1
|
Escudero-Duch C, Muñoz-Moreno L, Martin-Saavedra F, Sanchez-Casanova S, Lerma-Juarez MA, Vilaboa N. Remote control of transgene expression using noninvasive near-infrared irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 242:112697. [PMID: 36963296 DOI: 10.1016/j.jphotobiol.2023.112697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023]
Abstract
This study investigated whether noninvasive near-infrared (NIR) energy could be transduced into heat in deep-seated organs in which adenovirus type-5 vectors tend to accumulate, thereby activating heat shock protein (HSP) promoter-mediated transgene expression, without local administration of photothermal agents. NIR irradiation of the subdiaphragmatic and left dorsocranial part of the abdominal cavity of adult immunocompetent C3H/HeNRj mice with an 808-nm laser effectively increased the temperature of the irradiated regions of the liver and spleen, respectively, resulting in the accumulation of the heat-inducible HSP70 protein. Spatial control of transgene expression was achieved in the NIR-irradiated regions of the mice administered an adenoviral vector carrying a firefly luciferase (fLuc) coding sequence controlled by a human HSP70B promoter, as assessed by bioluminescence and immunohistochemistry analyses. Levels of reporter gene expression were modulated by controlling NIR power density. Spatial control of transgene expression through NIR-focused activation of the HSP70B promoter, as well as temporal regulation by administering rapamycin was achieved in the spleens of mice inoculated with an adenoviral vector encoding a rapamycin-dependent transactivator driven by the HSP70B promoter and an adenoviral vector carrying a fLuc coding sequence controlled by the rapamycin-activated transactivator. Mice that were administered rapamycin and exposed to NIR light expressed fLuc activity in the splenic region, whereas no activity was detected in mice that were only administered rapamycin or vehicle or only NIR-irradiated. Thus, in the absence of any exogenously supplied photothermal material, remote control of heat-induced transgene expression can be achieved in the liver and spleen by means of noninvasive NIR irradiation.
Collapse
Affiliation(s)
- Clara Escudero-Duch
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Laura Muñoz-Moreno
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Francisco Martin-Saavedra
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Silvia Sanchez-Casanova
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Miguel Angel Lerma-Juarez
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Nuria Vilaboa
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain.
| |
Collapse
|
2
|
Padmakumar S, D'Souza A, Parayath NN, Bleier BS, Amiji MM. Nucleic acid therapies for CNS diseases: Pathophysiology, targets, barriers, and delivery strategies. J Control Release 2022; 352:121-145. [PMID: 36252748 DOI: 10.1016/j.jconrel.2022.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Nucleic acid therapeutics have emerged as one of the very advanced and efficacious treatment approaches for debilitating health conditions, including those diseases affecting the central nervous system (CNS). Precise targeting with an optimal control over gene regulation confers long-lasting benefits through the administration of nucleic acid payloads via viral, non-viral, and engineered vectors. The current review majorly focuses on the development and clinical translational potential of non-viral vectors for treating CNS diseases with a focus on their specific design and targeting approaches. These carriers must be able to surmount the various intracellular and extracellular barriers, to ensure successful neuronal transfection and ultimately attain higher therapeutic efficacies. Additionally, the specific challenges associated with CNS administration also include the presence of blood-brain barrier (BBB), the complex pathophysiological and biochemical changes associated with different disease conditions and the existence of non-dividing cells. The advantages offered by lipid-based or polymeric systems, engineered proteins, particle-based systems coupled with various approaches of neuronal targeting have been discussed in the context of a variety of CNS diseases. The possibilities of rapid yet highly efficient gene modifications rendered by the breakthrough methodologies for gene editing and gene manipulation have also opened vast avenues of research in neuroscience and CNS disease therapy. The current review also underscores the extensive scientific efforts to optimize specialized, efficacious yet non-invasive and safer administration approaches to overcome the therapeutic delivery challenges specifically posed by the CNS transport barriers and the overall obstacles to clinical translation.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
3
|
A Narrative Review of Cell-Based Approaches for Cranial Bone Regeneration. Pharmaceutics 2022; 14:pharmaceutics14010132. [PMID: 35057028 PMCID: PMC8781797 DOI: 10.3390/pharmaceutics14010132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 01/08/2023] Open
Abstract
Current cranial repair techniques combine the use of autologous bone grafts and biomaterials. In addition to their association with harvesting morbidity, autografts are often limited by insufficient quantity of bone stock. Biomaterials lead to better outcomes, but their effectiveness is often compromised by the unpredictable lack of integration and structural failure. Bone tissue engineering offers the promising alternative of generating constructs composed of instructive biomaterials including cells or cell-secreted products, which could enhance the outcome of reconstructive treatments. This review focuses on cell-based approaches with potential to regenerate calvarial bone defects, including human studies and preclinical research. Further, we discuss strategies to deliver extracellular matrix, conditioned media and extracellular vesicles derived from cell cultures. Recent advances in 3D printing and bioprinting techniques that appear to be promising for cranial reconstruction are also discussed. Finally, we review cell-based gene therapy approaches, covering both unregulated and regulated gene switches that can create spatiotemporal patterns of transgenic therapeutic molecules. In summary, this review provides an overview of the current developments in cell-based strategies with potential to enhance the surgical armamentarium for regenerating cranial vault defects.
