment Medicine, Portex Unit, UCL Institute of Child Health, London, United Kingdom
| | - Monty G. Mythen
- Centre for Altitude Space and Extreme Environment Medicine, Portex Unit, UCL Institute of Child Health, London, United Kingdom
| | - Michael P. W. Grocott
- University of Southampton, Clinical & Experimental Sciences, Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
- Centre for Altitude Space and Extreme Environment Medicine, Portex Unit, UCL Institute of Child Health, London, United Kingdom
- University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, United Kingdom
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton, United Kingdom
| | - Martin Feelisch
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- University of Southampton, Clinical & Experimental Sciences, Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton, United Kingdom
| | | |
Collapse
|
29
|
Salama SA, Omar HA, Maghrabi IA, AlSaeed MS, EL-Tarras AE. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats. Toxicol Appl Pharmacol 2013; 274:1-6. [PMID: 24215938 DOI: 10.1016/j.taap.2013.10.034] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/22/2013] [Accepted: 10/30/2013] [Indexed: 11/15/2022]
Abstract
Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000ft above the sea level). Iron supplementation (2mg elemental iron/kg, once daily for 15days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25mg/kg, once daily for the last 7days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures.
Collapse
Affiliation(s)
- Samir A Salama
- High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt; Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974, Saudi Arabia.
| | - Hany A Omar
- Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ibrahim A Maghrabi
- Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974, Saudi Arabia
| | - Mohammed S AlSaeed
- Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974, Saudi Arabia
| | - Adel E EL-Tarras
- High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974, Saudi Arabia
| |
Collapse
|
30
|
Carrera-Quintanar L, Lopez-Fuertes M, Climent V, Herranz-Lopez M, Micol V, Pons A, Sogorb F, Roche E. Oxidative damage is present in plasma and circulating neutrophils 4 weeks after a high mountain expedition. Eur J Appl Physiol 2011; 112:2923-32. [DOI: 10.1007/s00421-011-2272-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/28/2011] [Indexed: 10/15/2022]
|
31
|
Parraguez VH, Atlagich M, Araneda O, García C, Muñoz A, De Los Reyes M, Urquieta B. Effects of antioxidant vitamins on newborn and placental traits in gestations at high altitude: comparative study in high and low altitude native sheep. Reprod Fertil Dev 2011; 23:285-96. [PMID: 21211461 DOI: 10.1071/rd10016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 07/02/2010] [Indexed: 11/23/2022] Open
Abstract
The present study evaluated the hypothesis that the effects of hypoxia on sheep pregnancies at high altitude (HA) are mediated by oxidative stress and that antioxidant vitamins may prevent these effects. Both HA native and newcomer ewes were maintained at an altitude of 3,589 m during mating and pregnancy. Control low altitude (LA) native ewes were maintained at sea level. Half of each group received daily oral supplements of vitamins C (500 mg) and E (350 IU) during mating and gestation. Near term, maternal plasma vitamin levels and oxidative stress biomarkers were measured. At delivery, lambs were weighed and measured, and placentas were recovered for macroscopic and microscopic evaluation. Vitamin concentrations in supplemented ewes were two- or threefold greater than in non-supplemented ewes. Plasma carbonyls and malondialdehyde in non-supplemented ewes were consistent with a state of oxidative stress, which was prevented by vitamin supplementation. Vitamin supplementation increased lamb birthweight and cotyledon number in both HA native and newcomer ewes, although placental weight and cotyledon surface were diminished. Placentas from vitamin-supplemented HA ewes were similar to those from ewes at sea level, making these placental traits (weight, number and diameter of cotyledons) similar to those from ewes at sea level. Vitamin supplementation had no effect on LA pregnancies. In conclusion, supplementation with vitamins C and E during pregnancy at HA prevents oxidative stress, improving pregnancy outcomes.
