1
|
Maleki AH, Rajabivahid M, Khosh E, Khanali Z, Tahmasebi S, Ghorbi MD. Harnessing IL-27: challenges and potential in cancer immunotherapy. Clin Exp Med 2025; 25:34. [PMID: 39797931 PMCID: PMC11724803 DOI: 10.1007/s10238-025-01562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways. Specifically, IL-27 is identified as augmenting cytokine of immune responses, including Th1 cell differentiation, TCd4 + cell proliferation, and IFN-γ production with the help of IL-12. According to several published studies, due to the pro-inflammatory or anti-inflammatory functions of cytokine related to the biological context in various disorders and diseases, IL-27 has been considered a complex regulator of the immune system. Surprisingly, the dual role of IL-27, the same as the double-edged sword, has also been evidenced in clinical models of various hematological or solid tumors. Predominantly, Il-27 applies anti-tumor functions by inducing the responses of a cytotoxic T lymphocyte (CTL) and Th1 and suppressing the growth, proliferation, angiogenesis, invasiveness, metastasis, and survival of tumor cells. On the other hand, IL-27 may also play a protumor role in cancers and induce tumor progression. The current update study aimed to summarize the protumor anti-tumor and biological functions of IL-27 in different hematological malignancies and solid tumors.
Collapse
Affiliation(s)
| | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elnaz Khosh
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zeinab Khanali
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahmood Dehghani Ghorbi
- Department of Hematology-Oncology, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Murphy B, Miyamoto T, Manning BS, Mirji G, Ugolini A, Kannan T, Hamada K, Zhu YP, Claiborne DT, Huang L, Zhang R, Nefedova Y, Kossenkov A, Veglia F, Shinde R, Zhang N. Myeloid activation clears ascites and reveals IL27-dependent regression of metastatic ovarian cancer. J Exp Med 2024; 221:e20231967. [PMID: 39570374 PMCID: PMC11586802 DOI: 10.1084/jem.20231967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/14/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Patients with metastatic ovarian cancer (OvCa) have a 5-year survival rate of <30% due to the persisting dissemination of chemoresistant cells in the peritoneal fluid and the immunosuppressive microenvironment in the peritoneal cavity. Here, we report that intraperitoneal administration of β-glucan and IFNγ (BI) induced robust tumor regression in clinically relevant models of metastatic OvCa. BI induced tumor regression by controlling fluid tumor burden and activating localized antitumor immunity. β-glucan alone cleared ascites and eliminated fluid tumor cells by inducing intraperitoneal clotting in the fluid and Dectin-1-Syk-dependent NETosis in the omentum. In omentum tumors, BI expanded a novel subset of immunostimulatory IL27+ macrophages and neutralizing IL27 impaired BI efficacy in vivo. Moreover, BI directly induced IL27 secretion in macrophages where single agent treatment did not. Finally, BI extended mouse survival in a chemoresistant model and significantly improved chemotherapy response in a chemo-sensitive model. In summary, we propose a new therapeutic strategy for the treatment of metastatic OvCa.
Collapse
Affiliation(s)
- Brennah Murphy
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Taito Miyamoto
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Bryan S. Manning
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
- Cancer Biology Graduate Program, Saint Joseph’s University, Philadelphia, PA, USA
| | - Gauri Mirji
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Alessio Ugolini
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Toshitha Kannan
- Gene Expression and Regulation Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Kohei Hamada
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yanfang P. Zhu
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Daniel T. Claiborne
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - Yulia Nefedova
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Andrew Kossenkov
- Gene Expression and Regulation Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Filippo Veglia
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Rahul Shinde
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Nan Zhang
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
3
|
Stajer M, Horacek JM, Kupsa T, Zak P. The role of chemokines and interleukins in acute lymphoblastic leukemia: a systematic review. J Appl Biomed 2024; 22:165-184. [PMID: 40033805 DOI: 10.32725/jab.2024.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/15/2024] [Indexed: 03/05/2025] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood hematological malignancy, but it also affects adult patients with worse prognosis and outcomes. Leukemic cells benefit from protective mechanisms, which are mediated by intercellular signaling molecules - cytokines. Through these signals, cytokines modulate the biology of leukemic cells and their surroundings, enhancing the proliferation, survival, and chemoresistance of the disease. This ultimately leads to disease progression, refractoriness, and relapse, decreasing the chances of curability and overall survival of the patients. Targeting and modulating these pathological processes without affecting the healthy physiology is desirable, offering more possibilities for the treatment of ALL patients, which still remains unsatisfactory in certain cases. In this review, we comprehensively analyze the existing literature and ongoing trials regarding the role of chemokines and interleukins in the biology of ALL. Focusing on the functional pathways, genetic background, and critical checkpoints, we constructed a summary of molecules that are promising for prognostic stratification and mainly therapeutic use. Targeted therapy, including chemokine and interleukin pathways, is a new and promising approach to the treatment of cancer. With the expansion of our knowledge, we are able to uncover a spectrum of new potential checkpoints in order to modulate the disease biology. Several cytokine-related targets are advancing toward clinical application, offering the hope of higher disease response rates to treatment.
