1
|
Sun C, Slade L, Mbonu P, Ordner H, Mitchell C, Mitchell M, Liang FC. Membrane protein chaperone and sodium chloride modulate the kinetics and morphology of amyloid beta aggregation. FEBS J 2024; 291:158-176. [PMID: 37786925 DOI: 10.1111/febs.16967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/04/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Protein aggregation is a biological phenomenon caused by the accumulation of misfolded proteins. Amyloid beta (Aβ) peptides are derived from the cleavage of a larger membrane protein molecule and accumulate to form plaques extracellularly. According to the amyloid hypothesis, accumulation of Aβ aggregates in the brain is primarily responsible for the pathogenesis of Alzheimer's disease (AD). Therefore, the disassembly of Aβ aggregates may provide opportunities for alleviating or treating AD. Here, we show that the novel protein targeting machinery from chloroplast, chloroplast signal recognition particle 43 (cpSRP43), is an ATP-independent membrane protein chaperone that can both prevent and reverse Aβ aggregation effectively. Using of thioflavin T dye, we obtained the aggregation kinetics of Aβ aggregation and determined that the chaperone prevents Aβ aggregation in a concentration-dependent manner. Size exclusion chromatography and sedimentation assays showed that 10-fold excess of cpSRP43 can keep Aβ in the soluble monomeric form. Electron microscopy showed that the fibril structure was disrupted in the presence of this chaperone. Importantly, cpSRP43 utilizes the binding energy to actively remodel the preformed Aβ aggregates without assistance by a co-chaperone and ATP, emphasizing its unique function among protein chaperones. Moreover, when sodium chloride concentration is higher than 25 mm, the Aβ aggregation rate increases drastically to form tightly associated aggregates and generate more oligomers. Our results demonstrate that the presence of cpSRP43 and low NaCl levels inhibit or retard Aβ peptide aggregation, potentially opening new avenues to strategically develop an effective treatment for AD.
Collapse
Affiliation(s)
- Christopher Sun
- Department of Biology, Midwestern State University, Wichita Falls, TX, USA
| | - Leah Slade
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Prisca Mbonu
- Department of Biology, Midwestern State University, Wichita Falls, TX, USA
| | - Hunter Ordner
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Connor Mitchell
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Matthew Mitchell
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Fu-Cheng Liang
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| |
Collapse
|
2
|
Jain M, Dhariwal R, Patil N, Ojha S, Tendulkar R, Tendulkar M, Dhanda PS, Yadav A, Kaushik P. Unveiling the Molecular Footprint: Proteome-Based Biomarkers for Alzheimer's Disease. Proteomes 2023; 11:33. [PMID: 37873875 PMCID: PMC10594437 DOI: 10.3390/proteomes11040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. Early and accurate diagnosis of AD is crucial for implementing timely interventions and developing effective therapeutic strategies. Proteome-based biomarkers have emerged as promising tools for AD diagnosis and prognosis due to their ability to reflect disease-specific molecular alterations. There is of great significance for biomarkers in AD diagnosis and management. It emphasizes the limitations of existing diagnostic approaches and the need for reliable and accessible biomarkers. Proteomics, a field that comprehensively analyzes the entire protein complement of cells, tissues, or bio fluids, is presented as a powerful tool for identifying AD biomarkers. There is a diverse range of proteomic approaches employed in AD research, including mass spectrometry, two-dimensional gel electrophoresis, and protein microarrays. The challenges associated with identifying reliable biomarkers, such as sample heterogeneity and the dynamic nature of the disease. There are well-known proteins implicated in AD pathogenesis, such as amyloid-beta peptides, tau protein, Apo lipoprotein E, and clusterin, as well as inflammatory markers and complement proteins. Validation and clinical utility of proteome-based biomarkers are addressing the challenges involved in validation studies and the diagnostic accuracy of these biomarkers. There is great potential in monitoring disease progression and response to treatment, thereby aiding in personalized medicine approaches for AD patients. There is a great role for bioinformatics and data analysis in proteomics for AD biomarker research and the importance of data preprocessing, statistical analysis, pathway analysis, and integration of multi-omics data for a comprehensive understanding of AD pathophysiology. In conclusion, proteome-based biomarkers hold great promise in the field of AD research. They provide valuable insights into disease mechanisms, aid in early diagnosis, and facilitate personalized treatment strategies. However, further research and validation studies are necessary to harness the full potential of proteome-based biomarkers in clinical practice.
