1
|
Han D, Hong Q. Emerging trends in cellulose and lignin-based nanomaterials for water treatment. Int J Biol Macromol 2025; 307:141936. [PMID: 40086556 DOI: 10.1016/j.ijbiomac.2025.141936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
Several industrial and agricultural practices contribute significantly to water contamination. These activities release several amount of pollutants, including pesticides, heavy metals, and organic compounds, into water sources, posing health risks and causing environmental damage. Industries such as mining, textiles, and pharmaceuticals discharge harmful toxins, further polluting water. Processes like ball-milling, adsorption, filtration, and flocculation are commonly used for wastewater treatment. Recent advancements have focused on the study of green nanomaterials (NMs), particularly cellulose-based and lignin-based NMs, due to their various properties, biodegradability, and low toxicity. This review covers the fabrication methods, modification techniques, and applications of cellulose-based and lignin-based NMs, such as cellulose nanofibers, nanocrystals, lignin-based aerogels, and hydrogels for wastewater treatment. The unique properties of lignin and cellulose, including their high surface area, functionalization, and biocompatibility, make them suitable for water purification. The paper also discusses a SWOT analysis, which will be useful for future researchers, highlighting both opportunities and challenges in this area. This paper aims to provide valuable insights into ongoing research and development in cellulose and lignin-based nanomaterials for next-generation water treatment solutions.
Collapse
Affiliation(s)
- Duandan Han
- School of Nursing and Health Management, Wuhan Donghu University, Wuhan 430212, China
| | - Qi Hong
- State Key Laboratory of Bio-catalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
2
|
Wu M, Zhang M, Liu X, Wu M, Jiang F, Wang Y, Zhou L. Synthesis of lignin-based elastomers via ARGET ATRP: Exceptional mechanical strength, adhesion, and self-repair properties. Int J Biol Macromol 2024; 283:137706. [PMID: 39549804 DOI: 10.1016/j.ijbiomac.2024.137706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
In this study, ARGET ATRP method was employed to graft two functional monomers from lignin, resulting in the synthesis of a series of Lignin-graft-poly(lauryl methacrylate-co-cyclohexyl methacrylate) (Lignin-g-P(LMA-co-CMA)) copolymers with varying feed ratios and lignin content. The results demonstrate that by varying the feed ratios of the two monomers, the glass transition temperature of lignin-based elastomers can be finely tuned. Importantly, the introduction of lignin and CMA imparts outstanding mechanical properties to the lignin-based elastomers, with a maximum tensile strength reaching 20.13 MPa. The elastic recovery rate of the lignin-based elastomers was exceptional, with the elastic recovery coefficient (ER) of Lignin0.52-PLMA500 exceeding 90 %. Adhesion tests on various substrates revealed the remarkable adhesion properties of these copolymers. In particular, Lignin0.52-PLMA500 exhibited strong adhesion on both iron plate and glass substrate, with adhesion strengths of 2.23 MPa and 2.33 MPa, respectively. Notably, Lignin0.52-PLMA500 demonstrated significant self-healing ability after damage. Furthermore, the lignin-based elastomer exhibited exceptional ultraviolet absorption performance. In conclusion, the incorporation of lignin opens up a novel pathway for the development of high-strength and tough lignin-based elastomers. However,more effort still needs to be paid for increasing the adhesive properties aiming to explore more potential application field.
Collapse
Affiliation(s)
- Min Wu
- School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; School of Materials and Environmental Engineering, Chizhou University, Chizhou, Anhui 247000, China
| | - Mingming Zhang
- School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Key Lab of State Forest and Grassland Administration on Wood Quality Improvement & High Efficient Utilization, Hefei, Anhui 230036, China
| | - Xing Liu
- School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Key Lab of State Forest and Grassland Administration on Wood Quality Improvement & High Efficient Utilization, Hefei, Anhui 230036, China
| | - Mang Wu
- School of Materials and Environmental Engineering, Chizhou University, Chizhou, Anhui 247000, China
| | - Feng Jiang
- Biomass Molecular Engineering Center, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Youhong Wang
- School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Liang Zhou
- School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Key Lab of State Forest and Grassland Administration on Wood Quality Improvement & High Efficient Utilization, Hefei, Anhui 230036, China.