Collapse
Affiliation(s)
- Martin Stajer
- University of Defence, Military Faculty of Medicine, Department of Military Internal Medicine and Military Hygiene, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| | - Jan M Horacek
- University of Defence, Military Faculty of Medicine, Department of Military Internal Medicine and Military Hygiene, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| | - Tomas Kupsa
- University of Defence, Military Faculty of Medicine, Department of Military Internal Medicine and Military Hygiene, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| | - Pavel Zak
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Biggi AFB, Silvestre RN, Tirapelle MC, de Azevedo JTC, García HDM, Henrique Dos Santos M, de Lima SCG, de Souza LEB, Covas DT, Malmegrim KCR, Figueiredo ML, Picanço-Castro V. IL-27-engineered CAR.19-NK-92 cells exhibit enhanced therapeutic efficacy. Cytotherapy 2024; 26:1320-1330. [PMID: 38970613 DOI: 10.1016/j.jcyt.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/08/2024] [Accepted: 06/01/2024] [Indexed: 07/08/2024]
Abstract
Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells has shown promising results in early-phase clinical studies. However, advancing CAR-NK cell therapeutic efficacy is imperative. In this study, we investigated the impact of a fourth-generation CD19-targeted CAR (CAR.19) coexpressing IL-27 on NK-92 cells. We observed a significant improvement in NK-92 cell proliferation and cytotoxicity activity against B-cell cancer cell lines, both in vitro and in a xenograft mouse B-cell lymphoma model. Our systematic transcriptome analysis of the activated NK-92 CAR variants further supports the potential of IL-27 in fourth-generation CARs to overcome limitations of NK cell-based targeted tumor therapies by providing essential growth and activation signals. Integrating IL-27 into CAR-NK cells emerges as a promising strategy to enhance their therapeutic potential and elicit robust responses against cancer cells. These findings contribute substantially to the mounting evidence supporting the potential of fourth-generation CAR engineering in advancing NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Alison Felipe Bordini Biggi
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Renata Nacasaki Silvestre
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Mariane Cariati Tirapelle
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Julia Teixeira Cottas de Azevedo
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Matheus Henrique Dos Santos
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Sarah Caroline Gomes de Lima
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Dimas Tadeu Covas
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil; Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Virginia Picanço-Castro
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Li P, Kuang J. Mechanism study of YangJing ZhongYu decoction on regulating mitochondrial dynamics of ovarian granular cells and improving diminished ovarian reserve. J Ovarian Res 2024; 17:188. [PMID: 39289738 PMCID: PMC11406875 DOI: 10.1186/s13048-024-01506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE Diminished ovarian reserve (DOR) encompasses both reproductive and endocrine disorders, resulting in a decline in female fertility. This paper explored the mechanism of Yangjing Zhongyu Decoction (YJZYD) regulating mitochondrial dynamics of ovarian granulosa cells (GCs) to improve DOR. METHODS DOR patients were treated with YJZYD, with ovarian volume (OV), antral follicle count (AFC), and endometrial thickness (EMT) detected. C57BL/6 female mice were treated by cyclophosphamide (Cy) intraperitoneal injection and YJZYD solution daily gavage, with serum anti-Mullerian hormone (AMH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) levels determined. Ovarian GCs (KGN) were interfered with 4-Hydroperoxy-Cyclophosphamide (4-HC) and treated with the MAPK/ERK pathway inhibitor or activator. RESULTS DOR patients showed increased levels of serum AMH, E2, OV, AFC and EMT, while reduced FSH and LH levels after YJZYD treatment. After Cy induction, DOR mice exhibited irregular estrous cycles, diminished serum AMH and E2 levels, elevated FSH and LH levels, reduced follicle number and atresia follicle number, disorderly arranged GCs, and severe interstitial fibrosis. After 4-HC treatment, KGN proliferation and Bcl-2, MFN1, and MFN2 were suppressed, while apoptotic rate, Bax, Cleaved-caspase-3, and p-Drp1 (Ser616) levels, and mitochondrial fission and quantity increased. YJZYD promoted 4-HC-treated KGN proliferation, boosted mitochondrial fusion, and inhibited apoptosis and mitochondrial fission via the MAPK/ERK pathway. CONCLUSION YJZYD promoted ovarian GC proliferation and mitochondrial fusion, suppressed cell apoptosis and mitochondrial fission, and effectively improved DOR in mice by activating the MAPK/ERK pathway, providing a theoretical basis for the clinical application value of YJZYD in DOR treatment.