Collapse
Affiliation(s)
- Mukul Jain
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara 391760, India; (R.D.); (N.P.)
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Rupal Dhariwal
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara 391760, India; (R.D.); (N.P.)
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Nil Patil
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara 391760, India; (R.D.); (N.P.)
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Sandhya Ojha
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India;
| | - Reshma Tendulkar
- Vivekanand Education Society, College of Pharmacy, Chembur, Mumbai 400071, India;
| | - Mugdha Tendulkar
- Sardar Vallabhbhai Patel College of Science, Mira Rd (East), Thane 400071, India;
| | | | - Alpa Yadav
- Department of Botany, Indira Gandhi University, Meerpur, Rewari 122502, India;
| | - Prashant Kaushik
- Instituto de Conservacióny Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
3
|
Transcranial Electromagnetic Treatment Stops Alzheimer’s Disease Cognitive Decline over a 2½-Year Period: A Pilot Study. MEDICINES 2022; 9:medicines9080042. [PMID: 36005647 PMCID: PMC9416517 DOI: 10.3390/medicines9080042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Background: There is currently no therapeutic that can stop or reverse the progressive memory impairment of Alzheimer’s disease (AD). However, we recently published that 2 months of daily, in-home transcranial electromagnetic treatment (TEMT) reversed the cognitive impairment in eight mild/moderate AD subjects. These cognitive enhancements were accompanied by predicted changes in AD markers within both the blood and cerebrospinal fluid (CSF). Methods: In view of these encouraging findings, the initial clinical study was extended twice to encompass a period of 2½ years. The present study reports on the resulting long-term safety, cognitive assessments, and AD marker evaluations from the five subjects who received long-term treatment. Results: TEMT administration was completely safe over the 2½-year period, with no deleterious side effects. In six cognitive/functional tasks (including the ADAS-cog13, Rey AVLT, MMSE, and ADL), no decline in any measure occurred over this 2½-year period. Long-term TEMT induced reductions in the CSF levels of C-reactive protein, p-tau217, Aβ1-40, and Aβ1-42 while modulating CSF oligomeric Aβ levels. In the plasma, long-term TEMT modulated/rebalanced levels of both p-tau217 and total tau. Conclusions: Although only a limited number of AD patients were involved in this study, the results suggest that TEMT can stop the cognitive decline of AD over a period of at least 2½ years and can do so with no safety issues.
Collapse
|
4
|
Song G, Yang H, Shen N, Pham P, Brown B, Lin X, Hong Y, Sinu P, Cai J, Li X, Leon M, Gordon MN, Morgan D, Zhang S, Cao C. An Immunomodulatory Therapeutic Vaccine Targeting Oligomeric Amyloid-β. J Alzheimers Dis 2021; 77:1639-1653. [PMID: 32925044 DOI: 10.3233/jad-200413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Aging is considered the most important risk factor for Alzheimer's disease (AD). Recent research supports the theory that immunotherapy targeting the "oligomeric" forms of amyloid-β (Aβ) may halt the progression of AD. However, previous clinical trial of the vaccine against Aβ, called AN1792, was suspended due to cases of meningoencephalitis in patients. OBJECTIVE To develop a peptide sensitized dendritic cells (DCs) vaccine that would target oligomer Aβ and prevent an autoimmune response. METHODS Double transgenic APPswe/PS1ΔE9 (Tg) and C57BL/6J control mice were used in this study. Cytokine expression profile detection, characterization of antisera, brain GSK-3β, LC3 expression, and spatial working memory testing before and post-vaccination were obtained. RESULTS Epitope prediction indicated that E22W42 could generate 13 new T cell epitopes which can strengthen immunity in aged subjects and silence several T cell epitopes of the wild type Aβ. The silenced T cell epitope could help avoid the autoimmune response that was seen in some patients of the AN-1792 vaccine. The E22W42 not only helped sensitize bone marrow-derived DCs for the development of an oligomeric Aβ-specific antibody, but also delayed memory impairment in the APP/PS1 mouse model. Most importantly, this E22W42 peptide will not alter the DC's natural immunomodulatory properties. CONCLUSION The E22W42 vaccine is possibly safer for patients with impaired immune systems. Since there is increasing evidence that oligomeric form of Aβ are the toxic species to neurons, the E22W42 antibody's specificity for these "oligomeric" Aβ species could provide the opportunity to produce some clinical benefits in AD subjects.