Collapse
|
4
|
Escudero-Duch C, Vilaboa N. Recent efforts in the development of nanomaterials to control transgene expression. Nanomedicine (Lond) 2020; 15:2019-2022. [PMID: 32779525 DOI: 10.2217/nnm-2020-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Clara Escudero-Duch
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.,Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Nuria Vilaboa
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.,Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| |
Collapse
|
5
|
Norris EG, Dalecki D, Hocking DC. Using Acoustic Fields to Fabricate ECM-Based Biomaterials for Regenerative Medicine Applications. RECENT PROGRESS IN MATERIALS 2020; 2:1-24. [PMID: 33604591 PMCID: PMC7889011 DOI: 10.21926/rpm.2003018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ultrasound is emerging as a promising tool for both characterizing and fabricating engineered biomaterials. Ultrasound-based technologies offer a diverse toolbox with outstanding capacity for optimization and customization within a variety of therapeutic contexts, including improved extracellular matrix-based materials for regenerative medicine applications. Non-invasive ultrasound fabrication tools include the use of thermal and mechanical effects of acoustic waves to modify the structure and function of extracellular matrix scaffolds both directly, and indirectly via biochemical and cellular mediators. Materials derived from components of native extracellular matrix are an essential component of engineered biomaterials designed to stimulate cell and tissue functions and repair or replace injured tissues. Thus, continued investigations into biological and acoustic mechanisms by which ultrasound can be used to manipulate extracellular matrix components within three-dimensional hydrogels hold much potential to enable the production of improved biomaterials for clinical and research applications.
Collapse
Affiliation(s)
- Emma G Norris
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Denise C Hocking
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|
6
|
Local delivery of bone morphogenetic protein-2 from near infrared-responsive hydrogels for bone tissue regeneration. Biomaterials 2020; 241:119909. [PMID: 32135355 DOI: 10.1016/j.biomaterials.2020.119909] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
Achievement of spatiotemporal control of growth factors production remains a main goal in tissue engineering. In the present work, we combined inducible transgene expression and near infrared (NIR)-responsive hydrogels technologies to develop a therapeutic platform for bone regeneration. A heat-activated and dimerizer-dependent transgene expression system was incorporated into mesenchymal stem cells to conditionally control the production of bone morphogenetic protein 2 (BMP-2). Genetically engineered cells were entrapped in hydrogels based on fibrin and plasmonic gold nanoparticles that transduced incident energy of an NIR laser into heat. In the presence of dimerizer, photoinduced mild hyperthermia induced the release of bioactive BMP-2 from NIR-responsive cell constructs. A critical size bone defect, created in calvaria of immunocompetent mice, was filled with NIR-responsive hydrogels entrapping cells that expressed BMP-2 under the control of the heat-activated and dimerizer-dependent gene circuit. In animals that were treated with dimerizer, NIR irradiation of implants induced BMP-2 production in the bone lesion. Induction of NIR-responsive cell constructs conditionally expressing BMP-2 in bone defects resulted in the formation of new mineralized tissue, thus indicating the therapeutic potential of the technological platform.
Collapse
|
7
|
Gamboa L, Zamat AH, Kwong GA. Synthetic immunity by remote control. Theranostics 2020; 10:3652-3667. [PMID: 32206114 PMCID: PMC7069089 DOI: 10.7150/thno.41305] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
Cell-based immunotherapies, such as T cells engineered with chimeric antigen receptors (CARs), have the potential to cure patients of disease otherwise refractory to conventional treatments. Early-on-treatment and long-term durability of patient responses depend critically on the ability to control the potency of adoptively transferred T cells, as overactivation can lead to complications like cytokine release syndrome, and immunosuppression can result in ineffective responses to therapy. Drugs or biologics (e.g., cytokines) that modulate immune activity are limited by mass transport barriers that reduce the local effective drug concentration, and lack site or target cell specificity that results in toxicity. Emerging technologies that enable site-targeted, remote control of key T cell functions - including proliferation, antigen-sensing, and target-cell killing - have the potential to increase treatment precision and safety profile. These technologies are broadly applicable to other immune cells to expand immune cell therapies across many cancers and diseases. In this review, we highlight the opportunities, challenges and the current state-of-the-art for remote control of synthetic immunity.