| |
Collapse
|
3
|
Pavaneli G, da Silva TA, Zawadzki SF, Sassaki GL, de Freitas RA, Ramos LP. Production of highly antioxidant lignin nanoparticles from a hardwood technical lignin. Int J Biol Macromol 2024; 257:128612. [PMID: 38070366 DOI: 10.1016/j.ijbiomac.2023.128612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Eucalypt kraft lignin isolated in a LignoBoost™ pilot plant was characterized by GC-MS, ICP-OES, DSC, HPSEC, 31P NMR, and HSQC 2D-NMR to be used without any further processing to produce lignin nanoparticles (LNPs) by nanoprecipitation. Tetrahydrofuran (THF) was used as a solvent, and water as a non-solvent. Microscopic analysis (TEM) showed that LNPs were regularly spherical with some hollow particles dispersed in-between, and sizes were tunable by changing the solvent dripping rate onto the non-solvent. LNP particle sizes had a bimodal distribution, with the largest population having an average apparent hydrodynamic diameter ranging from 105.6 to 75.6 nm. Colloidal dispersions of LNPs in water presented good stability in different dilutions without significant size changes upon storage at pH close to neutral for as long as 45 days. Zeta potentials around -40 mV were obtained for LNP suspensions at pH ranging from 7 to 9. The high carbohydrate content (circa 10 % on a dry basis, mostly xylans) of the lignin precursor did not interfere in LNP formation, whose antioxidant activity was expressive as demonstrated by the ABTS assay at pH 7.4, with an EC50 of 4.04 μg mL-1. Also, the Trolox® equivalent antioxidant capacity (TEAC) of LNPs reached 1.90 after 40 min reaction time.
Collapse
Affiliation(s)
- Giuliana Pavaneli
- Department of Chemistry, Federal University of Paraná, P.O. Box 19032, Curitiba, PR 81531-980, Brazil
| | | | - Sônia Faria Zawadzki
- Department of Chemistry, Federal University of Paraná, P.O. Box 19032, Curitiba, PR 81531-980, Brazil
| | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, P.O. Box 19046, Curitiba, PR 81531-980, Brazil
| | - Rilton Alves de Freitas
- Department of Pharmacy, Federal University of Paraná, P.O. Box 19005, Curitiba, PR 80210-170, Brazil
| | - Luiz Pereira Ramos
- Department of Chemistry, Federal University of Paraná, P.O. Box 19032, Curitiba, PR 81531-980, Brazil.
| |
Collapse
|
4
|
Huang C, Su Y, Gong H, Jiang Y, Chen B, Xie Z, Zhou J, Li Y. Biomass-derived multifunctional nanoscale carbon fibers toward fire warning sensors, supercapacitors and moist-electric generators. Int J Biol Macromol 2024; 256:127878. [PMID: 37949269 DOI: 10.1016/j.ijbiomac.2023.127878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Nowadays, great effort has been devoted to designing biomass-derived nanoscale carbon fibers with controllable fibrous morphology, high conductivity, big specific surface area and multifunctional characteristics. Herein, a green and renewable strategy is performed to prepare the biomass-based nanoscale carbon fibers for fire warning sensor, supercapacitor and moist-electric generator. This preparation strategy thoroughly gets over the dependence of petroleum-based polymeride, and effectually improves the energy storage capacity, sensing sensitivity, humidity power generation efficiency of the obtaining biomass-based carbon nanofibers. Without the introduction of any active components or pseudocapacitive materials, the specific capacitance and energy density for biomass-based nanoscale carbon fibers achieve 143.58 F/g and 19.9 Wh/kg, severally. The biomass-based fire sensor displays excellent fire resistance, stability, and flame sensitivity with a response time of 2 s. Furthermore, the biomass-based moist-electric generator shows high power generation efficiency. The output voltage and current of five series connected and parallel-connected biomass-based moist-electric generators reaches 4.30 V and 43 μA, respectively. Notably, as the number of biomass-based moist-electric generators in series or parallel increases, the overall output voltage and current of the device system have a linear relationship. This work proposes a self-powered fire prediction system based on nanoscale carbon fibers that integrates sensing, power generation, and energy storage functions.
