1
|
Jacobs R, Singh P, Smith T, Arbuthnot P, Maepa MB. Prospects of viral vector-mediated delivery of sequences encoding anti-HBV designer endonucleases. Gene Ther 2025; 32:8-15. [PMID: 35606493 DOI: 10.1038/s41434-022-00342-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Available treatment for chronic hepatitis B virus (HBV) infection offers modest functional curative efficacy. The viral replicative intermediate comprising covalently closed circular DNA (cccDNA) is responsible for persistent chronic HBV infection. Hence, current efforts have focused on developing therapies that disable cccDNA. Employing gene editing tools has emerged as an attractive strategy, with the end goal of establishing permanently inactivated cccDNA. Although anti-HBV designer nucleases are effective in vivo, none has yet progressed to clinical trial. Lack of safe and efficient delivery systems remains the limiting factor. Several vectors may be used to deliver anti-HBV gene editor-encoding sequences, with viral vectors being at the forefront. Despite the challenges associated with packaging large gene editor-encoding sequences into viral vectors, advancement in the field is overcoming such limitations. Translation of viral vector-mediated gene editing against HBV to clinical application is within reach. This review discusses the prospects of delivering HBV targeted designer nucleases using viral vectors.
Collapse
Affiliation(s)
- Ridhwaanah Jacobs
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Prashika Singh
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tiffany Smith
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
2
|
Maepa MB, Ely A, Kramvis A, Bloom K, Naidoo K, Simani OE, Maponga TG, Arbuthnot P. Hepatitis B Virus Research in South Africa. Viruses 2022; 14:v14091939. [PMID: 36146747 PMCID: PMC9503375 DOI: 10.3390/v14091939] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Despite being vaccine-preventable, hepatitis B virus (HBV) infection remains the seventh leading cause of mortality in the world. In South Africa (SA), over 1.9 million people are chronically infected with HBV, and 70% of all Black chronic carriers are infected with HBV subgenotype A1. The virus remains a significant burden on public health in SA despite the introduction of an infant immunization program implemented in 1995 and the availability of effective treatment for chronic HBV infection. In addition, the high prevalence of HIV infection amplifies HBV replication, predisposes patients to chronicity, and complicates management of the infection. HBV research has made significant progress leading to better understanding of HBV epidemiology and management challenges in the SA context. This has led to recent revision of the national HBV infection management guidelines. Research on developing new vaccines and therapies is underway and progress has been made with designing potentially curative gene therapies against HBV. This review summarizes research carried out in SA on HBV molecular biology, epidemiology, treatment, and vaccination strategies.
Collapse
Affiliation(s)
- Mohube B. Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
- Correspondence:
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Anna Kramvis
- Hepatitis Diversity Research Unit, Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Kubendran Naidoo
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
- National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Omphile E. Simani
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Tongai G. Maponga
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7602, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| |
Collapse
|
3
|
In Vivo Delivery of Cassettes Encoding Anti-HBV Primary MicroRNAs Using an Ancestral Adeno-Associated Viral Vector. Methods Mol Biol 2020; 2115:171-183. [PMID: 32006401 DOI: 10.1007/978-1-0716-0290-4_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic hepatitis B, a liver disease resulting from persisting hepatitis B virus (HBV) infection, remains a global health challenge despite the availability of an effective vaccine. Various preclinical studies using adeno-associated viruses (AAVs) to deliver anti-HBV RNA interference (RNAi) activators to mediate long-lasting HBV silencing show promise. Recent positive outcomes observed in clinical trials and the FDA approval of AAV-based drugs further demonstrate the potential of AAVs in antiviral therapeutic development. However, the prevalence of neutralizing antibodies against vectors based on extant AVV capsids limits the application of these vectors in human. The exciting reports on in silico designed and in vitro synthesized ancestral AAV (Anc80L65) with a potential to evade prevailing AAV neutralizing antibodies will significantly contribute to the success of these vectors in humans. Here, we describe methods for production and in vivo characterization of Anc80L65 expressing anti-HBV RNAi activators.