Collapse
Affiliation(s)
- Víctor H Parraguez
- Faculty of Veterinary Sciences, University of Chile, Casilla 2, Correo 15, La Granja, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
32
|
Chepelev NL, Willmore WG. Regulation of iron pathways in response to hypoxia. Free Radic Biol Med 2011; 50:645-66. [PMID: 21185934 DOI: 10.1016/j.freeradbiomed.2010.12.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 10/24/2022]
Abstract
Constituting an integral part of a heme's porphyrin ring, iron is essential for supplying cells and tissues with oxygen. Given tight links between oxygen delivery and iron availability, it is not surprising that iron deprivation and oxygen deprivation (hypoxia) have very similar consequences at the molecular level. Under hypoxia, the expression of major iron homeostasis genes including transferrin, transferrin receptor, ceruloplasmin, and heme oxygenase-1 is activated by hypoxia-inducible factors to provide increased iron availability for erythropoiesis in an attempt to enhance oxygen uptake and delivery to hypoxic cells. Iron-response proteins (IRP1 and IRP2) and "cap-n-collar" bZIP transcriptional factors (NE-F2 p45; Nrf1, 2, and 3; Bach1 and 2) also control gene and protein expression of the key iron homeostasis proteins. In this article, we give an overview of the mechanisms by which iron pathways are regulated by hypoxia at multiple levels. In addition, potential clinical benefits of manipulating iron pathways in the hypoxia-related conditions anemia and ischemia are discussed.
Collapse
|
33
|
Mariggiò MA, Falone S, Morabito C, Guarnieri S, Mirabilio A, Pilla R, Bucciarelli T, Verratti V, Amicarelli F. Peripheral Blood Lymphocytes: A Model for Monitoring Physiological Adaptation to High Altitude. High Alt Med Biol 2010; 11:333-42. [DOI: 10.1089/ham.2009.1097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Maria A. Mariggiò
- Dipartimento di Scienze Mediche di Base ed Applicate, Università Gabriele d'Annunzio di Chieti-Pescara, Chieti, Italy
- Center of Excellence on Aging, Gabriele d'Annunzio University Foundation, Chieti, Italy
| | - Stefano Falone
- Dipartimento di Biologia di Base ed Applicata, Università dell'Aquila, L'Aquila, Italy
| | - Caterina Morabito
- Dipartimento di Scienze Mediche di Base ed Applicate, Università Gabriele d'Annunzio di Chieti-Pescara, Chieti, Italy
- Center of Excellence on Aging, Gabriele d'Annunzio University Foundation, Chieti, Italy
| | - Simone Guarnieri
- Dipartimento di Scienze Mediche di Base ed Applicate, Università Gabriele d'Annunzio di Chieti-Pescara, Chieti, Italy
- Center of Excellence on Aging, Gabriele d'Annunzio University Foundation, Chieti, Italy
| | - Alessandro Mirabilio
- Dipartimento di Biologia di Base ed Applicata, Università dell'Aquila, L'Aquila, Italy
| | - Raffaele Pilla
- Dipartimento di Scienze Mediche di Base ed Applicate, Università Gabriele d'Annunzio di Chieti-Pescara, Chieti, Italy
- Center of Excellence on Aging, Gabriele d'Annunzio University Foundation, Chieti, Italy
| | - Tonino Bucciarelli
- Dipartimento di Scienze Biomediche, Università Gabriele d'Annunzio, Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Dipartimento di Scienze Mediche di Base ed Applicate, Università Gabriele d'Annunzio di Chieti-Pescara, Chieti, Italy
| | - Fernanda Amicarelli
- Dipartimento di Biologia di Base ed Applicata, Università dell'Aquila, L'Aquila, Italy
| |
Collapse
|
34
|
Maiti P, Singh SB, Ilavazhagan G. Nitric oxide system is involved in hypobaric hypoxia-induced oxidative stress in rat brain. Acta Histochem 2010; 112:222-32. [PMID: 19428054 DOI: 10.1016/j.acthis.2008.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/27/2008] [Accepted: 10/30/2008] [Indexed: 10/20/2022]
Abstract
Oxidative stress is involved in memory impairment at high altitude (HA). The aim of the present study was to investigate the involvement of reactive nitrogen species in hippocampus, cortex and striatum of rat brain under simulated HA conditions. Rats were exposed to hypobaric hypoxia (HH) equivalent to 6100 m of HA in an animal decompression chamber for 3, 7, 14 and 21 days. Biochemical estimation of free radicals, nitric oxide (NO) level along with immunoreactivity, reverse transcriptase polymerase chain reaction (RT-PCR) and western blot of neuronal nitric oxide synthase (nNOS), neurodegeneration and DNA fragmentation were studied after HH exposure. The free radicals, NO level, nNOS immunoreactivity (nNOS-IR), nNOS expression, neurodegeneration and DNA fragmentation were increased in hippocampus, cortex and striatum after HH exposure. After 7 and 14 days of HH exposure, the nNOS-IR, nNOS expression, free radical, NO level, neurodegeneration and DNA fragmentation were increased in comparison to 3 or 21 days of HH. The NO system may be involved in increasing oxidative stress and neurodegeneration after HH.