Collapse
Affiliation(s)
- Chen Huang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Yingying Su
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Hui Gong
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Yuewei Jiang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Bo Chen
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Zhanghong Xie
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Jinghui Zhou
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Yao Li
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China.
| |
Collapse
|
5
|
Hachimi Alaoui C, Réthoré G, Weiss P, Fatimi A. Sustainable Biomass Lignin-Based Hydrogels: A Review on Properties, Formulation, and Biomedical Applications. Int J Mol Sci 2023; 24:13493. [PMID: 37686299 PMCID: PMC10487582 DOI: 10.3390/ijms241713493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Different techniques have been developed to overcome the recalcitrant nature of lignocellulosic biomass and extract lignin biopolymer. Lignin has gained considerable interest owing to its attractive properties. These properties may be more beneficial when including lignin in the preparation of highly desired value-added products, including hydrogels. Lignin biopolymer, as one of the three major components of lignocellulosic biomaterials, has attracted significant interest in the biomedical field due to its biocompatibility, biodegradability, and antioxidant and antimicrobial activities. Its valorization by developing new hydrogels has increased in recent years. Furthermore, lignin-based hydrogels have shown great potential for various biomedical applications, and their copolymerization with other polymers and biopolymers further expands their possibilities. In this regard, lignin-based hydrogels can be synthesized by a variety of methods, including but not limited to interpenetrating polymer networks and polymerization, crosslinking copolymerization, crosslinking grafted lignin and monomers, atom transfer radical polymerization, and reversible addition-fragmentation transfer polymerization. As an example, the crosslinking mechanism of lignin-chitosan-poly(vinyl alcohol) (PVA) hydrogel involves active groups of lignin such as hydroxyl, carboxyl, and sulfonic groups that can form hydrogen bonds (with groups in the chemical structures of chitosan and/or PVA) and ionic bonds (with groups in the chemical structures of chitosan and/or PVA). The aim of this review paper is to provide a comprehensive overview of lignin-based hydrogels and their applications, focusing on the preparation and properties of lignin-based hydrogels and the biomedical applications of these hydrogels. In addition, we explore their potential in wound healing, drug delivery systems, and 3D bioprinting, showcasing the unique properties of lignin-based hydrogels that enable their successful utilization in these areas. Finally, we discuss future trends in the field and draw conclusions based on the findings presented.
Collapse
Affiliation(s)
- Chaymaa Hachimi Alaoui
- Chemical Science and Engineering Research Team (ERSIC), FPBM, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco;
- Nantes Université, Oniris, Univ Angers, INSERM, Regenerative Medicine and Skeleton, RmeS, UMR 1229, F-44000 Nantes, France
| | - Gildas Réthoré
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RmeS, UMR 1229, F-44000 Nantes, France; (G.R.); (P.W.)
| | - Pierre Weiss
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RmeS, UMR 1229, F-44000 Nantes, France; (G.R.); (P.W.)
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), FPBM, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco;
| |
Collapse
|
6
|
Assaf I, Zhang Z, Otaola F, Leturia M, Luart D, Terrasson V, Guénin E. A continuous flow mode with a scalable tubular reactor for the green preparation of stable alkali lignin nanoparticles assisted by ultrasound. Int J Biol Macromol 2023:125106. [PMID: 37257546 DOI: 10.1016/j.ijbiomac.2023.125106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Lignin nanoparticles (LNPs) have become a hot topic recently because of their improved physicochemical properties and the excellent integration into various industrial sectors compared to lignin. However, the green large-scale production of stable LNPs severely restricts the high-value applications of LNPs. In this work, a simple and potentially scalable continuous-flow mode setup with a tubular flow reactor was designed for the green preparation of stable alkali LNPs assisted by ultrasound. When the flow rates of lignin solution and nitric acid solution were 8.00 mL/min and 2.67 mL/min respectively, and the length of the tube was 5.5 m, the average residence time of mixed solution was 62.2 s in the tubular reactor. Spheroid nanoparticles with an average size of 97.2 nm were obtained under this optimized condition. Furthermore, the results showed a better control of the mixing compared to the batch process, resulting in a homogeneous distribution of smaller particle sizes thus improving stability and UV-blocking properties. This is attributed to the better mixing and excellent mass transfer characteristics in the tube, which provides favorable conditions for the full contact and uniform dispersion of the mixed solution. More importantly, continuous flow mode makes it possible to prepare LNPs with excellent physicochemical properties on a large scale, which will bring great opportunities for the industrial production and application of LNPs.