Collapse
|
4
|
Abstract
The potential of RNA interference (RNAi)-based gene therapy has been demonstrated in many studies. However, clinical application of this technology has been hampered by a paucity of efficient and safe methods of delivering the RNAi activators. Prolonged transgene expression and improved safety of helper-dependent adenoviral vectors (HD AdVs) makes them well suited to delivery of engineered artificial intermediates of the RNAi pathway. Also, AdVs' natural hepatotropism makes them potentially useful for liver-targeted gene delivery. HD AdVs may be used for efficient delivery of cassettes encoding short hairpin RNAs and artificial primary microRNAs to the mouse liver. Methods for the characterization of HD AdV-mediated delivery of hepatitis B virus-targeting RNAi activators are described here.
Collapse
|
5
|
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic hepatitis and infects approximately three to four million people per year, about 170 million infected people in total, making it one of the major global health problems. In a minority of cases HCV is cleared spontaneously, but in most of the infected individuals infection progresses to a chronic state associated with high risk to develop liver cirrhosis, hepatocellular cancer, or liver failure. The treatment of HCV infection has evolved over the years. Interferon (IFN)-α in combination with ribavirin has been used for decades as standard therapy. More recently, a new standard-of-care treatment has been approved based on a triple combination with either HCV protease inhibitor telaprevir or boceprevir. In addition, various options for all-oral, IFN-free regimens are currently being evaluated. Despite substantial improvement of sustained virological response rates, some intrinsic limitations of these new direct-acting antivirals, including serious side effects, the risk of resistance development and high cost, urge the development of alternative or additional therapeutic strategies. Gene therapy represents a feasible alternative treatment. Small RNA technology, including RNA interference (RNAi) techniques and antisense approaches, is one of the potentially promising ways to investigate viral and host cell factors that are involved in HCV infection and replication. With this, newly developed gene therapy regimens will be provided to treat HCV. In this chapter, a comprehensive overview guides you through the current developments and applications of RNAi and microRNA-based gene therapy strategies in HCV treatment.
Collapse
|
6
|
Marimani MD, Ely A, Buff MCR, Bernhardt S, Engels JW, Scherman D, Escriou V, Arbuthnot P. Inhibition of replication of hepatitis B virus in transgenic mice following administration of hepatotropic lipoplexes containing guanidinopropyl-modified siRNAs. J Control Release 2015; 209:198-206. [PMID: 25937322 DOI: 10.1016/j.jconrel.2015.04.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022]
Abstract
Chronic infection with hepatitis B virus (HBV) occurs commonly and complications that arise from persistence of the virus are associated with high mortality. Available licensed drugs have modest curative efficacy and advancing new therapeutic strategies to eliminate the virus is therefore a priority. HBV is susceptible to inactivation by exogenous gene silencers that harness RNA interference (RNAi) and the approach has therapeutic potential. To advance RNAi-based treatment for HBV infection, use in vivo of hepatotropic lipoplexes containing siRNAs with guanidinopropyl (GP) modifications is reported here. Lipoplexes contained polyglutamate, which has previously been shown to facilitate formulation and improve efficiency of the non-viral vectors. GP moieties were included in a previously described anti-HBV siRNA that effectively targeted the conserved viral X sequence. Particles had physical properties that were suitable for use in vivo: average diameter was approximately 50-200 nm and surface charge (zeta potential) was +65 mV. Efficient hepatotropic delivery of labeled siRNA was observed following systemic intravenous injection of the particles into HBV transgenic mice. Good inhibition of markers of viral replication was observed without evidence of toxicity. Efficacy of the GP-modified siRNAs was significantly more durable and formulations made up with chemically modified siRNAs were less immunostimulatory. An RNAi-mediated mechanism was confirmed by demonstrating that HBV mRNA cleavage occurred in vivo at the intended target site. Collectively these data indicate that GP-modified siRNAs formulated in anionic polymer-containing lipoplexes are effective silencers of HBV replication in vivo and have therapeutic potential.