Collapse
Affiliation(s)
- Lena Gamboa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Ali H. Zamat
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Gabriel A. Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Georgia Immunoengineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Escudero-Duch C, Martin-Saavedra F, Prieto M, Sanchez-Casanova S, Lopez D, Sebastian V, Arruebo M, Santamaria J, Vilaboa N. Gold nanoparticles for the in situ polymerization of near-infrared responsive hydrogels based on fibrin. Acta Biomater 2019; 100:306-315. [PMID: 31568875 DOI: 10.1016/j.actbio.2019.09.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 12/01/2022]
Abstract
Non-invasiveness and relative safety of photothermal therapy, which enables local hyperthermia of target tissues using a near infrared (NIR) laser, has attracted increasing interest. Due to their biocompatibility, amenability of synthesis and functionalization, gold nanoparticles have been investigated as therapeutic photothermal agents. In this work, hollow gold nanoparticles (HGNP) were coated with poly-l-lysine through the use of COOH-Poly(ethylene glycol)-SH as a covalent linker. The functionalized HGNP, which peak their surface plasmon resonance at 800 nm, can bind thrombin. Thrombin-conjugated HGNP conduct in situ fibrin polymerization, facilitating the process of generating photothermal matrices. Interestingly, the metallic core of thrombin-loaded HGNP fragmentates at physiological temperature. During polymerization process, matrices prepared with thrombin-loaded HGNP were loaded with genetically-modified stem cells that harbour a heat-activated and ligand-dependent gene switch for regulating transgene expression. NIR laser irradiation of resulting cell constructs in the presence of ligand successfully triggered transgene expression in vitro and in vivo. STATEMENT OF SIGNIFICANCE: Current technological development allows synthesis of gold nanoparticles (GNP) in a wide range of shapes and sizes, consistently and at scale. GNP, stable and easily functionalized, show low cytotoxicity and high biocompatibility. Allied to that, GNP present optoelectronic properties that have been exploited in a range of biomedical applications. Following a layer-by-layer functionalization approach, we prepared hollow GNP coated with a positively charged copolymer that enabled thrombin conjugation. The resulting nanomaterial efficiently catalyzed the formation of fibrin hydrogels which convert energy of the near infrared (NIR) into heat. The resulting NIR-responsive hydrogels can function as scaffolding for cells capable of controlled gene expression triggered by optical hyperthermia, thus allowing the deployment of therapeutic gene products in desired spatiotemporal frameworks.
Collapse
Affiliation(s)
- Clara Escudero-Duch
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, Madrid 28046 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain
| | - Francisco Martin-Saavedra
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, Madrid 28046 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain.
| | - Martin Prieto
- Departmento de Ingenieria Quimica, Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Campus Rio Ebro. Edificio I+D. C/ Mariano Esquillor s/n, Zaragoza 50018 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain; Instituto de Ciencia de Materiales de Aragon, Consejo Superior de Investigaciones Cientificas (ICMA-CSIC), Universidad de Zaragoza, Zaragoza 50009 Spain
| | - Silvia Sanchez-Casanova
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, Madrid 28046 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain
| | - Daniel Lopez
- Instituto de Ciencia y Tecnologia de Polimeros, Consejo Superior de Investigaciones Cientificas (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid 28006 Spain
| | - Victor Sebastian
- Departmento de Ingenieria Quimica, Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Campus Rio Ebro. Edificio I+D. C/ Mariano Esquillor s/n, Zaragoza 50018 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain; Instituto de Ciencia de Materiales de Aragon, Consejo Superior de Investigaciones Cientificas (ICMA-CSIC), Universidad de Zaragoza, Zaragoza 50009 Spain
| | - Manuel Arruebo
- Departmento de Ingenieria Quimica, Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Campus Rio Ebro. Edificio I+D. C/ Mariano Esquillor s/n, Zaragoza 50018 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain; Instituto de Ciencia de Materiales de Aragon, Consejo Superior de Investigaciones Cientificas (ICMA-CSIC), Universidad de Zaragoza, Zaragoza 50009 Spain
| | - Jesus Santamaria
- Departmento de Ingenieria Quimica, Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Campus Rio Ebro. Edificio I+D. C/ Mariano Esquillor s/n, Zaragoza 50018 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain; Instituto de Ciencia de Materiales de Aragon, Consejo Superior de Investigaciones Cientificas (ICMA-CSIC), Universidad de Zaragoza, Zaragoza 50009 Spain
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, Madrid 28046 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain.