Collapse
Affiliation(s)
- Ge Song
- Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Haiqiang Yang
- College of Arts and Science, University of South Florida, Tampa, FL, USA
| | - Ning Shen
- College of Arts and Science, University of South Florida, Tampa, FL, USA
| | - Phillip Pham
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Breanna Brown
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Xiaoyang Lin
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Yuzhu Hong
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Paul Sinu
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Jianfeng Cai
- College of Arts and Science, University of South Florida, Tampa, FL, USA
| | - Xiaopeng Li
- College of Arts and Science, University of South Florida, Tampa, FL, USA
| | - Michael Leon
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Marcia N Gordon
- Department of Translational Neuroscience, College of Medicine, Michigan State University, Grand Rapids, MI, USA
| | - David Morgan
- Department of Translational Neuroscience, College of Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Sai Zhang
- Institution of Brain Trauma and Neurology Disease, Key Laboratory of Neurotrauma Repair of Tianjin, Tianjin, China
| | - Chuanhai Cao
- College of Arts and Science, University of South Florida, Tampa, FL, USA.,Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.,College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
5
|
Lin Y, Reino C, Carrera J, Pérez J, van Loosdrecht MCM. Glycosylated amyloid-like proteins in the structural extracellular polymers of aerobic granular sludge enriched with ammonium-oxidizing bacteria. Microbiologyopen 2018; 7:e00616. [PMID: 29604180 PMCID: PMC6291783 DOI: 10.1002/mbo3.616] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/20/2018] [Accepted: 02/10/2018] [Indexed: 12/31/2022] Open
Abstract
A new type of structural extracellular polymers (EPS) was extracted from aerobic granular sludge dominated by ammonium-oxidizing bacteria. It was analyzed by Raman and FTIR spectroscopy to characterize specific amino acids and protein secondary structure, and by SDS-PAGE with different stains to identify different glycoconjugates. Its intrinsic fluorescence was captured to visualize the location of the extracted EPS in the nitrifying granules, and its hydrogel-forming property was studied by rheometry. The extracted EPS is abundant with cross ß-sheet secondary structure, contains glycosylated proteins/polypeptides, and rich in tryptophan. It forms hydrogel with high mechanical strength. The extraction and discovery of glycosylated proteins and/or amyloids further shows that conventionally used extraction and characterization techniques are not adequate for the study of structural extracellular polymers in biofilms and/or granular sludge. Confirming amyloids secondary structure in such a complex sample is challengeable due to the possibility of amyloids glycosylation and self-assembly. A new definition of extracellular polymers components which includes glycosylated proteins and a better approach to studying them is required to stimulate biofilm research.
Collapse
Affiliation(s)
- Yuemei Lin
- Department of BiotechnologyFaculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands
| | - Clara Reino
- GENOCOV Research GroupDepartment of Chemical, Biological and Environmental EngineeringSchool of EngineeringUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Julián Carrera
- GENOCOV Research GroupDepartment of Chemical, Biological and Environmental EngineeringSchool of EngineeringUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Julio Pérez
- Department of BiotechnologyFaculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands
| | - Mark C. M. van Loosdrecht
- Department of BiotechnologyFaculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
6
|
Gao S, Li R, Cui M, Liu Y, Xie L. A Multichannel Time-Tagged Time-Resolved (TTTR) Model for Quantification of Oligomer Concentrations Based on Antibunching Effect. ACS OMEGA 2018; 3:14302-14308. [PMID: 31458120 PMCID: PMC6644909 DOI: 10.1021/acsomega.8b01387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/16/2018] [Indexed: 06/10/2023]
Abstract
Molecule/protein aggregation causes many devastating and incurable diseases in human bodies. For example, studies have revealed that protein oligomers formed at the early stage are toxic and may be mostly responsible for some diseases. In the fundamental research, differentiation of different protein oligomers and quantification of the concentrations are important and challenging. Here, we have developed a multichannel time-tagged time-resolved (TTTR) confocal fluorescence model based on antibunching effect to solve the problem. The key point of the model is that n-oligomers labeled with n-dyes cannot emit more than n photons at one time. By assuming that all labeling dyes behave perfectly as noninteractive individual dyes, the analytic relationship between photon-emission probability and oligomer concentrations has been derived. Simulations have been carried out to verify the model, in which differentiation and concentration quantification of up to tetraoligomers can be realized with a relative error <10% in an eight-channel TTTR confocal setup with eight single-photon detectors.