Collapse
Affiliation(s)
- Musa D Marimani
- Wits/SA MRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa
| | - Abdullah Ely
- Wits/SA MRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa
| | - Maximilian C R Buff
- Goethe-University, Institute of Organic Chemistry & Chemical Biology, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Stefan Bernhardt
- Goethe-University, Institute of Organic Chemistry & Chemical Biology, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Joachim W Engels
- Goethe-University, Institute of Organic Chemistry & Chemical Biology, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Daniel Scherman
- UTCBS, CNRS UMR8258, INSERM U1022, Université Paris Descartes, Chimie ParisTech, 75006 Paris, France
| | - Virginie Escriou
- UTCBS, CNRS UMR8258, INSERM U1022, Université Paris Descartes, Chimie ParisTech, 75006 Paris, France
| | - Patrick Arbuthnot
- Wits/SA MRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa.
| |
Collapse
|
7
|
Hean J, Crowther C, Ely A, Ul Islam R, Barichievy S, Bloom K, Weinberg MS, van Otterlo WA, de Koning CB, Salazar F, Marion P, Roesch EB, Lemaitre M, Herdewijn P, Arbuthnot P. Inhibition of hepatitis B virus replication in vivo using lipoplexes containing altritol-modified antiviral siRNAs. ARTIFICIAL DNA, PNA & XNA 2014; 1:17-26. [PMID: 21687523 DOI: 10.4161/adna.1.1.11981] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 01/15/2023]
Abstract
Chronic infection with the hepatitis B virus (HBV) occurs in approximately 6% of the world's population and carriers of the virus are at risk for complicating hepatocellular carcinoma. Current treatment options have limited efficacy and chronic HBV infection is likely to remain a significant global medical problem for many years to come. Silencing HBV gene expression by harnessing RNA interference (RNAi) presents an attractive option for development of novel and effective anti HBV agents. However, despite significant and rapid progress, further refinement of existing technologies is necessary before clinical application of RNAi-based HBV therapies is realized. Limiting off target effects, improvement of delivery efficiency, dose regulation and preventing reactivation of viral replication are some of the hurdles that need to be overcome. To address this, we assessed the usefulness of the recently described class of altritol-containing synthetic siRNAs (ANA siRNAs), which were administered as lipoplexes and tested in vivo in a stringent HBV transgenic mouse model. Our observations show that ANA siRNAs are capable of silencing of HBV replication in vivo. Importantly, non specific immunostimulation was observed with unmodified siRNAs and this undesirable effect was significantly attenuated by ANA modification. Inhibition of HBV replication of approximately 50% was achieved without evidence for induction of toxicity. These results augur well for future application of ANA siRNA therapeutic lipoplexes.
Collapse
Affiliation(s)
- Justin Hean
- Antiviral Gene Therapy Research Unit; School of Pathology; University of the Witwatersrand Medical School; South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sustained inhibition of hepatitis B virus replication in vivo using RNAi-activating lentiviruses. Gene Ther 2014; 22:163-71. [PMID: 25338920 DOI: 10.1038/gt.2014.94] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/26/2014] [Accepted: 09/17/2014] [Indexed: 12/15/2022]
Abstract
Chronic infection with hepatitis B virus (HBV) puts individuals at high risk for complicating cirrhosis and liver cancer, but available treatment to counter the virus rarely eliminates infection. Although harnessing RNA interference (RNAi) to silence HBV genes has shown the potential, achieving efficient and durable silencing of viral genes remains an important goal. Here we report on the propagation of lentiviral vectors (LVs) that successfully deliver HBV-targeting RNAi activators to liver cells. Mono- and tricistronic artificial primary microRNAs (pri-miRs) derived from pri-miR-31, placed under transcriptional control of the liver-specific modified murine transthyretin (mTTR) promoter, caused efficient inhibition of HBV replication markers. The tricistronic cassette was capable of silencing a mutant viral target and the effects were observed without disrupting the function of an endogenous miR (miR-16). The mTTR promoter stably expressed a reporter transgene in mouse livers over a study period of 1 year. Good silencing of HBV genes, without evidence of toxicity, was demonstrated following intravenous injection of LVs into neonatal HBV transgenic mice. Collectively, these data indicate that LVs may achieve sustained inhibition of HBV replication that is appealing for their therapeutic use.