| |
Collapse
|
9
|
Moncion A, Harmon JN, Li Y, Natla S, Farrell EC, Kripfgans OD, Stegemann JP, Martín-Saavedra FM, Vilaboa N, Franceschi RT, Fabiilli ML. Spatiotemporally-controlled transgene expression in hydroxyapatite-fibrin composite scaffolds using high intensity focused ultrasound. Biomaterials 2019; 194:14-24. [PMID: 30572283 PMCID: PMC6339574 DOI: 10.1016/j.biomaterials.2018.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/13/2018] [Accepted: 12/09/2018] [Indexed: 01/05/2023]
Abstract
Conventional tissue engineering approaches rely on scaffold-based delivery of exogenous proteins, genes, and/or cells to stimulate regeneration via growth factor signaling. However, scaffold-based approaches do not allow active control of dose, timing, or spatial localization of a delivered growth factor once the scaffold is implanted, yet these are all crucial parameters in promoting tissue regeneration. To address this limitation, we developed a stable cell line containing a heat-activated and rapamycin-dependent gene expression system. In this study, we investigate how high intensity focused ultrasound (HIFU) can spatiotemporally control firefly luciferase (fLuc) transgene activity both in vitro and in vivo by the tightly controlled generation of hyperthermia. Cells were incorporated into composite scaffolds containing fibrin and hydroxyapatite particles, which yielded significant increases in acoustic attenuation and heating in response to HIFU compared to fibrin alone. Using 2.5 MHz HIFU, transgene activation was observed at acoustic intensities of 201 W/cm2 and higher. Transgene activation was spatially patterned in the scaffolds by rastering HIFU at speeds up to 0.15 mm/s. In an in vivo study, a 67-fold increase in fLuc activity was observed in scaffolds exposed to HIFU and rapamycin versus rapamycin only at 2 days post implantation. Repeated activation of transgene expression was also demonstrated 8 days after implantation. No differences in in vivo scaffold degradation or compaction were observed between +HIFU and -HIFU groups. These results highlight the potential utility of using this heat-activated and rapamycin-dependent gene expression system in combination with HIFU for the controlled stimulation of tissue regeneration.
Collapse
Affiliation(s)
- Alexander Moncion
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Jennifer N Harmon
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Yan Li
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Sam Natla
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Easton C Farrell
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Oliver D Kripfgans
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Francisco M Martín-Saavedra
- Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Renny T Franceschi
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Lee S, Son B, Park G, Kim H, Kang H, Jeon J, Youn H, Youn B. Immunogenic Effect of Hyperthermia on Enhancing Radiotherapeutic Efficacy. Int J Mol Sci 2018; 19:E2795. [PMID: 30227629 PMCID: PMC6164993 DOI: 10.3390/ijms19092795] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Hyperthermia is a cancer treatment where tumor tissue is heated to around 40 °C. Hyperthermia shows both cancer cell cytotoxicity and immune response stimulation via immune cell activation. Immunogenic responses encompass the innate and adaptive immune systems, involving the activation of macrophages, natural killer cells, dendritic cells, and T cells. Moreover, hyperthermia is commonly used in combination with different treatment modalities, such as radiotherapy and chemotherapy, for better clinical outcomes. In this review, we will focus on hyperthermia-induced immunogenic effects and molecular events to improve radiotherapy efficacy. The beneficial potential of integrating radiotherapy with hyperthermia is also discussed.
Collapse
Affiliation(s)
- Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Beomseok Son
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Gaeul Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Jaewan Jeon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
11
|
Pro-angiogenic near infrared-responsive hydrogels for deliberate transgene expression. Acta Biomater 2018; 78:123-136. [PMID: 30098440 DOI: 10.1016/j.actbio.2018.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 12/28/2022]
Abstract
CuS nanoparticles (CuSNP) are degradable, readily prepared, inexpensive to produce and efficiently cleared from the body. In this work, we explored the feasibility of CuSNP to function as degradable near infrared (NIR) nanotransducers within fibrin-based cellular scaffolds. To prepare NIR-responsive CuSNP hydrogels, fibrinogen was dissolved in cell culture medium and supplemented with aqueous dispersions of CuSNP. Fibrinogen polymerization was catalyzed by the addition of thrombin. In some experiments, HUVEC, C3H/10T1/2 or C3H/10T1/2-fLuc cells, that harbor a heat-activated and rapamycin-dependent gene switch for regulating the expression of firefly luciferase transgene, were incorporated to the sol phase of the hydrogel. For in vivo experiments, hydrogels were injected subcutaneously in the back of adult C3H/HeN mice. Upon NIR irradiation, CuSNP hydrogels allowed heat-inducible and rapamycin-dependent transgene expression in cells contained therein, in vitro and in vivo. C3H/10T1/2 cells cultured in CuSNP hydrogels increased metabolic activity, survival rate and fibrinolytic activity, which correlated with changes at the transcriptome level. Media conditioned by CuSNP hydrogels increased viability of HUVEC which formed pseudocapillary structures and remodeled protein matrix when entrapped within these hydrogels. After long-term implantation, the skin patches that covered the CuSNP hydrogels showed increased capillary density which was not detected in mice implanted with matrices lacking CuSNP. In summary, NIR-responsive scaffolds harboring CuSNP offer compelling features in the tissue engineering field, as degradable implants with enhanced integration capacity in host tissues that can provide remote controlled deployment of therapeutic gene products. STATEMENT OF SIGNIFICANCE Hydrogels composed of fibrin embedding copper sulfide nanoparticles (CuSNP) efficiently convert incident near infrared (NIR) energy into heat and can function as cellular scaffolding. NIR laser irradiation of CuSNP hydrogels can be employed to remotely induce spatiotemporal patterns of transgene expression in genetically engineered multipotent stem cells. CuSNP incorporation in hydrogel architecture accelerates the cell-mediated degradation of the fibrin matrix and induces pro-angiogenic responses that may facilitate the integration of these NIR-responsive scaffolds in host tissues. CuSNP hydrogels that harbor cells capable of controlled expression of therapeutic gene products may be well suited for tissue engineering as they are biodegradable, enhance implant vascularization and can be used to deploy growth factors in a desired spatiotemporal fashion.