Collapse
Affiliation(s)
- Ping Li
- Department of Gynecology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, 233 CAI 'e North Road, Kaifu District, Changsha, 410005, Hunan, China
| | - Jilin Kuang
- Department of Gynecology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, 233 CAI 'e North Road, Kaifu District, Changsha, 410005, Hunan, China.
| |
Collapse
|
6
|
Korobova ZR, Arsentieva NA, Santoni A, Totolian AA. Role of IL-27 in COVID-19: A Thin Line between Protection and Disease Promotion. Int J Mol Sci 2024; 25:7953. [PMID: 39063193 PMCID: PMC11276726 DOI: 10.3390/ijms25147953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Cytokine storm is usually described as one of the main reasons behind COVID-associated mortality. Cytokines are essential protein molecules engaged in immune responses; they play a critical role in protection against infections. However, they also contribute to inflammatory reactions and tissue damage, becoming a double-edged sword in the context of COVID-19. Recent studies have suggested various cytokines and chemokines that play a crucial role in the immune response to SARS-CoV-2 infection. One such cytokine is interleukin 27 (IL-27), which has been found to be elevated in the blood plasma of patients with COVID-19. Within this study, we will explore the role of IL-27 in immune responses and analyze both the existing literature and our own prior research findings on this cytokine in the context of COVID-19. It affects a wide variety of immune cells. Regardless of the pathological process it is involved in, IL-27 is critical for upholding the necessary balance between tissue damage and cytotoxicity against infectious agents and/or tumors. In COVID-19, it is involved in multiple processes, including antiviral cytotoxicity via CD8+ cells, IgG subclass switching, and even the activation of Tregs.
Collapse
Affiliation(s)
- Zoia R. Korobova
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia; (Z.R.K.)
- Department of Immunology, Pavlov First State Medical University of Saint Petersburg, 197022 Saint Petersburg, Russia
| | - Natalia A. Arsentieva
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia; (Z.R.K.)
| | - Angela Santoni
- Department of Molecular Medicine, Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Areg A. Totolian
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia; (Z.R.K.)
- Department of Immunology, Pavlov First State Medical University of Saint Petersburg, 197022 Saint Petersburg, Russia
| |
Collapse
|
7
|
Murphy B, Miyamoto T, Manning BS, Mirji G, Ugolini A, Kannan T, Hamada K, Zhu YP, Claiborne DT, Huang L, Zhang R, Nefedova Y, Kossenkov A, Veglia F, Shinde R, Zhang N. Intraperitoneal activation of myeloid cells clears ascites and reveals IL27-dependent regression of metastatic ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600597. [PMID: 38979222 PMCID: PMC11230450 DOI: 10.1101/2024.06.25.600597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Patients with metastatic ovarian cancer (OvCa) have a 5-year survival rate of less than 30% due to persisting dissemination of chemoresistant cells in the peritoneal fluid and the immunosuppressive microenvironment in the peritoneal cavity. Here, we report that intraperitoneal administration of β-glucan and IFNγ (BI) induced robust tumor regression in clinically relevant models of metastatic OvCa. BI induced tumor regression by controlling fluid tumor burden and activating localized antitumor immunity. β-glucan alone cleared ascites and eliminated fluid tumor cells by inducing intraperitoneal clotting in the fluid and Dectin-1-Syk-dependent NETosis in the omentum. In omentum tumors, BI expanded a novel subset of immunostimulatory IL27+ macrophages and neutralizing IL27 impaired BI efficacy in vivo. Moreover, BI directly induced IL27 secretion in macrophages where single agent treatment did not. Finally, BI extended mouse survival in a chemoresistant model and significantly improved chemotherapy response in a chemo-sensitive model. In summary, we propose a new therapeutic strategy for the treatment of metastatic OvCa.
Collapse
Affiliation(s)
- Brennah Murphy
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Taito Miyamoto
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Bryan S. Manning
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Gauri Mirji
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Alessio Ugolini
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Toshitha Kannan
- Gene Expression & Regulation Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Kohei Hamada
- Department of Gynecology and Obstetrics, Kyoto University, Japan
| | | | - Daniel T. Claiborne
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rugang Zhang
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - Yulia Nefedova
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Andrew Kossenkov
- Gene Expression & Regulation Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Filippo Veglia
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Rahul Shinde
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Nan Zhang
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
8
|
Zaporowska-Stachowiak I, Springer M, Stachowiak K, Oduah M, Sopata M, Wieczorowska-Tobis K, Bryl W. Interleukin-6 Family of Cytokines in Cancers. J Interferon Cytokine Res 2024; 44:45-59. [PMID: 38232478 DOI: 10.1089/jir.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Nine soluble ligands [interleukin-6 (IL-6), interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine, interleukin-27 (IL-27), and interleukin-31] share the ubiquitously expressed transmembrane protein-glycoprotein-130 beta-subunit (gp130) and thus form IL-6 family cytokines. Proteins that may be important for cancerogenesis, CT-1, IL-11, IL-27, LIF, OSM, and CNTF, belong to the superfamily of IL-6. Cytokines such as IL-6, IL-11, and IL-27 are better investigated in comparison with other members of the same family of cytokines, eg, CT-1. Gp130 is one of the main receptors through which these cytokines exert their effects. The clinical implication of understanding the pathways of these cytokines in oncology is that targeted therapy to inhibit or potentiate cytokine activity may lead to remission in some cases.