Collapse
Affiliation(s)
- Ibrahim Assaf
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS, 60 319-60 203 Compiègne Cedex, France
| | - Zhao Zhang
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS, 60 319-60 203 Compiègne Cedex, France
| | - Franco Otaola
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS, 60 319-60 203 Compiègne Cedex, France
| | - Mikel Leturia
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS, 60 319-60 203 Compiègne Cedex, France
| | - Denis Luart
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS, 60 319-60 203 Compiègne Cedex, France
| | - Vincent Terrasson
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS, 60 319-60 203 Compiègne Cedex, France.
| | - Erwann Guénin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS, 60 319-60 203 Compiègne Cedex, France.
| |
Collapse
|
7
|
Banu Jamaldheen S, Kurade MB, Basak B, Yoo CG, Oh KK, Jeon BH, Kim TH. A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. BIORESOURCE TECHNOLOGY 2022; 346:126591. [PMID: 34929325 DOI: 10.1016/j.biortech.2021.126591] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Effective pretreatment of lignocellulosic biomass (LCB) is one of the most important steps in biorefinery, ensuring the quality and commercial viability of the overall bioprocess. Lignin recalcitrance in LCB is a major bottleneck in biological conversion as the polymerization of lignin with hemicellulose hinders enzyme accessibility and further bioconversion to fuels and chemicals. Therefore, there is a need to delignify LCB to ease further bioprocessing. The efficiency of delignification, quality and quantity of the desired products, and generation of inhibitors depend upon the type of pretreatment employed. This review summarizes different single and integrated physicochemical pretreatments for delignification. Additionally, conditions required for effective delignification and the advantages and drawbacks of each method were evaluated. Advances in overcoming the recalcitrance of residual lignin to saccharification and the methods to recover lignin after delignification are also discussed. Efficient lignin recovery and valorization strategies provide an avenue for the sustainable lignocellulose biorefinery.
Collapse
Affiliation(s)
- Sumitha Banu Jamaldheen
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Bikram Basak
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Kyeong Keun Oh
- Department of Chemical Engineering, Dankook University, Youngin 16890, Gyeonggi-do, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Tae Hyun Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
8
|
Liu C, Luan P, Li Q, Cheng Z, Xiang P, Liu D, Hou Y, Yang Y, Zhu H. Biopolymers Derived from Trees as Sustainable Multifunctional Materials: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001654. [PMID: 32864821 DOI: 10.1002/adma.202001654] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/15/2020] [Indexed: 05/22/2023]
Abstract
The world is currently transitioning from a fossil-fuel-driven energy economy to one that is supplied by more renewable and sustainable materials. Trees as the most abundant renewable bioresource have attracted significant attention for advanced materials and manufacturing in this epochal transition. Trees are composed with complex structures and components such as trunk (stem and bark), leaf, flower, seed, and root. Although many excellent reviews have been published regarding advanced applications of wood and wood-derived biopolymers in different fields, such as energy, electronics, biomedical, and water treatment, no reviews have revisited and systematically discussed functional materials and even devices derived from trees in a full scope yet. Therefore, a timely summary of the recent development of materials and structures derived from different parts of trees for sustainability is prsented here. A concise introduction to the different parts of the trees is given first, which is followed by the corresponding chemistry and preparation of functional materials using various biopolymers from trees. The most promising applications of biopolymer-based materials are discussed subsequently. A comprehensive review of the different parts of trees as sustainable functional materials and devices for critical applications is thus provided.
Collapse
Affiliation(s)
- Chao Liu
- Department of Industrial and Mechanical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Pengcheng Luan
- Department of Industrial and Mechanical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Qiang Li
- Department of Industrial and Mechanical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Zheng Cheng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Pengyang Xiang
- Department of Industrial and Mechanical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Detao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yang Yang
- Department of Industrial and Mechanical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Hongli Zhu
- Department of Industrial and Mechanical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Zhang Z, Terrasson V, Guénin E. Lignin Nanoparticles and Their Nanocomposites. NANOMATERIALS 2021; 11:nano11051336. [PMID: 34069477 PMCID: PMC8159083 DOI: 10.3390/nano11051336] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 01/14/2023]
Abstract
Lignin nanomaterials have emerged as a promising alternative to fossil-based chemicals and products for some potential added-value applications, which benefits from their structural diversity and biodegradability. This review elucidates a perspective in recent research on nanolignins and their nanocomposites. It summarizes the different nanolignin preparation methods, emphasizing anti-solvent precipitation, self-assembly and interfacial crosslinking. Also described are the preparation of various nanocomposites by the chemical modification of nanolignin and compounds with inorganic materials or polymers. Additionally, advances in numerous potential high-value applications, such as use in food packaging, biomedical, chemical engineering and biorefineries, are described.