Collapse
|
12
|
Immunization by Replication-Competent Controlled Herpesvirus Vectors. J Virol 2018; 92:JVI.00616-18. [PMID: 29899091 PMCID: PMC6069180 DOI: 10.1128/jvi.00616-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/24/2018] [Indexed: 11/20/2022] Open
Abstract
We hypothesized that vigorous replication of a pathogen may be critical for eliciting the most potent and balanced immune response against it. Hence, attenuation/inactivation (as in conventional vaccines) should be avoided. Instead, the necessary safety should be provided by placing replication of the pathogen under stringent control and by activating time-limited replication of the pathogen strictly in an administration region in which pathology cannot develop. Immunization will then occur in the context of highly efficient pathogen replication and uncompromised safety. We found that localized activation in mice of efficient but limited replication of a replication-competent controlled herpesvirus vector resulted in a greatly enhanced immune response to the virus or an expressed heterologous antigen. This finding supports the above-mentioned hypothesis and suggests that the vectors may be promising novel agents worth exploring for the prevention/mitigation of infectious diseases for which efficient vaccination is lacking, in particular in immunocompromised patients. Replication-competent controlled virus vectors were derived from the virulent herpes simplex virus 1 (HSV-1) wild-type strain 17syn+ by placing one or two replication-essential genes under the stringent control of a gene switch that is coactivated by heat and an antiprogestin. Upon activation of the gene switch, the vectors replicate in infected cells with an efficacy that approaches that of the wild-type virus from which they were derived. Essentially no replication occurs in the absence of activation. When administered to mice, localized application of a transient heat treatment in the presence of systemic antiprogestin results in efficient but limited virus replication at the site of administration. The immunogenicity of these viral vectors was tested in a mouse footpad lethal challenge model. Unactivated viral vectors—which may be regarded as equivalents of inactivated vaccines—induced detectable protection against lethality caused by wild-type virus challenge. Single activation of the viral vectors at the site of administration (rear footpads) greatly enhanced protective immune responses, and a second immunization resulted in complete protection. Once activated, vectors also induced far better neutralizing antibody and HSV-1-specific cellular immune responses than unactivated vectors. To find out whether the immunogenicity of a heterologous antigen was also enhanced in the context of efficient transient vector replication, a virus vector constitutively expressing an equine influenza virus hemagglutinin was constructed. Immunization of mice with this recombinant induced detectable antibody-mediated neutralization of equine influenza virus, as well as a hemagglutinin-specific cellular immune response. Single activation of viral replication resulted in a severalfold enhancement of these immune responses. IMPORTANCE We hypothesized that vigorous replication of a pathogen may be critical for eliciting the most potent and balanced immune response against it. Hence, attenuation/inactivation (as in conventional vaccines) should be avoided. Instead, the necessary safety should be provided by placing replication of the pathogen under stringent control and by activating time-limited replication of the pathogen strictly in an administration region in which pathology cannot develop. Immunization will then occur in the context of highly efficient pathogen replication and uncompromised safety. We found that localized activation in mice of efficient but limited replication of a replication-competent controlled herpesvirus vector resulted in a greatly enhanced immune response to the virus or an expressed heterologous antigen. This finding supports the above-mentioned hypothesis and suggests that the vectors may be promising novel agents worth exploring for the prevention/mitigation of infectious diseases for which efficient vaccination is lacking, in particular in immunocompromised patients.