Collapse
|
35
|
Sinha S, Singh SN, Saha M, Kain TC, Tyagi AK. Antioxidant and oxidative stress responses of sojourners at high altitude in different climatic temperatures. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2010; 54:85-92. [PMID: 20099373 DOI: 10.1007/s00484-009-0257-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
High altitude (HA) is a multi-stressor environment comprising hypobaric hypoxia and cold. Climatic temperature varies with seasonal variation at HA. The present study was undertaken to investigate the effect of ambient temperature on antioxidant profile among sojourners at HA. The study was conducted on sojourners exposed to an altitude of 4,560 m in two different seasons and categorized into two groups (SOJ 1, n=63, ambient temp. at HA: -6 degree to +10degreeC; SOJ 2, n=81, ambient temp. at HA: 3degree-22degreeC). Blood was collected at sea level (SL) and after 4 weeks of HA exposure. Antioxidant enzymes showed significant upregulation in SOJ 2 at HA. In SOJ 1, superoxide dismutase and glutathione peroxidase showed significant upregulation but catalase and glutathione reductase showed significant decrease at HA. Non-enzymatic antioxidants showed significant reduction in SOJ 1 whereas a sustained antioxidant profile was observed in SOJ 2 at HA. Oxidative stress markers showed higher levels in SOJ 1 than SOJ 2 at HA. Differences observed between SOJ 1 and SOJ 2 at HA may be the consequence of different environmental temperatures. Cold stress was higher in SOJ 1 as evidenced from the significantly lower oral temperature in SOJ 1 as compared to SOJ 2. Cold- and hypoxia-induced increase in energy expenditure was significantly high in SOJ 1 than SOJ 2. To conclude, chronic exposure to hypoxia in moderate climatic temperature has a potential preconditioning effect on antioxidant system, but exposure to both cold and hypoxia causes greater oxidative stress due to altered metabolic rate.
Collapse
Affiliation(s)
- Sanchari Sinha
- Environmental Physiology Division, Defence Institute of Physiology and Allied Sciences Timarpur, Lucknow Road, Delhi 110054, India
| | | | | | | | | |
Collapse
|
36
|
Ono K, Koizumi T, Tsushima K, Yoshikawa S, Yokoyama T, Nakagawa R, Obata T. Increased isoprostane levels in oleic acid-induced lung injury. Biochem Biophys Res Commun 2009; 388:297-300. [PMID: 19664592 DOI: 10.1016/j.bbrc.2009.07.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 07/31/2009] [Indexed: 05/28/2023]
Abstract
The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2alpha). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.