Collapse
|
9
|
Inhibition of hepatitis B virus replication by helper dependent adenoviral vectors expressing artificial anti-HBV pri-miRs from a liver-specific promoter. BIOMED RESEARCH INTERNATIONAL 2014; 2014:718743. [PMID: 25003129 PMCID: PMC4066856 DOI: 10.1155/2014/718743] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 04/25/2014] [Accepted: 05/08/2014] [Indexed: 12/17/2022]
Abstract
Research on applying RNA interference (RNAi) to counter HBV replication has led to identification of potential therapeutic sequences. However, before clinical application liver-specific expression and efficient delivery of these sequences remain an important objective. We recently reported short-term inhibition of HBV replication in vivo by using helper dependent adenoviral vectors (HD Ads) expressing anti-HBV sequences from a constitutively active cytomegalovirus (CMV) promoter. To develop the use of liver-specific transcription regulatory elements we investigated the utility of the murine transthyretin (MTTR) promoter for expression of anti-HBV primary microRNAs (pri-miRs). HD Ads containing MTTR promoter effected superior expression of anti-HBV pri-miRs in mice compared to HD Ads containing the CMV promoter. MTTR-containing HD Ads resulted in HBV replication knockdown of up to 94% in mice. HD Ads expressing trimeric anti-HBV pri-miRs silenced HBV replication for 5 weeks. We previously showed that the product of the codelivered lacZ gene induces an immune response, and the duration of HBV silencing in vivo is likely to be attenuated by this effect. Nevertheless, expression of anti-HBV pri-miRs from MTTR promoter is well suited to countering HBV replication and development of HD Ads through attenuation of their immunostimulatory effects should advance their clinical utility.
Collapse
|
10
|
Marimani M, Hean J, Bloom K, Ely A, Arbuthnot P. Recent advances in developing nucleic acid-based HBV therapy. Future Microbiol 2014; 8:1489-504. [PMID: 24199806 DOI: 10.2217/fmb.13.87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic HBV infection remains an important public health problem and currently licensed therapies rarely prevent complications of viral persistence. Silencing HBV gene expression using gene therapy, particularly with exogenous activators of RNAi, holds promise for developing an HBV gene therapy. However, immune stimulation, off-targeting effects and inefficient delivery of RNAi activators remain problematic. Several new approaches have recently been employed to address these issues. Chemical modifications to anti-HBV synthetic siRNAs have been investigated and a variety of vectors are being developed for delivery of RNAi effectors. In this article, we review the potential utility of gene therapy for treating HBV infection.