Collapse
|
13
|
Fedele C, De Gregorio M, Netti PA, Cavalli S, Attanasio C. Azopolymer photopatterning for directional control of angiogenesis. Acta Biomater 2017; 63:317-325. [PMID: 28927933 DOI: 10.1016/j.actbio.2017.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 11/17/2022]
Abstract
Understanding cellular behavior in response to microenvironmental stimuli is central to tissue engineering. An increasing number of reports emphasize the high sensitivity of cells to the physical characteristics of the surrounding milieu and in particular, topographical cues. In this work, we investigated the influence of dynamic topographic signal presentation on sprout formation and the possibility to obtain a space-time control over sprouting directionality without growth factors, in order to investigate the contribution of just topography in the angiogenic process. To test our hypothesis, we employed a 3D angiogenesis assay based on the use of spheroids derived from human umbilical vein endothelial cells (HUVECs). We then modulated the in situ presentation of topographical cues during early-stage angiogenesis through real-time photopatterning of an azobenzene-containing polymer, poly (Disperse Red 1 methacrylate) (pDR1m). Pattern inscription on the polymer surface was made using the focused laser of a confocal microscope. We demonstrate that during early-stage angiogenesis, sprouts followed the pattern direction, while spheroid cores acquired a polarized shape. These findings confirmed that sprout directionality was influenced by the photo-inscribed pattern, probably through contact guidance of leader cells, thus validating the proposed platform as a valuable tool for understanding complex processes involved in cell-topography interactions in multicellular systems. STATEMENT OF SIGNIFICANCE The complex relationship between endothelial cells and the surrounding environment that leads to formation of a newly formed vascular network during tissue repair is currently unknown. We have developed an innovative in vitro platform to study these mechanisms in a space and time controlled fashion simulating what happens during regeneration. In particular, we combine a "smart" surface, namely a polymer film, with a three-dimensional living cell aggregate. The polymer is activated by light through which we can design a path to guide cells toward the formation of a new vessel. Our work lies at the intersection of stimuli-responsive biointerfaces and cell biology and may be particularly inspiring for those interested in designing biomaterial surface related to angiogenesis.
Collapse
Affiliation(s)
- Chiara Fedele
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Napoli, Italy; Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Maria De Gregorio
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Napoli, Italy; Dipartimento di Medicina Veterinaria e Produzione Animale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Napoli, Italy; Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II, Napoli, Italy.
| | - Silvia Cavalli
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Napoli, Italy.
| | - Chiara Attanasio
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Napoli, Italy.
| |
Collapse
|
14
|
Gowing G, Svendsen S, Svendsen CN. Ex vivo gene therapy for the treatment of neurological disorders. PROGRESS IN BRAIN RESEARCH 2017; 230:99-132. [PMID: 28552237 DOI: 10.1016/bs.pbr.2016.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ex vivo gene therapy involves the genetic modification of cells outside of the body to produce therapeutic factors and their subsequent transplantation back into patients. Various cell types can be genetically engineered. However, with the explosion in stem cell technologies, neural stem/progenitor cells and mesenchymal stem cells are most often used. The synergy between the effect of the new cell and the additional engineered properties can often provide significant benefits to neurodegenerative changes in the brain. In this review, we cover both preclinical animal studies and clinical human trials that have used ex vivo gene therapy to treat neurological disorders with a focus on Parkinson's disease, Huntington's disease, Alzheimer's disease, ALS, and stroke. We highlight some of the major advances in this field including new autologous sources of pluripotent stem cells, safer ways to introduce therapeutic transgenes, and various methods of gene regulation. We also address some of the remaining hurdles including tunable gene regulation, in vivo cell tracking, and rigorous experimental design. Overall, given the current outcomes from researchers and clinical trials, along with exciting new developments in ex vivo gene and cell therapy, we anticipate that successful treatments for neurological diseases will arise in the near future.
Collapse
Affiliation(s)
- Genevieve Gowing
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Soshana Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
15
|
Remote Patterning of Transgene Expression Using Near Infrared-Responsive Plasmonic Hydrogels. Methods Mol Biol 2016. [PMID: 26965130 DOI: 10.1007/978-1-4939-3512-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The development of noninvasive technologies for remote control of gene expression has received increased attention for their therapeutic potential in clinical scenarios, including cancer, neurological disorders, immunology, tissue engineering, as well as developmental biology research. Near-infrared (NIR) light is a suitable source of energy that can be employed to pattern transgene expression in plasmonic cell constructs. Gold nanoparticles tailored to exhibit a plasmon surface band absorption peaking at NIR wavelengths within the so called tissue optical window (TOW) can be used as fillers in fibrin-based hydrogels. These biocompatible composites can be loaded with cells harboring heat-inducible gene switches. NIR laser irradiation of the resulting plasmonic cell constructs causes the local conversion of NIR photon energy into heat, achieving spatially restricted patterns of transgene expression that faithfully match the illuminated areas of the hydrogels. In combination with cells genetically engineered to harbor gene switches activated by heat and dependent on a small-molecule regulator (SMR), NIR-responsive hydrogels allow reliable and safe control of the spatiotemporal availability of therapeutic biomolecules in target tissues.