Collapse
|
10
|
Kumar R, Butreddy A, Kommineni N, Reddy PG, Bunekar N, Sarkar C, Dutt S, Mishra VK, Aadil KR, Mishra YK, Oupicky D, Kaushik A. Lignin: Drug/Gene Delivery and Tissue Engineering Applications. Int J Nanomedicine 2021; 16:2419-2441. [PMID: 33814908 PMCID: PMC8009556 DOI: 10.2147/ijn.s303462] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Lignin is an abundant renewable natural biopolymer. Moreover, a significant development in lignin pretreatment and processing technologies has opened a new window to explore lignin and lignin-based bionanomaterials. In the last decade, lignin has been widely explored in different applications such as drug and gene delivery, tissue engineering, food science, water purification, biofuels, environmental, pharmaceuticals, nutraceutical, catalysis, and other interesting low-value-added energy applications. The complex nature and antioxidant, antimicrobial, and biocompatibility of lignin attracted its use in various biomedical applications because of ease of functionalization, availability of diverse functional sites, tunable physicochemical and mechanical properties. In addition to it, its diverse properties such as reactivity towards oxygen radical, metal chelation, renewable nature, biodegradability, favorable interaction with cells, nature to mimic the extracellular environment, and ease of nanoparticles preparation make it a very interesting material for biomedical use. Tremendous progress has been made in drug delivery and tissue engineering in recent years. However, still, it remains challenging to identify an ideal and compatible nanomaterial for biomedical applications. In this review, recent progress of lignin towards biomedical applications especially in drug delivery and in tissue engineering along with challenges, future possibilities have been comprehensively reviewed.
Collapse
Affiliation(s)
- Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Arun Butreddy
- Formulation R&D, Biological E. Limited, IKP Knowledge Park, Hyderabad, Telangana State, 500078, India
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL, 32307, USA
| | - Pulikanti Guruprasad Reddy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Naveen Bunekar
- Department of Chemistry, Chung Yuan Christian University, Chung Li, 32023, Taiwan
| | - Chandrani Sarkar
- Department of Chemistry, Mahila College, Kolhan University, Chaibasa, Jharkhand, 833202, India
| | - Sunil Dutt
- Department of Chemistry, Govt. Post Graduate College, Una, Himachal Pradesh, India
| | | | - Keshaw Ram Aadil
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, 492010, Chhattishgarh, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, 6400, Denmark
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, USA
| |
Collapse
|
11
|
UV Protective, Antioxidant, Antibacterial and Compostable Polylactic Acid Composites Containing Pristine and Chemically Modified Lignin Nanoparticles. Molecules 2020; 26:molecules26010126. [PMID: 33383931 PMCID: PMC7795251 DOI: 10.3390/molecules26010126] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 01/05/2023] Open
Abstract
Polylactic acid (PLA) films containing 1 wt % and 3 wt % of lignin nanoparticles (pristine (LNP), chemically modified with citric acid (caLNP) and acetylated (aLNP)) were prepared by extrusion and characterized in terms of their overall performance as food packaging materials. Morphological, mechanical, thermal, UV–Vis barrier, antioxidant and antibacterial properties were assayed; appropriate migration values in food simulants and disintegration in simulated composting conditions were also verified. The results obtained indicated that all lignin nanoparticles succeeded in conferring UV-blocking, antioxidant and antibacterial properties to the PLA films, especially at the higher filler loadings assayed. Chemical modification of the fillers partially reduced the UV protection and the antioxidant properties of the resulting composites, but it induced better nanoparticles dispersion, reduced aggregates size, enhanced ductility and improved aesthetic quality of the films through reduction of the characteristic dark color of lignin. Migration tests and disintegration assays of the nanocomposites in simulated composting conditions indicated that, irrespectively of their formulation, the multifunctional nanocomposite films prepared behaved similarly to neat PLA.