Collapse
Affiliation(s)
- Iwona Zaporowska-Stachowiak
- Department and Clinic of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Palliative Medicine In-Patient Unit, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Springer
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Mary Oduah
- English Students' Research Association, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Sopata
- Department and Clinic of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Palliative Medicine In-Patient Unit, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Wieczorowska-Tobis
- Department and Clinic of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Palliative Medicine In-Patient Unit, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiesław Bryl
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
9
|
Zhang MZ, Liu YF, Ding L, Li ZJ, Li YZ, Si LB, Yu NZ, Wang XJ, Long X. 2-Methoxyestradiol inhibits the proliferation level in keloid fibroblasts through p38 in the MAPK/Erk signaling pathway. J Cosmet Dermatol 2023; 22:3135-3142. [PMID: 37190848 DOI: 10.1111/jocd.15810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND The MAPK/Erk signaling pathway is a classic pathway in cell proliferation. Our former study showed that keloid tissue revealed a higher proliferation level than physiological scars and normal skin. As a natural metabolite of estradiol, 2-methoxyestradiol (2ME2) showed an inhibition proliferation effect on tumor cells. AIM In this study, the treatment effect of 2ME2 and its potential mechanisms are explored. METHODS Six keloid patients and six non-keloid patients were randomly selected from the Department of Plastic Surgery at our hospital during June 2021 to December 2021. Six groups were established: normal skin fibroblasts (N); keloid fibroblasts (K); keloid fibroblasts treated with 2ME2 (K + 2ME2); keloid fibroblasts treated with dimethyl sulfoxide (DMSO) (K + DMSO); keloid fibroblasts treated with doramapimod (K + IN); keloid fibroblasts treated with doramapimod (p38 inhibitor) and 2ME2 (K + IN+2ME2). The fibroblast activity and key factor expression of the MAPK/Erk signaling pathway were measured. RESULTS In the results, 2ME2 significantly inhibited keloid fibroblast activity and key factor expression (except STAT1). CONCLUSION The proliferation levels were reduced by both the p38 inhibitor and 2ME2, indicating 2ME2 may achieve an antiproliferation effect by targeting p38 in keloid fibroblasts.
Collapse
Affiliation(s)
- Ming-Zi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yi-Fang Liu
- International Education College, Beijing Vocational College of Agriculture, Beijing, China
| | - Li Ding
- Department of Planned Immunity, Changjianglu Community Health Center of the West Coast New Area, Qingdao, China
| | - Zhi-Jin Li
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yun-Zhu Li
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Lou-Bin Si
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Nan-Ze Yu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xiao-Jun Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xiao Long
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
10
|
Pagano G, Botana IF, Wierz M, Roessner PM, Ioannou N, Zhou X, Al-Hity G, Borne C, Gargiulo E, Gonder S, Qu B, Stamatopoulos B, Ramsay AG, Seiffert M, Largeot A, Moussay E, Paggetti J. Interleukin-27 potentiates CD8+ T-cell-mediated antitumor immunity in chronic lymphocytic leukemia. Haematologica 2023; 108:3011-3024. [PMID: 37345470 PMCID: PMC10620579 DOI: 10.3324/haematol.2022.282474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells are highly dependent on interactions with the immunosuppressive tumor microenvironment (TME) for survival and proliferation. In the search for novel treatments, pro-inflammatory cytokines have emerged as candidates to reactivate the immune system. Among those, interleukin 27 (IL-27) has recently gained attention, but its effects differ among malignancies. Here, we utilized the Eμ-TCL1 and EBI3 knock-out mouse models as well as clinical samples from patients to investigate the role of IL-27 in CLL. Characterization of murine leukemic spleens revealed that the absence of IL-27 leads to enhanced CLL development and a more immunosuppressive TME in transgenic mice. Gene-profiling of T-cell subsets from EBI3 knock-out highlighted transcriptional changes in the CD8+ T-cell population associated with T-cell activation, proliferation, and cytotoxicity. We also observed an increased anti-tumor activity of CD8+ T cells in the presence of IL-27 ex vivo with murine and clinical samples. Notably, IL-27 treatment led to the reactivation of autologous T cells from CLL patients. Finally, we detected a decrease in IL-27 serum levels during CLL development in both pre-clinical and patient samples. Altogether, we demonstrated that IL-27 has a strong anti-tumorigenic role in CLL and postulate this cytokine as a promising treatment or adjuvant for this malignancy.