Collapse
Affiliation(s)
- Musa Marimani
- Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
11
|
Crowther C, Mowa MB, Ely A, Arbuthnot PB. Inhibition of HBV replication in vivo using helper-dependent adenovirus vectors to deliver antiviral RNA interference expression cassettes. Antivir Ther 2013; 19:363-73. [PMID: 24296696 DOI: 10.3851/imp2713] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND HBV is hyperendemic to southern Africa and parts of Asia, but licensed antivirals have little effect on limiting life-threatening complications of the infection. Although RNA interference (RNAi)-based gene silencing has shown therapeutic potential, difficulties with delivery of anti-HBV RNAi effectors remain an obstacle to their clinical use. To address concerns about the transient nature of transgene expression and toxicity resulting from immunostimulation by recombinant adenovirus vectors (Ads), utility of RNAi-activating anti-HBV helper-dependent (HD) Ads were assessed in this study. METHODS Following intravenous administration of 5×10(9) unmodified or pegylated HD Ad infectious particles to HBV transgenic mice, HBV viral loads and serum HBV surface antigen levels were monitored for 12 weeks. Immunostimulation of HD Ads was assessed by measuring inflammatory cytokines, hepatic function and immune response to the co-delivered LacZ reporter gene. RESULTS Unmodified and pegylated HD Ads transduced 80-90% of hepatocytes and expressed short hairpin RNAs (shRNAs) were processed to generate intended HBV-targeting guides. Markers of HBV replication were decreased by approximately 95% and silencing was sustained for 8 weeks. Unmodified HD Ads induced release of proinflammatory cytokines and there was evidence of an adaptive immune response to β-galactosidase. However the HD Ad-induced innate immune response was minimal in preparations that were enriched with infectious particles. CONCLUSIONS HD Ads have potential utility for delivery of therapeutic HBV-silencing sequences and alterations of these vectors to attenuate their immune responses may further improve their efficacy.
Collapse
Affiliation(s)
- Carol Crowther
- Antiviral Gene Therapy Research Unit and African Network for Drugs and Diagnostics Innovation, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | |
Collapse
|
12
|
Shi B, Abrams M. Technologies for investigating the physiological barriers to efficient lipid nanoparticle-siRNA delivery. J Histochem Cytochem 2013; 61:407-20. [PMID: 23504369 PMCID: PMC3715328 DOI: 10.1369/0022155413484152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/20/2013] [Indexed: 11/22/2022] Open
Abstract
Small interfering RNA (siRNA) therapeutics have advanced from bench to clinical trials in recent years, along with new tools developed to enable detection of siRNA delivered at the organ, cell, and subcellular levels. Preclinical models of siRNA delivery have benefitted from methodologies such as stem-loop quantitative polymerase chain reaction, histological in situ immunofluorescent staining, endosomal escape assay, and RNA-induced silencing complex loading assay. These technologies have accelerated the detection and optimization of siRNA platforms to overcome the challenges associated with delivering therapeutic oligonucleotides to the cytosol of specific target cells. This review focuses on the methodologies and their application in the biodistribution of siRNA delivered by lipid nanoparticles.
Collapse
Affiliation(s)
- Bin Shi
- Department of RNA Therapeutics, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, USA.
| | | |
Collapse
|
13
|
Tseng WC, Su LY, Fang TY. pH responsive PEGylation through metal affinity for gene delivery mediated by histidine-grafted polyethylenimine. J Biomed Mater Res B Appl Biomater 2012; 101:375-86. [DOI: 10.1002/jbm.b.32848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 10/07/2012] [Accepted: 10/10/2012] [Indexed: 11/07/2022]
|
14
|
Abstract
Human immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV), and herpes simplex virus (HSV) have been incurable to date because effective antiviral therapies target only replicating viruses and do not eradicate latently integrated or nonreplicating episomal viral genomes. Endonucleases that can target and cleave critical regions within latent viral genomes are currently in development. These enzymes are being engineered with high specificity such that off-target binding of cellular DNA will be absent or minimal. Imprecise nonhomologous-end-joining (NHEJ) DNA repair following repeated cleavage at the same critical site may permanently disrupt translation of essential viral proteins. We discuss the benefits and drawbacks of three types of DNA cleavage enzymes (zinc finger endonucleases, transcription activator-like [TAL] effector nucleases [TALENs], and homing endonucleases [also called meganucleases]), the development of delivery vectors for these enzymes, and potential obstacles for successful treatment of chronic viral infections. We then review issues regarding persistence of HIV-1, HBV, and HSV that are relevant to eradication with genome-altering approaches.