Collapse
Affiliation(s)
- Shanshan Gao
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials
in Medical Applications, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
| | - Ruiru Li
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials
in Medical Applications, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, P. R.
China
| | - Menghua Cui
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials
in Medical Applications, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, P. R.
China
- Academy
for Advanced Interdisciplinary Studies, Peking University, No.
5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Ying Liu
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials
in Medical Applications, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
| | - Liming Xie
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials
in Medical Applications, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, P. R.
China
| |
Collapse
|
7
|
Zhang Y, Yang HQ, Fang F, Song LL, Jiao YY, Wang H, Peng XL, Zheng YP, Wang J, He JS, Hung T. Single chain variable fragment against aβ expressed in baculovirus inhibits abeta fibril elongation and promotes its disaggregation. PLoS One 2015; 10:e0124736. [PMID: 25919299 PMCID: PMC4412524 DOI: 10.1371/journal.pone.0124736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of age-related dementia, and the most urgent problem is that it is currently incurable. Amyloid-β (Aβ) peptide is believed to play a major role in the pathogenesis of AD. We previously reported that an Aβ N-terminal amino acid targeting monoclonal antibody (MAb), A8, inhibits Aβ fibril formation and has potential as an immunotherapy for AD based on a mouse model. To further study the underlying mechanisms, we tested our hypothesis that the single chain fragment variable (scFv) without the Fc fragment is capable of regulating either Aβ aggregation or disaggregation in vitro. Here, a model of cell-free Aβ “on-pathway” aggregation was established and identified using PCR, Western blot, ELISA, transmission electron microscopy (TEM) and thioflavin T (ThT) binding analyses. His-tagged A8 scFvs was cloned and solubly expressed in baculovirus. Our data demonstrated that the Ni-NTA agarose affinity-purified A8 scFv inhibited the forward reaction of “on-pathway” aggregation and Aβ fibril maturation. The effect of A8 scFv on Aβ fibrillogenesis was markedly more significant when administered at the start of the Aβ folding reaction. Furthermore, the results also showed that pre-formed Aβ fibrils could be disaggregated via incubation with purified A8 scFv, which suggested that A8 scFv is involved in the reverse reaction of Aβ aggregation. Therefore, A8 scFv was capable of both inhibiting fibrillogenesis and disaggregating matured fibrils. Our present study provides valuable insight into the regulators of ultrastructural dynamics of cell-free “on-pathway” Aβ aggregation and will assist in the development of therapeutic strategies for AD.
Collapse
Affiliation(s)
- Ying Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
- * E-mail:
| | - Hai-Qiang Yang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Fang Fang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Lin-Lin Song
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Yue-Ying Jiao
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - He Wang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiang-Lei Peng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Yan-Peng Zheng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jun Wang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jin-Sheng He
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Tao Hung
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
- Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| |
Collapse
|
8
|
Novel APP K724M mutation causes Chinese early-onset familial Alzheimer's disease and increases amyloid-β42 to amyloid-β40 ratio. Neurobiol Aging 2014; 35:2657.e1-2657.e6. [DOI: 10.1016/j.neurobiolaging.2014.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/27/2014] [Accepted: 06/07/2014] [Indexed: 12/20/2022]
|
9
|
Wu H, Zhang F, Williamson N, Jian J, Zhang L, Liang Z, Wang J, An L, Tunnacliffe A, Zheng Y. Effects of secondary metabolite extract from Phomopsis occulta on β-amyloid aggregation. PLoS One 2014; 9:e109438. [PMID: 25275648 PMCID: PMC4183696 DOI: 10.1371/journal.pone.0109438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 09/02/2014] [Indexed: 11/19/2022] Open
Abstract
Inhibition of β-amyloid (Aβ) aggregation is an attractive therapeutic and preventive strategy for the discovery of disease-modifying agents in Alzheimer's disease (AD). Phomopsis occulta is a new, salt-tolerant fungus isolated from mangrove Pongamia pinnata (L.) Pierre. We report here the inhibitory effects of secondary metabolites from Ph. occulta on the aggregation of Aβ42. It was found that mycelia extracts (MEs) from Ph. occulta cultured with 0, 2, and 3 M NaCl exhibited inhibitory activity in an E. coli model of Aβ aggregation. A water-soluble fraction, ME0-W-F1, composed of mainly small peptides, was able to reduce aggregation of an Aβ42-EGFP fusion protein and an early onset familial mutation Aβ42E22G-mCherry fusion protein in transfected HEK293 cells. ME0-W-F1 also antagonized the cytotoxicity of Aβ42 in the neural cell line SH-SY5Y in dose-dependent manner. Moreover, SDS-PAGE and FT-IR analysis confirmed an inhibitory effect of ME0-W-F1 on the aggregation of Aβ42 in vitro. ME0-W-F1 blocked the conformational transition of Aβ42 from α-helix/random coil to β-sheet, and thereby inhibited formation of Aβ42 tetramers and high molecular weight oligomers. ME0-W-F1 and other water-soluble secondary metabolites from Ph. occulta therefore represent new candidate natural products against aggregation of Aβ42, and illustrate the potential of salt tolerant fungi from mangrove as resources for the treatment of AD and other diseases.