Collapse
Affiliation(s)
- Giulia Pagano
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Iria Fernandez Botana
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marina Wierz
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Nikolaos Ioannou
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London
| | - Xiangda Zhou
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg
| | - Gheed Al-Hity
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London
| | - Coralie Borne
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ernesto Gargiulo
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Susanne Gonder
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg
| | | | - Alan G Ramsay
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg
| | - Anne Largeot
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| | - Jerome Paggetti
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
11
|
Zhang MZ, Dong XH, Zhang WC, Li M, Si LB, Liu YF, Li HR, Zhao PX, Liu MY, Adzavon YM, Wang XJ, Long X, Ding Y. A comparison of proliferation levels in normal skin, physiological scar and keloid tissue. J Plast Surg Hand Surg 2023; 57:122-128. [PMID: 34964674 DOI: 10.1080/2000656x.2021.2017294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proliferation is an important characteristic of life, and many signaling pathways participate in this complicated process. The MAPK/Erk pathway is a classic pathway in cell proliferation. In this study, expression levels of key factors in the MAPK/Erk pathway were measured to assess the proliferation level among normal skin, physiological scar, and keloid tissue. Thirty patients were selected randomly from the Department of Plastic Surgery at Peking Union Medical College Hospital from January 2019 to December 2020. Histological appearance and fiber tissue content were observed by Hematoxylin and eosin staining and Masson staining. Expression levels of key factors in the MAPK/Erk pathway (ATF2, c-Jun, c-Myc, p38 and STAT1) and relative proteins (HIF-1α and PCNA) in tissues were detected by immunohistochemistry and analyzed as the percentage of positively stained cells in both the tissue epidermis and dermis. Western blot was used for quantitative analysis of the above factors. In results, keloid tissue showed a significantly higher fiber and less cell content. In the immunohistochemical result, higher expression of key factors was observed in the epidermis than in the dermal layer, and the expression of all factors was increased remarkably in keloid tissue. In western blot analysis, all factors (except STAT1) showed higher expression in keloid tissue. In our former research, keloid showed similar apoptosis level as physiological scar and normal skin. On combining our former conclusion and results in this study, an imbalance condition between the high proliferation level and normal apoptosis level may lead to the growth characteristics of keloid.
Collapse
Affiliation(s)
- Ming-Zi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xin-Hang Dong
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Chao Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Ming Li
- Department of Orthopaedics, Qingdao Huangdao District Hospital of Traditional Chinese Medicine, Qingdao, China
| | - Lou-Bin Si
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yi-Fang Liu
- International Education College, Beijing Vocational College of Agriculture, Beijing, China
| | - Hao-Ran Li
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng-Xiang Zhao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Meng-Yu Liu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | | | - Xiao-Jun Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xiao Long
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yu Ding
- Department of Information Engineering, Chaoshan Polytechnic College, Puning, China
| |
Collapse
|
12
|
Borowczyk M, Dobosz P, Szczepanek-Parulska E, Budny B, Dębicki S, Filipowicz D, Wrotkowska E, Oszywa M, Verburg FA, Janicka-Jedyńska M, Ziemnicka K, Ruchała M. Follicular Thyroid Adenoma and Follicular Thyroid Carcinoma-A Common or Distinct Background? Loss of Heterozygosity in Comprehensive Microarray Study. Cancers (Basel) 2023; 15:638. [PMID: 36765597 PMCID: PMC9913827 DOI: 10.3390/cancers15030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Pre- and postsurgical differentiation between follicular thyroid adenoma (FTA) and follicular thyroid cancer (FTC) represents a significant diagnostic challenge. Furthermore, it remains unclear whether they share a common or distinct background and what the mechanisms underlying follicular thyroid lesions malignancy are. The study aimed to compare FTA and FTC by the comprehensive microarray and to identify recurrent regions of loss of heterozygosity (LOH). We analyzed formalin-fixed paraffin-embedded (FFPE) samples acquired from 32 Caucasian patients diagnosed with FTA (16) and FTC (16). We used the OncoScan™ microarray assay (Affymetrix, USA), using highly multiplexed molecular inversion probes for single nucleotide polymorphism (SNP). The total number of LOH was higher in FTC compared with FTA (18 vs. 15). The most common LOH present in 21 cases, in both FTA (10 cases) and FTC (11 cases), was 16p12.1, which encompasses many cancer-related genes, such as TP53, and was followed by 3p21.31. The only LOH present exclusively in FTA patients (56% vs. 0%) was 11p11.2-p11.12. The alteration which tended to be detected more often in FTC (6 vs. 1 in FTA) was 12q24.11-q24.13 overlapping FOXN4, MYL2, PTPN11 genes. FTA and FTC may share a common genetic background, even though differentiating rearrangements may also be detected.