Collapse
|
15
|
Lyra-González I, Flores-Fong LE, González-García I, Medina-Preciado D, Armendáriz-Borunda J. Adenoviral gene therapy in hepatocellular carcinoma: a review. Hepatol Int 2012. [DOI: 10.1007/s12072-012-9367-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Ivacik D, Ely A, Arbuthnot P. Countering hepatitis B virus infection using RNAi: how far are we from the clinic? Rev Med Virol 2011; 21:383-96. [PMID: 21913277 DOI: 10.1002/rmv.705] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 12/14/2022]
Abstract
Globally, persistent HBV infection is a significant cause of public health problems. Currently available HBV therapies have variable efficacy and there is a need to develop improved treatment to prevent cirrhosis and hepatocellular carcinoma. Although RNA interference (RNAi)-based approaches have shown promise, accomplishing safe and sustained silencing by RNAi activators, as well as their efficient delivery to hepatocytes have hampered clinical translation of this very promising technology. Expressed silencers may be produced in a sustained manner from stable DNA templates, which makes them suited to treatment of chronic HBV infection. DNA expression cassettes can be incorporated into both viral and non-viral vectors, but in vivo delivery of these cassettes with non-viral vectors is currently inefficient. Synthetic short interfering RNAs (siRNAs), which may be chemically modified to improve stability, specificity and efficacy, are more conveniently delivered to their cytoplasmic sites of action with synthetic non-viral vectors. However, the short duration of action of this class of RNAi activator is a drawback for treatment of chronic HBV infection. Despite the impressive progress that has been made in developing highly effective HBV gene silencers, challenges continue to face implementation of RNAi-based HBV therapy. This review will discuss the current status of the topic and consider the developments that are required to advance RNAi-based HBV therapy to clinical application.
Collapse
Affiliation(s)
- Dejana Ivacik
- Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
17
|
Shi B, Keough E, Matter A, Leander K, Young S, Carlini E, Sachs AB, Tao W, Abrams M, Howell B, Sepp-Lorenzino L. Biodistribution of small interfering RNA at the organ and cellular levels after lipid nanoparticle-mediated delivery. J Histochem Cytochem 2011; 59:727-40. [PMID: 21804077 PMCID: PMC3261601 DOI: 10.1369/0022155411410885] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chemically stabilized small interfering RNA (siRNA) can be delivered systemically by intravenous injection of lipid nanoparticles (LNPs) in rodents and primates. The biodistribution and kinetics of LNP-siRNA delivery in mice at organ and cellular resolution have been studied using immunofluorescence (IF) staining and quantitative polymerase chain reaction (qPCR). At 0.5 and 2 hr post tail vein injection of Cy5-labeled siRNA encapsulated in LNP, the organ rank-order of siRNA levels is liver > spleen > kidney, with only negligible accumulation in duodenum, lung, heart, and brain. Similar conclusions were drawn by using qPCR to measure tissue siRNA levels as a secondary end point. siRNA levels in these tissues decreased by more than 10-fold after 24 hr. Within the liver, LNPs delivered siRNA to hepatocytes, Kupffer cells, and sinusoids in a time-dependent manner, as revealed by IF staining and signal quantitation methods established using OPERA/Columbus software. siRNA first accumulated in liver sinusoids and trafficked to hepatocytes by 2 hr post dose, corresponding to the onset of target mRNA silencing. Fluorescence in situ hybridization methods were used to detect both strands of siRNA in fixed tissues. Collectively, the authors have implemented a platform to evaluate biodistribution of siRNA across cell types and across tissues in vivo, with the objective of elucidating the pharmacokinetic and pharmacodynamic relationship to guide optimization of delivery vehicles.