Collapse
|
12
|
Rajesh Banu J, Kavitha S, Yukesh Kannah R, Poornima Devi T, Gunasekaran M, Kim SH, Kumar G. A review on biopolymer production via lignin valorization. BIORESOURCE TECHNOLOGY 2019; 290:121790. [PMID: 31350071 DOI: 10.1016/j.biortech.2019.121790] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 05/22/2023]
Abstract
Lignin based biopolymer (value added products) production is the most promising technology in the perspective of lignin valorization and sustainable development. Valorization of lignin gain the potentials to produce biopolymers such as polyhydroxyalkanoates, polyhydroxybutyrates, polyurethane etc. However, lignin valorization processes still needs development due to the recalcitrant nature of lignin which restricts its potential to produce valuable products. Many novel extraction strategies have been developed to fragment the lignin structure and make ease the recovery of valuable products. Achieving in depth insights on lignin characteristics and structure will help to understand the metabolic and catalytic degradative pathways needed for lignin valorization. In the view of multipurpose characteristics of lignin for biopolymer production, this review will spot light the potential applications of lignin and lignin based derivatives on biopolymer production, various lignin separation technologies, lignin depolymerization process, biopolymers production strategies and the challenges in lignin valorization will be addressed and discussed.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - T Poornima Devi
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
13
|
Collins MN, Nechifor M, Tanasă F, Zănoagă M, McLoughlin A, Stróżyk MA, Culebras M, Teacă CA. Valorization of lignin in polymer and composite systems for advanced engineering applications – A review. Int J Biol Macromol 2019; 131:828-849. [DOI: 10.1016/j.ijbiomac.2019.03.069] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 01/30/2023]
|
14
|
Farooq M, Zou T, Riviere G, Sipponen MH, Österberg M. Strong, Ductile, and Waterproof Cellulose Nanofibril Composite Films with Colloidal Lignin Particles. Biomacromolecules 2018; 20:693-704. [PMID: 30358992 DOI: 10.1021/acs.biomac.8b01364] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Brittleness has hindered commercialization of cellulose nanofibril (CNF) films. The use of synthetic polymers and plasticizers is a known detour that impairs biodegradability and carbon footprint of the product. Herein, we utilize a variety of softwood Kraft lignin morphologies to obtain strong and ductile CNF nanocomposite films. An optimum 10 wt % content of colloidal lignin particles (CLPs) produced films with nearly double the toughness compared to a CNF film without lignin. CLPs rendered the films waterproof, provided antioxidant activity and UV-shielding with better visible light transmittance than obtained with irregular lignin aggregates. We conclude based on electron microscopy, dynamic water sorption analysis, and tp-DSC that homogeneously distributed CLPs act as ball bearing lubricating and stress transferring agents in the CNF matrix. Overall, our results open new avenues for the utilization of lignin nanoparticles in biopolymer composites equipped with versatile functionalities for applications in food packaging, water purification, and biomedicine.
Collapse
Affiliation(s)
- Muhammad Farooq
- Aalto University, School of Chemical Engineering , Department of Bioproducts and Biosystems , Vuorimiehentie 1 , 02150 Espoo , Finland
| | - Tao Zou
- Aalto University, School of Chemical Engineering , Department of Bioproducts and Biosystems , Vuorimiehentie 1 , 02150 Espoo , Finland
| | - Guillaume Riviere
- Aalto University, School of Chemical Engineering , Department of Bioproducts and Biosystems , Vuorimiehentie 1 , 02150 Espoo , Finland
| | - Mika H Sipponen
- Aalto University, School of Chemical Engineering , Department of Bioproducts and Biosystems , Vuorimiehentie 1 , 02150 Espoo , Finland
| | - Monika Österberg
- Aalto University, School of Chemical Engineering , Department of Bioproducts and Biosystems , Vuorimiehentie 1 , 02150 Espoo , Finland
| |
Collapse
|
15
|
Tian W, Li H, Zhou J, Guo Y. Preparation, characterization and the adsorption characteristics of lignin/silica nanocomposites from cellulosic ethanol residue. RSC Adv 2017. [DOI: 10.1039/c7ra06322a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The synthesis lignin/silica nanocomposites by in situ co-precipitation method.
Collapse
Affiliation(s)
- Weizhen Tian
- Liaoning Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| | - Haiming Li
- Liaoning Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| | - Yanzhu Guo
- Liaoning Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| |
Collapse
|