Collapse
Affiliation(s)
- Martyna Borowczyk
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- Department of Medical Simulation, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Paula Dobosz
- Department of Genetics and Genomics, Central Clinical Hospital of the Ministry of Interior Affairs and Administration, 02-507 Warsaw, Poland
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Szymon Dębicki
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Dorota Filipowicz
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Michalina Oszywa
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Frederik A. Verburg
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
13
|
Jin Y, Fyfe PK, Gardner S, Wilmes S, Bubeck D, Moraga I. Structural insights into the assembly and activation of the
IL
‐27 signaling complex. EMBO Rep 2022; 23:e55450. [PMID: 35920255 PMCID: PMC9535766 DOI: 10.15252/embr.202255450] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022] Open
Abstract
Interleukin 27 (IL‐27) is a heterodimeric cytokine that elicits potent immunosuppressive responses. Comprised of EBI3 and p28 subunits, IL‐27 binds GP130 and IL‐27Rα receptor chains to activate the JAK/STAT signaling cascade. However, how these receptors recognize IL‐27 and form a complex capable of phosphorylating JAK proteins remains unclear. Here, we used cryo electron microscopy (cryoEM) and AlphaFold modeling to solve the structure of the IL‐27 receptor recognition complex. Our data show how IL‐27 serves as a bridge connecting IL‐27Rα (domains 1–2) with GP130 (domains 1–3) to initiate signaling. While both receptors contact the p28 component of the heterodimeric cytokine, EBI3 stabilizes the complex by binding a positively charged surface of IL‐27Rα and Domain 1 of GP130. We find that assembly of the IL‐27 receptor recognition complex is distinct from both IL‐12 and IL‐6 cytokine families and provides a mechanistic blueprint for tuning IL‐27 pleiotropic actions.
Collapse
Affiliation(s)
- Yibo Jin
- Department of Life Sciences, Sir Ernst Chain Building Imperial College London London UK
| | - Paul K Fyfe
- Division of Cell Signaling and Immunology, School of Life Sciences University of Dundee Dundee UK
| | - Scott Gardner
- Department of Life Sciences, Sir Ernst Chain Building Imperial College London London UK
| | - Stephan Wilmes
- Division of Cell Signaling and Immunology, School of Life Sciences University of Dundee Dundee UK
| | - Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building Imperial College London London UK
| | - Ignacio Moraga
- Division of Cell Signaling and Immunology, School of Life Sciences University of Dundee Dundee UK
| |
Collapse
|
14
|
IL-27 Mediates PD-L1 Expression and Release by Human Mesothelioma Cells. Cancers (Basel) 2021; 13:cancers13164011. [PMID: 34439164 PMCID: PMC8393193 DOI: 10.3390/cancers13164011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant mesothelioma (MM) is a rare tumor with an unfavorable prognosis. MM genesis involves asbestos-mediated local inflammation, supported by several cytokines, including IL-6. Recent data showed that targeting PD-1/PD-L1 is an effective therapy in MM. Here, we investigated the effects of IL-6 trans-signaling and the IL-6-related cytokine IL-27 on human MM cells in vitro by Western blot analysis of STAT1/3 phosphorylation. The effects on PD-L1 expression were tested by qRT-PCR and flow-cytometry and the release of soluble (s)PD-L1 by ELISA. We also measured the concentrations of sPD-L1 and, by multiplexed immunoassay, IL-6 and IL-27 in pleural fluids obtained from 77 patients in relation to survival. IL-27 predominantly mediates STAT1 phosphorylation and increases PD-L1 gene and surface protein expression and sPD-L1 release by human MM cells in vitro. IL-6 has limited activity, whereas a sIL-6R/IL-6 chimeric protein mediates trans-signaling predominantly via STAT3 phosphorylation but has no effect on PD-L1 expression and release. IL-6, IL-27, and sPD-L1 are present in pleural fluids and show a negative correlation with overall survival, but only IL-27 shows a moderate albeit significant correlation with sPD-L1 levels. Altogether these data suggest a potential role of IL-27 in PD-L1-driven immune resistance in MM.