Collapse
Affiliation(s)
- Koichi Ono
- Department of Anesthesiology and Resuscitation, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Sinha S, Singh SN, Ray US. Total Antioxidant Status at High Altitude in Lowlanders and Native Highlanders: Role of Uric Acid. High Alt Med Biol 2009; 10:269-74. [DOI: 10.1089/ham.2008.1082] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Sanchari Sinha
- Environmental Physiology Division, Defence Institute of Physiology and Allied Sciences
| | - Som Nath Singh
- Nutrition Division, Defence Institute of Physiology and Allied Sciences
| | - Uday Sankar Ray
- Environmental Physiology Division, Defence Institute of Physiology and Allied Sciences
| |
Collapse
|
38
|
Vij AG. Effect of prolonged stay at high altitude on platelet aggregation and fibrinogen levels. Platelets 2009; 20:421-7. [DOI: 10.1080/09537100903116516] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Tissot van Patot MC, Serkova NJ, Haschke M, Kominsky DJ, Roach RC, Christians U, Henthorn TK, Honigman B. Enhanced leukocyte HIF-1alpha and HIF-1 DNA binding in humans after rapid ascent to 4300 m. Free Radic Biol Med 2009; 46:1551-7. [PMID: 19303436 DOI: 10.1016/j.freeradbiomed.2009.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/02/2009] [Accepted: 03/11/2009] [Indexed: 01/19/2023]
Abstract
Hypoxia plays a crucial role in the pathogenesis of a multitude of diseases and clinical conditions such as cancer, diabetes, cardiovascular disease, stroke, pulmonary disease, inflammation, organ transplant, and wound healing. Investigations into the role of hypoxia-inducible transcription factor (HIF) in disease development have been conducted with the basic premise that HIF is activated in vivo during hypoxia in humans, yet this basic physiologic premise has never verified. Thus, we hypothesized that HIF-1 DNA binding would be enhanced in vivo in humans in response to acute global hypoxia. Fourteen human subjects were exposed to normoxia (1600 m) and hypoxia (4300 m, approximately 12% O(2)) in a hypobaric hypoxic chamber (8 h). HIF-1 DNA binding and HIF-1alpha protein were evaluated in circulating leukocytes. Oxidative markers were evaluated by plasma metabolomics using nuclear magnetic resonance and by urinary 15-F(2t)-isoprostane concentrations. Leukocyte HIF-1 DNA binding was increased (p=0.007) and HIF-1alpha was greater during hypoxia compared to normoxia. Circulating total glutathione was reduced by 35% (p=0.001), and lactate and succinate were increased by 29 and 158%, respectively (p=0.007 and 0.001), as were urinary 15-F(2t)-isoprostanes (p=0.037). HIF-1 DNA binding and HIF-1alpha were elevated in vivo in leukocytes of healthy human subjects exposed to 12% oxygen, in association with plasma and urinary markers of hypoxic stress.
Collapse
Affiliation(s)
- Martha C Tissot van Patot
- Department of Anesthesiology, University of Colorado at Denver School of Medicine, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sinha S, Ray US, Tomar OS, Singh SN. Different adaptation patterns of antioxidant system in natives and sojourners at high altitude. Respir Physiol Neurobiol 2009; 167:255-60. [PMID: 19454326 DOI: 10.1016/j.resp.2009.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/25/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
Comparative studies on the adaptation pattern of antioxidant status among high altitude natives and acclimatized sojourners are very scanty. The aim of the present study was to compare the differences in antioxidant profile between two groups of active male volunteers, i.e. native highlanders (HAN, n=66) in their natural hypoxic environment with that of sojourners (SOJ, n=81) from sea level (SL) after 4 weeks of stay at an altitude of 4560m. Blood samples of SOJ were collected at SL and HA. Same was collected from HAN once at HA. HAN had significantly higher SOD activity and significantly lower catalase, GPX and GR activities than SOJ at HA. Ratio of GSH/GSSG was also significantly higher in HAN than SOJ at HA. In SOJ, antioxidant profile showed an upregulation after HA stay but it was not effective to reduce the levels of oxidative stress markers. Therefore, it can be stated that lifelong exposure to hypoxia has beneficial adaptive effects on antioxidant system in HAN. Similarly, acclimatization to HA also has beneficial preconditioning effects on antioxidant system in SOJ, but, may not be sufficient to ameliorate oxidative stress completely. Transient increase in metabolic rate due to hypoxia may be a causative factor for excess free radical generation among sojourners at HA.