Collapse
Affiliation(s)
- Haiqiang Wu
- College of Life Sciences, Shenzhen University, Shenzhen, China
| | - Fang Zhang
- College of Life Sciences, Shenzhen University, Shenzhen, China
| | - Neil Williamson
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Jie Jian
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Liao Zhang
- College of Life Sciences, Shenzhen University, Shenzhen, China
| | - Zeqiu Liang
- College of Life Sciences, Shenzhen University, Shenzhen, China
| | - Jinyu Wang
- College of Life Sciences, Shenzhen University, Shenzhen, China
| | - Linkun An
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Alan Tunnacliffe
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (AT); (YZ)
| | - Yizhi Zheng
- College of Life Sciences, Shenzhen University, Shenzhen, China
- * E-mail: (AT); (YZ)
| |
Collapse
|
10
|
Zhang Y, Hung T, Song J, He J. Electron microscopy: essentials for viral structure, morphogenesis and rapid diagnosis. SCIENCE CHINA-LIFE SCIENCES 2013; 56:421-30. [PMID: 23633074 PMCID: PMC7089233 DOI: 10.1007/s11427-013-4476-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/28/2013] [Indexed: 11/24/2022]
Abstract
Electron microscopy (EM) should be used in the front line for detection of agents in emergencies and bioterrorism, on accounts of its speed and accuracy. However, the number of EM diagnostic laboratories has decreased considerably and an increasing number of people encounter difficulties with EM results. Therefore, the research on viral structure and morphologyant in EM diagnostic practice. EM has several technological advantages, and should be a fundamental tool in clinical diagnosis of viruses, particularly when agents are unknown or unsuspected. In this article, we review the historical contribution of EM to virology, and its use in virus differentiation, localization of specific virus antigens, virus-cell interaction, and viral morphogenesis. It is essential that EM investigations are based on clinical and comprehensive pathogenesis data from light or confocal microscopy. Furthermore, avoidance of artifacts or false results is necessary to exploit fully the advantages while minimizing its limitations.
Collapse
Affiliation(s)
- Ying Zhang
- College of Life Sciences and Bioengineering, Electron Microscopy Laboratory, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | | | | | | |
Collapse
|
11
|
Pryor NE, Moss MA, Hestekin CN. Unraveling the early events of amyloid-β protein (Aβ) aggregation: techniques for the determination of Aβ aggregate size. Int J Mol Sci 2012; 13:3038-3072. [PMID: 22489141 PMCID: PMC3317702 DOI: 10.3390/ijms13033038] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/09/2012] [Accepted: 02/23/2012] [Indexed: 11/16/2022] Open
Abstract
The aggregation of proteins into insoluble amyloid fibrils coincides with the onset of numerous diseases. An array of techniques is available to study the different stages of the amyloid aggregation process. Recently, emphasis has been placed upon the analysis of oligomeric amyloid species, which have been hypothesized to play a key role in disease progression. This paper reviews techniques utilized to study aggregation of the amyloid-β protein (Aβ) associated with Alzheimer's disease. In particular, the review focuses on techniques that provide information about the size or quantity of oligomeric Aβ species formed during the early stages of aggregation, including native-PAGE, SDS-PAGE, Western blotting, capillary electrophoresis, mass spectrometry, fluorescence correlation spectroscopy, light scattering, size exclusion chromatography, centrifugation, enzyme-linked immunosorbent assay, and dot blotting.