Collapse
|
15
|
Kwon Y, Kim M, Kim Y, Jeong MS, Jung HS, Jeoung D. EGR3-HDAC6-IL-27 Axis Mediates Allergic Inflammation and Is Necessary for Tumorigenic Potential of Cancer Cells Enhanced by Allergic Inflammation-Promoted Cellular Interactions. Front Immunol 2021; 12:680441. [PMID: 34234781 PMCID: PMC8257050 DOI: 10.3389/fimmu.2021.680441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to investigate mechanisms of allergic inflammation both in vitro and in vivo in details. For this, RNA sequencing was performed. Early growth response 3 gene (Egr3) was one of the most highly upregulated genes in rat basophilic leukemia (RBL2H3) cells stimulated by antigen. The role of Egr3 in allergic inflammation has not been studied extensively. Egr3 was necessary for passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA). Egr3 promoter sequences contained potential binding site for NF-κB p65. NF-κB p65 directly regulated Egr3 expression and mediated allergic inflammation in vitro. Histone deacetylases (HDACs) is known to be involved in allergic airway inflammation. HDAC6 promoter sequences contained potential binding site for EGR3. EGR3 showed binding to promoter sequences of HDAC6. EGR3 was necessary for increased expression of histone deacetylase 6 (HDAC6) in antigen-stimulated RBL2H3 cells. HDAC6 mediated allergic inflammation in vitro and PSA. TargetScan analysis predicted that miR-182-5p was a negative regulator of EGR3. Luciferase activity assay confirmed that miR-182-5p was a direct regulator of EGR3. MiR-182-5p mimic inhibited allergic inflammation both in vitro and in vivo. Cytokine array showed that HDAC6 was necessary for increased interleukin-27 (IL-27) expression in BALB/C mouse model of PSA. Antigen stimulation did not affect expression of EBI3, another subunit of IL-27 in RBL2H3 cells or BALB/C mouse model of PCA or PSA. IL-27 receptor alpha was shown to be able to bind to HDAC6. IL-27 p28 mediated allergic inflammation in vitro, PCA, and PSA. Mouse recombinant IL-27 protein promoted features of allergic inflammation in an antigen-independent manner. HDAC6 was necessary for tumorigenic and metastatic potential enhanced by PSA. PSA enhanced the metastatic potential of mouse melanoma B16F1 cells in an IL-27-dependent manner. Experiments employing culture medium and mouse recombinant IL-27 protein showed that IL-27 mediated and promoted cellular interactions involving B16F1 cells, lung macrophages, and mast cells during allergic inflammation. IL-27 was present in exosomes of antigen-stimulated RBL2H3 cells. Exosomes from antigen-stimulated RBL2H3 cells enhanced invasion of B16F1 melanoma cells in an IL-27-dependemt manner. These results present evidence that EGR3-HDAC6-IL-27 axis can regulate allergic inflammation by mediating cellular interactions.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Misun Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea.,Chuncheon Center, Korea Basic Science Institute, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
16
|
Min B, Kim D, Feige MJ. IL-30 † (IL-27A): a familiar stranger in immunity, inflammation, and cancer. Exp Mol Med 2021; 53:823-834. [PMID: 34045653 PMCID: PMC8178335 DOI: 10.1038/s12276-021-00630-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
Over the years, interleukin (IL)-27 has received much attention because of its highly divergent, sometimes even opposing, functions in immunity. IL-30, the p28 subunit that forms IL-27 together with Ebi3 and is also known as IL-27p28 or IL-27A, has been considered a surrogate to represent IL-27. However, it was later discovered that IL-30 can form complexes with other protein subunits, potentially leading to overlapping or discrete functions. Furthermore, there is emerging evidence that IL-30 itself may perform immunomodulatory functions independent of Ebi3 or other binding partners and that IL-30 production is strongly associated with certain cancers in humans. In this review, we will discuss the biology of IL-30 and other IL-30-associated cytokines and their functions in inflammation and cancer. Studying the ways that interleukin IL-30 regulates immune responses may provide novel insights into tumor development and inflammatory conditions. Interleukins are a diverse family of proteins involved in intercellular communications and immunity, where they can exert divergent and even opposing functions. Booki Min at Northwestern University in Chicago, USA, and co-workers reviewed the current understanding of IL-30 and its links to inflammation and cancer. IL-30 forms the IL-27 complex with the Ebi3 protein and was thought to be a surrogate for IL-27 in terms of activity. However, recent insights suggest that IL-30 may perform discrete immune modulation functions. Elevated IL-30 secretion is linked to prostate and breast cancer development. Extensive research is needed into the formation of IL-30, its associated protein interactions, and the development of a suitable animal model.
Collapse
Affiliation(s)
- Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Dongkyun Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Matthias J Feige
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
17
|
Tomić S, Petrović A, Puač N, Škoro N, Bekić M, Petrović ZL, Čolić M. Plasma-Activated Medium Potentiates the Immunogenicity of Tumor Cell Lysates for Dendritic Cell-Based Cancer Vaccines. Cancers (Basel) 2021; 13:1626. [PMID: 33915703 PMCID: PMC8037863 DOI: 10.3390/cancers13071626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/03/2023] Open
Abstract
Autologous dendritic cells (DCs)-based vaccines are considered quite promising for cancer immunotherapy due to their exquisite potential to induce tumor antigen-specific cytotoxic T cells. However, a lack of efficient protocols for inducing immunogenic tumor antigens limits the efficacy of DC-based cancer vaccines. Here, we found that a plasma-activated medium (PAM) induces immunogenic cell death (ICD) in tumor cells but not in an immortalized L929 cell line or human peripheral blood mononuclear cells. PAM induced an accumulation of reactive oxygen species (ROS), autophagy, apoptosis, and necrosis in a concentration-dependent manner. The tumor lysates prepared after PAM treatment displayed increased immunogenicity in a model of human monocyte-derived DCs, compared to the lysates prepared by a standard freezing/thawing method. Mature DCs loaded with PAM lysates showed an increased maturation potential, as estimated by their increased expression of CD83, CD86, CD40, IL-12/IL-10 production, and attenuated PDL1 and ILT-4 expression, compared to the DCs treated with control tumor lysates. Moreover, in co-culture with allogeneic T cells, DCs loaded with PAM-lysates increased the proportion of cytotoxic IFN-γ+ granzyme A+ CD8+ T cells and IL-17A-producing T cells and preserved the Th1 response. In contrast, control tumor lysates-treated DCs increased the frequency of Th2 (CD4+IL-4+), CD4, and CD8 regulatory T cell subtypes, none of which was observed with DCs loaded with PAM-lysates. Cumulatively, these results suggest that the novel method for preparing immunogenic tumor lysates with PAM could be suitable for improved DC-based immunotherapy of cancer patients.