Collapse
Affiliation(s)
- Sanchari Sinha
- Environmental Physiology Division, Defence Institute of Physiology and Allied Sciences, Timarpur, Lucknow Road, Delhi, India
| | | | | | | |
Collapse
|
41
|
Heinicke I, Boehler A, Rechsteiner T, Bogdanova A, Jelkmann W, Hofer M, Rawlings P, Araneda OF, Behn C, Gassmann M, Heinicke K. Moderate altitude but not additional endurance training increases markers of oxidative stress in exhaled breath condensate. Eur J Appl Physiol 2009; 106:599-604. [PMID: 19363619 DOI: 10.1007/s00421-009-1014-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2009] [Indexed: 02/03/2023]
Abstract
Oxidative stress occurs at altitude, and physical exertion might enhance this stress. In the present study, we investigated the combined effects of exercise and moderate altitude on redox balance in ten endurance exercising biathletes, and five sedentary volunteers during a 6-week-stay at 2,800 m. As a marker for oxidative stress, hydrogen peroxide (H(2)O(2)) was analyzed by the biosensor measuring system Ecocheck, and 8-iso prostaglandin F2alpha (8-iso PGF2alpha) was determined by enzyme immunoassay in exhaled breath condensate (EBC). To determine the whole blood antioxidative capacity, we measured reduced glutathione (GSH) enzymatically using Ellman's reagent. Exercising athletes and sedentary volunteers showed increased levels of oxidative markers at moderate altitude, contrary to our expectations; there was no difference between both groups. Therefore, all subjects' data were pooled to examine the oxidative stress response exclusively due to altitude exposure. H(2)O(2) levels increased at altitude and remained elevated for 3 days after returning to sea level (p < or = 0.05). On the other hand, 8-iso PGF2alpha levels showed a tendency to increase at altitude, but declined immediately after returning to sea level (p < or = 0.001). Hypoxic exposure during the first day at altitude resulted in elevated GSH levels (p < or = 0.05), that decreased during prolonged sojourn at altitude (p < or = 0.001). In conclusion, a stay at moderate altitude for up to 6 weeks increases markers of oxidative stress in EBC independent of additional endurance training. Notably, this oxidative stress is still detectable 3 days upon return to sea level.
Collapse
Affiliation(s)
- Ilmar Heinicke
- Vetsuisse Faculty and Zurich Center for Integrative Human Physiology, Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Møller P, Risom L, Lundby C, Mikkelsen L, Loft S. Hypoxia and oxidation levels of DNA and lipids in humans and animal experimental models. IUBMB Life 2008; 60:707-23. [DOI: 10.1002/iub.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Maiti P, Singh SB, Mallick B, Muthuraju S, Ilavazhagan G. High altitude memory impairment is due to neuronal apoptosis in hippocampus, cortex and striatum. J Chem Neuroanat 2008; 36:227-38. [PMID: 18692566 DOI: 10.1016/j.jchemneu.2008.07.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 07/05/2008] [Accepted: 07/06/2008] [Indexed: 11/17/2022]
Abstract
Cognitive and neuropsychological functions have been impaired at high altitude and the effects depend on altitude and duration of stay. However, the neurobiological mechanism of this impairment is poorly understood especially exposure to different duration. Aim of the present study was to investigate the changes of behavior, biochemistry and morphology after exposure to different duration of hypobaric hypoxia. The rats were exposed continuously to a simulated high altitude of 6100m for 3, 7, 14 and 21 days in an animal decompression chamber. Spatial reference memory was tested by Morris water maze. The oxidative stress markers like free radicals, NO, lipid peroxidation, LDH activity and antioxidant systems like GSH, GSSG, GPx, GR, SOD were estimated from cortex, hippocampus and striatum. The morphological changes, neurodegeneration, DNA fragmentation and mode of cell death have also been studied. It was observed that the spatial reference memory was significantly affected after exposure to hypobaric hypoxia. Increased oxidative stress markers along with decreased effectiveness of antioxidant system were also observed in hypoxia-exposed animals. Further pyknotic, shrunken, tangle-like neurons were observed in all these regions after hypoxia and neurodegeneration, DNA fragmentation and apoptosis were also observed in all the three regions. But after 21 days of exposure, the spatial memory was improved along with improvement of antioxidant activities. Our result suggests that the apoptotic death may be involved in HA-induced memory impairment and after 7 days of exposure the effect was more pronounced but after 21 days of exposure recovery was observed.