Collapse
Affiliation(s)
- Bin Shi
- Department of RNA Therapeutics, Merck Research Laboratories, Merck & Co, West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Arbuthnot P. MicroRNA-like antivirals. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:746-55. [PMID: 21616187 DOI: 10.1016/j.bbagrm.2011.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 12/26/2022]
Abstract
Employing engineered DNA templates to express antiviral microRNA (miRNA) sequences has considerable therapeutic potential. The durable silencing that may be achieved with these RNAi activators is valuable to counter chronic viral infections, such as those caused by HIV-1, hepatitis B, hepatitis C and dengue viruses. Early use of expressed antiviral miRNAs entailed generation of cassettes containing Pol III promoters (e.g. U6 and H1) that transcribe virus-targeting short hairpin RNA mimics of precursor miRNAs. Virus escape from single gene silencing elements prompted later development of combinatorial antiviral miRNA expression cassettes that form multitargeting siRNAs from transcribed long hairpin RNA and polycistronic primary miRNA sequences. Weaker Pol III and Pol II promoters have also been employed to control production of antiviral miRNA mimics, improve dose regulation and address concerns about toxicity caused by saturation of the endogenous miRNA pathway. Efficient delivery of expressed antiviral sequences remains challenging and utilizing viral vectors, which include recombinant adenoviruses, adeno-associated viruses and lentiviruses, has been favored. Investigations using recombinant lentiviruses to transduce CD34+ hematological precursor cells with expressed HIV-1 gene silencers are at advanced stages and show promise in preclinical and clinical trials. Although the use of expressed antiviral miRNA sequences to treat viral infections is encouraging, eventual therapeutic application will be dependent on rigorously proving their safety, efficient delivery to target tissues and uncomplicated large scale preparation of vector formulations. This article is part of a special issue entitled: MicroRNAs in viral gene regulation.
Collapse
|
19
|
|
20
|
Mowa MB, Crowther C, Arbuthnot P. Therapeutic potential of adenoviral vectors for delivery of expressed RNAi activators. Expert Opin Drug Deliv 2010; 7:1373-85. [PMID: 21073358 DOI: 10.1517/17425247.2010.533655] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE OF THE FIELD Harnessing RNA interference (RNAi) to silence pathology-causing genes has shown promise as a mode of therapy. The sustained gene inhibition that may be achieved with expressed sequences is potentially useful for treatment of chronic viral infections, but efficient and safe delivery of these sequences remains a challenge. It is generally recognized that there is no ideal vector for all therapeutic RNAi applications, but recombinant adenovirus vectors are well suited to hepatic delivery of expressed RNAi activators. AREAS COVERED IN THIS REVIEW Adenoviruses are hepatotropic after systemic administration, and this is useful for delivering expressed RNAi activators that silence pathology-causing genes in the liver. However, drawbacks of adenoviruses are toxicity and diminished efficacy, which result from induction of innate and adaptive immune responses. In this review, the advantages and hurdles facing therapeutic application of adenoviral vectors for liver delivery of RNAi effectors are covered. WHAT THE READER WILL GAIN Insights into adenovirus vectorology and the methods that have been used to make these vectors safer for advancing clinical application of RNAi-based therapy. TAKE HOME MESSAGE Adenoviruses are very powerful hepatotropic vectors. To make adenoviruses more effective for clinical use, polymer conjugation and deletion of viral vector sequences have been used successfully. However, further modifications to attenuate immunostimulation as well as improvements in large-scale production are necessary before the therapeutic potential of adenovirus-mediated delivery of RNAi activators is realized.
Collapse
Affiliation(s)
- Mohube Betty Mowa
- University of the Witwatersrand, School of Pathology, Antiviral Gene Therapy Research Unit, Health Sciences Faculty, Private Bag 3, WITS 2050, South Africa
| | | | | |
Collapse
|
21
|
Liu L, Wang S, Shan B, Sang M, Liu S, Wang G. Advances in viral-vector systemic cytokine gene therapy against cancer. Vaccine 2010; 28:3883-7. [PMID: 20371389 DOI: 10.1016/j.vaccine.2010.03.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/21/2010] [Indexed: 01/31/2023]
Abstract
Current strategies for cancer gene therapy consist mainly of direct inhibition of tumor cell growth and activation of systemic host defense mechanisms. Cytokine gene-transduced tumor cells have been used as vaccines in clinical trials, which have shown good safety profiles and some local responses but substantial lack of systemic efficacy. Cytokines should be directed at the level of gene selection and delivery, in order to identify the optimal cytokine and achieve efficient and durable cytokine expression at the level of improving immune stimulation. In this review, we will summarize the current achievements of cytokine gene therapy, especially viral-vector, and their applications in cancer treatment. Additionally, we will also discuss and propose future perspectives about cancer gene therapy.