Collapse
|
16
|
Fabiilli ML, Phanse RA, Moncion A, Fowlkes JB, Franceschi RT. Use of Hydroxyapatite Doping to Enhance Responsiveness of Heat-Inducible Gene Switches to Focused Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:824-30. [PMID: 26712417 PMCID: PMC4744111 DOI: 10.1016/j.ultrasmedbio.2015.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 05/04/2023]
Abstract
Recently, we demonstrated that ultrasound-based hyperthermia can activate cells containing a heat-activated and ligand-inducible gene switch in a spatio-temporally controlled manner. These engineered cells can be incorporated into hydrogel scaffolds (e.g., fibrin) for in vivo implantation, where ultrasound can be used to non-invasively pattern transgene expression. Due to their high water content, the acoustic attenuation of fibrin scaffolds is low. Thus, long ultrasound exposures and high acoustic intensities are needed to generate sufficient hyperthermia for gene activation. Here, we demonstrate that the attenuation of fibrin scaffolds and the resulting hyperthermia achievable with ultrasound can be increased significantly by doping the fibrin with hydroxyapatite (HA) nanopowder. The attenuation of a 1% (w/v) fibrin scaffold with 5% (w/v) HA was similar to soft tissue. Transgene activation of cells harboring the gene switch occurred at lower acoustic intensities and shorter exposures when the cells were encapsulated in HA-doped fibrin scaffolds versus undoped scaffolds. Inclusion of HA in the fibrin scaffold did not affect the viability of the encapsulated cells.
Collapse
Affiliation(s)
- Mario L Fabiilli
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA.
| | - Rahul A Phanse
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Moncion
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Renny T Franceschi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Replication-Competent Controlled Herpes Simplex Virus. J Virol 2015; 89:10668-79. [PMID: 26269179 DOI: 10.1128/jvi.01667-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/05/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED We present the development and characterization of a replication-competent controlled herpes simplex virus 1 (HSV-1). Replication-essential ICP4 and ICP8 genes of HSV-1 wild-type strain 17syn+ were brought under the control of a dually responsive gene switch. The gene switch comprises (i) a transactivator that is activated by a narrow class of antiprogestins, including mifepristone and ulipristal, and whose expression is mediated by a promoter cassette that comprises an HSP70B promoter and a transactivator-responsive promoter and (ii) transactivator-responsive promoters that drive the ICP4 and ICP8 genes. Single-step growth experiments in different cell lines demonstrated that replication of the recombinant virus, HSV-GS3, is strictly dependent on an activating treatment consisting of administration of a supraphysiological heat dose in the presence of an antiprogestin. The replication-competent controlled virus replicates with an efficiency approaching that of the wild-type virus from which it was derived. Essentially no replication occurs in the absence of activating treatment or if HSV-GS3-infected cells are exposed only to heat or antiprogestin. These findings were corroborated by measurements of amounts of viral DNA and transcripts of the regulated ICP4 gene and the glycoprotein C (gC) late gene, which was not regulated. Similar findings were made in experiments with a mouse footpad infection model. IMPORTANCE The alphaherpesviruses have long been considered vectors for recombinant vaccines and oncolytic therapies. The traditional approach uses vector backbones containing attenuating mutations that restrict replication to ensure safety. The shortcoming of this approach is that the attenuating mutations tend to limit both the immune presentation and oncolytic properties of these vectors. HSV-GS3 represents a novel type of vector that, when activated, replicates with the efficiency of a nonattenuated virus and whose safety is derived from deliberate, stringent regulation of multiple replication-essential genes. By directing activating heat to the region of virus administration, replication is strictly confined to infected cells within this region. The requirement for antiprogestin provides an additional level of safety, ensuring that virus replication cannot be triggered inadvertently. Replication-competent controlled vectors such as HSV-GS3 may have the potential to be superior to conventional attenuated HSV vaccine and oncolytic vectors without sacrificing safety.
Collapse
|
18
|
Clinical Application of Mesenchymal Stem Cells and Novel Supportive Therapies for Oral Bone Regeneration. BIOMED RESEARCH INTERNATIONAL 2015; 2015:341327. [PMID: 26064899 PMCID: PMC4443638 DOI: 10.1155/2015/341327] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/07/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023]
Abstract
Bone regeneration is often needed prior to dental implant treatment due to the lack of adequate quantity and quality of the bone after infectious diseases, trauma, tumor, or congenital conditions. In these situations, cell transplantation technologies may help to overcome the limitations of autografts, xenografts, allografts, and alloplastic materials. A database search was conducted to include human clinical trials (randomized or controlled) and case reports/series describing the clinical use of mesenchymal stem cells (MSCs) in the oral cavity for bone regeneration only specifically excluding periodontal regeneration. Additionally, novel advances in related technologies are also described. 190 records were identified. 51 articles were selected for full-text assessment, and only 28 met the inclusion criteria: 9 case series, 10 case reports, and 9 randomized controlled clinical trials. Collectively, they evaluate the use of MSCs in a total of 290 patients in 342 interventions. The current published literature is very diverse in methodology and measurement of outcomes. Moreover, the clinical significance is limited. Therefore, the use of these techniques should be further studied in more challenging clinical scenarios with well-designed and standardized RCTs, potentially in combination with new scaffolding techniques and bioactive molecules to improve the final outcomes.