Collapse
Affiliation(s)
- Panchanan Maiti
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Timarpur, Delhi 110054, India.
| | | | | | | | | |
Collapse
|
44
|
Behn C, Araneda OF, Llanos AJ, Celedón G, González G. Hypoxia-related lipid peroxidation: Evidences, implications and approaches. Respir Physiol Neurobiol 2007; 158:143-50. [PMID: 17662674 DOI: 10.1016/j.resp.2007.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 06/01/2007] [Accepted: 06/05/2007] [Indexed: 12/20/2022]
Abstract
Hypoxia may be intensified by concurrent oxidative stress. Lack of oxygen in relation to aerobic ATP requirements, as hypoxia has been defined, goes along with an increased generation of reactive oxygen species (ROS). Polyunsaturated fatty acids (PUFAs) range among the molecules most susceptible to ROS. Oxidative breakdown of n-3 PUFAs may compromise not only membrane lipid matrix dynamics, and hence structure and function of membrane-associated proteins like enzymes, receptors, and transporters, but also gene expression. Eicosapentaenoic acid depletion, products of lipid peroxidation (LP), as well as, lack of oxygen may combine in exacerbating activity of nuclear factor kappa B (NFkappaB), an ubiquitous pro-inflammatory and anti-apoptotic transcription factor. Field studies at high altitude show malondialdehyde (MDA) content in exhaled breath condensate (EBC) of mountaineers to correlate with Lake Louis score of acute mountain sickness. A pathogenic role of LP in hypoxia can therefore be expected. By control of LP, some species seem to cope more efficiently than others with naturally occurring hypoxia. Limitation of potential pro-inflammatory effects of hypoxia-related LP by an adequate provision of n-3 PUFAs and antioxidants may contribute to increase survival under conditions where oxygen is lacking in relation to aerobic ATP requirements. A need for antioxidant intervention, however, should be weighed against the ROS requirement for triggering adaptive processes in response to an increased demand of oxygen.
Collapse
Affiliation(s)
- Claus Behn
- Laboratorio de Ambientes Extremos, Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile Independencia 1027, Independencia, Santiago, Chile.
| | | | | | | | | |
Collapse
|
45
|
Frappell PB, León-Velarde F, Rivera-Ch M. Oxygen transport at high altitude--an integrated perspective. Introduction. Respir Physiol Neurobiol 2007; 158:115-20. [PMID: 17889816 DOI: 10.1016/j.resp.2007.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Affiliation(s)
- Peter B Frappell
- Adaptational and Evolutionary Respiratory Physiology Laboratory, Department of Zoology, La Trobe University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
46
|
Baillie JK, Bates MGD, Thompson AAR, Waring WS, Partridge RW, Schnopp MF, Simpson A, Gulliver-Sloan F, Maxwell SRJ, Webb DJ. Endogenous Urate Production Augments Plasma Antioxidant Capacity in Healthy Lowland Subjects Exposed to High Altitude. Chest 2007; 131:1473-8. [PMID: 17494796 DOI: 10.1378/chest.06-2235] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Both tissue hypoxia in vitro, and whole-body hypoxia in vivo, have been found to promote the release of reactive oxygen species (ROS) that are potentially damaging to the cardiovascular system. Antioxidant systems protect against oxidative damage by ROS and may exhibit some degree of responsiveness to oxidative stimuli. Production of urate, a potent soluble antioxidant, is increased in hypoxic conditions. We aimed to determine whether urate is an important antioxidant defense in healthy subjects exposed to hypoxia. METHODS We conducted a cohort study of 25 healthy lowland volunteers during acute exposure to high altitude (4 days at 3,600 m, followed by 10 days at 5,200 m) on the Apex high-altitude research expedition to Bolivia. We measured markers of oxidative stress (8-isoprostane F2), serum urate concentration, and total plasma antioxidant activity by two techniques: 2,2'-amino-di-[3-ethylbenzthiazole sulfonate] spectrophotometry (total antioxidant status [TAS]) and enhanced chemiluminescence (ECL). RESULTS On ascent, F2-isoprostane levels were significantly elevated compared with those at sea level (p < 0.01). After 1 week at high altitude, plasma antioxidant capacity (AOC) by both TAS and ECL, and serum urate concentration were significantly elevated (each p < 0.01 vs sea level), and F2-isoprostane levels were reduced to values at sea level. There was a highly significant correlation between plasma urate and AOC at this stage (ECL, r(2) = 0.59, p = 0.0001; TAS, r(2) = 0.30, p = 0.0062). CONCLUSIONS Our results support the hypothesis that urate may act as a responsive endogenous antioxidant in high-altitude hypoxia.