Collapse
Affiliation(s)
- Lihua Liu
- Research Center, the Fourth Clinical Hospital of Hebei Medical University and Hebei Cancer Institute, 12 Jiankanglu, Shijiazhuang, 050011, China
| | | | | | | | | | | |
Collapse
|
22
|
Shlomai A, Lubelsky Y, Har-Noy O, Shaul Y. The "Trojan horse" model-delivery of anti-HBV small interfering RNAs by a recombinant HBV vector. Biochem Biophys Res Commun 2009; 390:619-23. [PMID: 19818740 DOI: 10.1016/j.bbrc.2009.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/05/2009] [Indexed: 01/24/2023]
Abstract
Hepatitis B virus (HBV) is a small virus that infects the liver. The major obstacle in applying the RNA interference method as an anti-HBV weapon is the challenge to deliver the small interfering RNA molecules to the liver efficiently and specifically. Here we show that HBV-specific short hairpin RNAs (shRNAs) are efficiently expressed from a recombinant HBV into which an shRNA-expressing cassette was inserted, resulting in a significant knock-down of HBV gene expression. Notably, this recombinant HBV still expresses the HBV Core protein, which is targeted by the shRNAs produced by the same vector. Our results set the stage for further use of this recombinant HBV virus with the potential to function as a "Trojan horse"; one that specifically targets the liver and uses the resident virus as an helper for its own propagation, and at the same time eliminate itself and the resident HBV by knocking-down their gene expression.
Collapse
Affiliation(s)
- Amir Shlomai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
23
|
Ely A, Naidoo T, Arbuthnot P. Efficient silencing of gene expression with modular trimeric Pol II expression cassettes comprising microRNA shuttles. Nucleic Acids Res 2009; 37:e91. [PMID: 19474340 PMCID: PMC2715259 DOI: 10.1093/nar/gkp446] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Expressed polycistronic microRNA (miR) cassettes have useful properties that can be utilized for RNA interference (RNAi)-based gene silencing. To advance their application we generated modular trimeric anti-hepatitis B virus (HBV) Pol II cassettes encoding primary (pri)-miR-31-derived shuttles that target three different viral genome sites. A panel of six expression cassettes, comprising each of the possible ordering combinations of the pri-miR-31 shuttles, was initially tested. Effective silencing of individual target sequences was achieved in transfected cells and transcribed pri-miR trimers generated intended guide strands. There was, however, variation in processing and silencing by each of the shuttles. In some cases the monomers’ position within the trimers influenced processing and this correlated with target silencing. Compromised efficacy could be compensated by substituting the pri-miR-31 backbone with a pri-miR-30a scaffold. Inhibition of HBV replication was achieved in vivo, and in cell culture without disruption of endogenous miR function or induction of the interferon response. A mutant HBV target sequence, with changes in one of the guide cognates, was also silenced by the trimeric cassettes. The modular nature of the cassettes together with compatibility with expression from Pol II promoters should be advantageous for gene silencing applications requiring simultaneous targeting of different sites.
Collapse
Affiliation(s)
- Abdullah Ely
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Private Bag 3 WITS 2050, South Africa
| | | | | |
Collapse
|
24
|
Pan Q, Tilanus HW, Janssen HLA, van der Laan LJW. Prospects of RNAi and microRNA-based therapies for hepatitis C. Expert Opin Biol Ther 2009; 9:713-24. [DOI: 10.1517/14712590902989970] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|