Collapse
|
19
|
Voellmy R, Bloom DC, Vilaboa N. A novel approach for addressing diseases not yielding to effective vaccination? Immunization by replication-competent controlled virus. Expert Rev Vaccines 2015; 14:637-51. [PMID: 25676927 DOI: 10.1586/14760584.2015.1013941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vaccination involves inoculation of a subject with a disabled disease-causing microbe or parts thereof. While vaccination has been highly successful, we still lack sufficiently effective vaccines for important infectious diseases. We propose that a more complete immune response than that elicited from a vaccine may be obtained from immunization with a disease-causing virus modified to subject replication-essential genes to the control of a gene switch activated by non-lethal heat in the presence of a drug-like compound. Upon inoculation, strictly localized replication of the virus would be triggered by a heat dose administered to the inoculation site. Activated virus would transiently replicate with an efficiency approaching that of the disease-causing virus and express all viral antigens. It may also vector heterologous antigens or control co-infecting microbes.
Collapse
Affiliation(s)
- Richard Voellmy
- Department of Physiological Sciences, University of Florida College of Veterinary Sciences, Gainesville, FL, USA
| | | | | |
Collapse
|
20
|
Martin-Saavedra FM, Cebrian V, Gomez L, Lopez D, Arruebo M, Wilson CG, Franceschi RT, Voellmy R, Santamaria J, Vilaboa N. Temporal and spatial patterning of transgene expression by near-infrared irradiation. Biomaterials 2014; 35:8134-8143. [PMID: 24957294 DOI: 10.1016/j.biomaterials.2014.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/03/2014] [Indexed: 01/23/2023]
Abstract
We investigated whether near-infrared (NIR) light could be employed for patterning transgene expression in plasmonic cell constructs. Hollow gold nanoparticles with a plasmon surface band absorption peaking at ∼750 nm, a wavelength within the so called "tissue optical window", were used as fillers in fibrin-based hydrogels. These composites, which efficiently transduce NIR photon energy into heat, were loaded with genetically-modified cells that harbor a heat-activated and ligand-dependent gene switch for regulating transgene expression. NIR laser irradiation in the presence of ligand triggered 3-dimensional patterns of transgene expression faithfully matching the illuminated areas of plasmonic cell constructs. This non-invasive technology was proven useful for remotely controlling in vivo the spatiotemporal bioavailability of transgenic vascular endothelial growth factor. The combination of spatial control by means of NIR irradiation along with safe and timed transgene induction presents a high application potential for engineering tissues in regenerative medicine scenarios.
Collapse
Affiliation(s)
- Francisco M Martin-Saavedra
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| | - Virginia Cebrian
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Leyre Gomez
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain
| | - Daniel Lopez
- Institute of Polymer Science and Technology (ICTP-CSIC), 28006 Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Christopher G Wilson
- Center for Craniofacial Regeneration and Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Renny T Franceschi
- Center for Craniofacial Regeneration and Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Richard Voellmy
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA
- HSF Pharmaceuticals S.A., 1814 La Tour-de-Peilz, Switzerland
| | - Jesus Santamaria
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
21
|
Wilson CG, Martín-Saavedra FM, Padilla F, Fabiilli ML, Zhang M, Baez AM, Bonkowski CJ, Kripfgans OD, Voellmy R, Vilaboa N, Fowlkes JB, Franceschi RT. Patterning expression of regenerative growth factors using high intensity focused ultrasound. Tissue Eng Part C Methods 2014; 20:769-79. [PMID: 24460731 DOI: 10.1089/ten.tec.2013.0518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Temporal and spatial control of growth factor gradients is critical for tissue patterning and differentiation. Reinitiation of this developmental program is also required for regeneration of tissues during wound healing and tissue regeneration. Devising methods for reconstituting growth factor gradients remains a central challenge in regenerative medicine. In the current study we develop a novel gene therapy approach for temporal and spatial control of two important growth factors in bone regeneration, vascular endothelial growth factor, and bone morphogenetic protein 2, which involves application of high intensity focused ultrasound to cells engineered with a heat-activated- and ligand-inducible gene switch. Induction of transgene expression was tightly localized within cell-scaffold constructs to subvolumes of ∼30 mm³, and the amplitude and projected area of transgene expression was tuned by the intensity and duration of ultrasound exposure. Conditions for ultrasound-activated transgene expression resulted in minimal cytotoxicity and scaffold damage. Localized regions of growth factor expression also established gradients in signaling activity, suggesting that patterns of growth factor expression generated by this method will have utility in basic and applied studies on tissue development and regeneration.
Collapse
Affiliation(s)
- Christopher G Wilson
- 1 Department of Periodontics and Oral Medicine, Center for Craniofacial Regeneration, University of Michigan School of Dentistry , Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|