Collapse
Affiliation(s)
- J Kenneth Baillie
- Apex (Altitude Physiology Expeditions), c/o College of Medicine & Veterinary Medicine, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dosek A, Ohno H, Acs Z, Taylor AW, Radak Z. High altitude and oxidative stress. Respir Physiol Neurobiol 2007; 158:128-31. [PMID: 17482529 DOI: 10.1016/j.resp.2007.03.013] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 03/05/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
Exposure to high altitude, which is associated with decreased oxygen pressure, could result in oxidative/reductive stress, enhanced generation of reactive oxygen and nitrogen species (RONS), and related oxidative damage to lipids, proteins, and DNA. The severity of oxidative challenge is related to the degree of altitude. A wide range of RONS generating systems are activated during exposure to high altitude, including the mitochondrial electron transport chain, xanthine oxidase, and nitric oxide synthase. High altitude appears to weaken the enzymatic and non-enzymatic antioxidant systems, and increased nutritional uptake of antioxidant vitamins are beneficial to reduce the altitude-induced oxidative damage. The pattern of high altitude exposure-associated oxidative damage resembles ischemia/reperfusion injury. The adaptive process to this oxidative challenge requires a relatively long period of time. Physical exercise or an enhanced level of physical activity at high altitude, exacerbates the extent of the oxidative challenge. Therefore, special attention is necessary to curb the degree of oxidative stress.
Collapse
Affiliation(s)
- Agoston Dosek
- Institute of Sport Science, Faculty of Physical Education and Sport Science, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
48
|
Apraiz I, Mi J, Cristobal S. Identification of Proteomic Signatures of Exposure to Marine Pollutants in Mussels (Mytilus edulis). Mol Cell Proteomics 2006; 5:1274-85. [PMID: 16603574 DOI: 10.1074/mcp.m500333-mcp200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bivalves and especially mussels are very good indicators of marine and estuarine pollution, and so they have been widely used in biomonitoring programs all around the world. However, traditional single parameter biomarkers face the problem of high sensitivity to biotic and abiotic factors. In our study, digestive gland peroxisome-enriched fractions of Mytilus edulis (L., 1758) were analyzed by DIGE and MS. We identified several proteomic signatures associated with the exposure to several marine pollutants (diallyl phthalate, PBDE-47, and bisphenol-A). Animals collected from North Atlantic Sea were exposed to the contaminants independently under controlled laboratory conditions. One hundred and eleven spots showed a significant increase or decrease in protein abundance in the two-dimensional electrophoresis maps from the groups exposed to pollutants. We obtained a unique protein expression signature of exposure to each of those chemical compounds. Moreover a set of proteins composed a proteomic signature in common to the three independent exposures. It is remarkable that the principal component analysis of these spots showed a discernible separation between groups, and so did the hierarchical clustering into four classes. The 14 proteins identified by MS participate in alpha- and beta-oxidation pathways, xenobiotic and amino acid metabolism, cell signaling, oxyradical metabolism, peroxisomal assembly, respiration, and the cytoskeleton. Our results suggest that proteomic signatures could become a valuable tool to monitor the presence of pollutants in field experiments where a mixture of pollutants is often present. Further studies on the identified proteins could provide crucial information to understand possible mechanisms of toxicity of single xenobiotics or mixtures of them in marine ecosystems.
Collapse
Affiliation(s)
- Itxaso Apraiz
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|