Collapse
MESH Headings
- Alzheimer Disease/etiology
- Alzheimer Disease/metabolism
- Amyloid beta-Peptides/chemistry
- Amyloid beta-Peptides/metabolism
- Blotting, Western
- Chromatography, Gel
- Disease Progression
- Electrophoresis, Capillary
- Electrophoresis, Polyacrylamide Gel
- Humans
- Particle Size
- Protein Aggregates
- Protein Aggregation, Pathological
- Protein Multimerization
- Protein Structure, Quaternary
- Scattering, Radiation
- Spectrometry, Fluorescence
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- N. Elizabeth Pryor
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701, USA; E-Mail:
| | - Melissa A. Moss
- Department of Chemical Engineering, 2C02 Swearingen Engineering Center, University of South Carolina, Columbia, SC 29208, USA; E-Mail:
| | - Christa N. Hestekin
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701, USA; E-Mail:
| |
Collapse
|
12
|
Pryor E, Kotarek JA, Moss MA, Hestekin CN. Monitoring insulin aggregation via capillary electrophoresis. Int J Mol Sci 2011; 12:9369-88. [PMID: 22272138 PMCID: PMC3257135 DOI: 10.3390/ijms12129369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/06/2011] [Accepted: 12/12/2011] [Indexed: 01/30/2023] Open
Abstract
Early stages of insulin aggregation, which involve the transient formation of oligomeric aggregates, are an important aspect in the progression of Type II diabetes and in the quality control of pharmaceutical insulin production. This study is the first to utilize capillary electrophoresis (CE) with ultraviolet (UV) detection to monitor insulin oligomer formation at pH 8.0 and physiological ionic strength. The lag time to formation of the first detected species in the aggregation process was evaluated by UV-CE and thioflavin T (ThT) binding for salt concentrations from 100 mM to 250 mM. UV-CE had a significantly shorter (5–8 h) lag time than ThT binding (15–19 h). In addition, the lag time to detection of the first aggregated species via UV-CE was unaffected by salt concentration, while a trend toward an increased lag time with increased salt concentration was observed with ThT binding. This result indicates that solution ionic strength impacts early stages of aggregation and β-sheet aggregate formation differently. To observe whether CE may be applied for the analysis of biological samples containing low insulin concentrations, the limit of detection using UV and laser induced fluorescence (LIF) detection modes was determined. The limit of detection using LIF-CE, 48.4 pM, was lower than the physiological insulin concentration, verifying the utility of this technique for monitoring biological samples. LIF-CE was subsequently used to analyze the time course for fluorescein isothiocyanate (FITC)-labeled insulin oligomer formation. This study is the first to report that the FITC label prevented incorporation of insulin into oligomers, cautioning against the use of this fluorescent label as a tag for following early stages of insulin aggregation.
Collapse
Affiliation(s)
- Elizabeth Pryor
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701, USA; E-Mail: (E.P.)
| | - Joseph A. Kotarek
- Department of Chemical Engineering, 2C02 Swearingen Engineering Center, University of South Carolina, Columbia, SC 29208, USA; E-Mail:
| | - Melissa A. Moss
- Department of Chemical Engineering, 2C02 Swearingen Engineering Center, University of South Carolina, Columbia, SC 29208, USA; E-Mail:
| | - Christa N. Hestekin
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701, USA; E-Mail: (E.P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-479-575-3416; Fax: +1-479-575-7926
| |
Collapse
|
13
|
Hou L, Liu Y, Wang X, Ma H, He J, Zhang Y, Yu C, Guan W, Ma Y. The effects of amyloid-β42 oligomer on the proliferation and activation of astrocytes in vitro. In Vitro Cell Dev Biol Anim 2011; 47:573-80. [DOI: 10.1007/s11626-011-9439-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/24/2011] [Indexed: 01/14/2023]
|
14
|
A simple method to measure antibody affinity against the hepatitis B surface antigen using a routine quantitative system. J Virol Methods 2011; 173:271-4. [DOI: 10.1016/j.jviromet.2011.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 02/07/2011] [Accepted: 02/15/2011] [Indexed: 11/23/2022]
|