Collapse
Affiliation(s)
- Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (M.Č.)
| | - Anđelija Petrović
- Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (A.P.); (N.Š.)
| | - Nevena Puač
- Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (A.P.); (N.Š.)
| | - Nikola Škoro
- Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (A.P.); (N.Š.)
| | - Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (M.Č.)
| | - Zoran Lj. Petrović
- Serbian Academy for Sciences and Arts, 11000 Belgrade, Serbia;
- School of Engineering, Ulster University, Jordanstown, Co. Antrim BT37 0QB, UK
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (M.Č.)
- Serbian Academy for Sciences and Arts, 11000 Belgrade, Serbia;
- Medical Faculty Foca, University of East Sarajevo, 73 300 Foča, Bosnia and Herzegovina
| |
Collapse
|
18
|
Beizavi Z, Zohouri M, Asadipour M, Ghaderi A. IL-27, a pleiotropic cytokine for fine-tuning the immune response in cancer. Int Rev Immunol 2020; 40:319-329. [PMID: 33146571 DOI: 10.1080/08830185.2020.1840565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022]
Abstract
Interleukin (IL)-27, a member of the IL-6/IL-12 family, has an important role in modulating inflammation in partnership with innate and adaptive immune cells. IL-27 binding to IL-27R starts downstream signaling based on the target cells. It can instigate inflammation by inducing CD4+ T cell proliferation, Th1 polarization, cytotoxic T cell activation, generation of the natural killer cell, and macrophage and dendritic cell activation. However, by inducing programmed cell death and suppression of effector cells, IL-27 can suppress inflammation and return the immune response to hemostasis. Altogether, IL-27 displays multifaceted dual functions, which may result in either pro- or anti-inflammatory effects. Recent investigations indicated the antitumor activity of IL-27 via inducing Th1, and CTL responses and generating NK cells. On the other hand, IL-27 also can promote tumor cells' proliferation, survival, and angiogenesis. In the present review, we'll discuss recent advances concerning the role of IL-27 in inflammatory diseases such as infections, autoimmune diseases with a focus on cancer.
Collapse
Affiliation(s)
- Zahra Beizavi
- Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Zohouri
- Shiraz Institute for Cancer Research, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morvarid Asadipour
- Shiraz Institute for Cancer Research, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Zhao J, Zhu Y, Fu Q, Zhu Y, Zhao G. HEATR1 promotes proliferation in gastric cancer in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1030-1039. [PMID: 32634230 DOI: 10.1093/abbs/gmaa077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/17/2019] [Accepted: 12/26/2019] [Indexed: 01/01/2023] Open
Abstract
HEAT repeat-containing protein 1 (HEATR1) is related to the progression of several cancers. However, the role of HEATR1 in gastric cancer (GC) remains unknown. In the present study, we aimed to detect the expression of HEATR1 in GC and identify its role. The expressions of HEATR1 in GC tissues were analyzed using The Cancer Genome Atlas database and by western blot analysis and immunohistochemistry. Furthermore, the HEATR1 expressions in GC cell lines MGC-803 and AGS were knocked down by using lentivirus-mediated HEATR1 shRNA. Cell proliferation and apoptosis were detected by CCK-8 and Caspase-Glo® 3/7 assays, respectively. PathScan® Signaling Antibody Array kit and Kyoto Encyclopedia of Genes and Genomes enrichment were used to study the pathways related to HEATR1. The influence of HEATR1 shRNA on the in vivo growth of GC cells was assessed by establishing a nude mouse xenograft model and conducting bioluminescence imaging. Our results showed that HEATR1 was highly expressed in GC tissues. Higher expression of HEATR1 is related to cancer progression and metastasis. Knocking down HEATR1 significantly suppressed the cell proliferation and colony formation and promoted cell apoptosis. The expression levels of phosphorylated p53, p38 MAPK, Chk2, and IKBa in shHEATR1-transfected MGC-803 cells exceeded those in shCtrl-transfected cells. HEATR1 shRNA treatment also significantly inhibited tumor growth in the mouse model. This study suggested that HEATR1 may be an oncogene and a target for GC therapy.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Yiping Zhu
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Qingsheng Fu
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Yimei Zhu
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Guohai Zhao
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| |
Collapse
|
20
|
Rocha GA, de Melo FF, Cabral MMDA, de Brito BB, da Silva FAF, Queiroz DMM. Interleukin-27 is abrogated in gastric cancer, but highly expressed in other Helicobacter pylori-associated gastroduodenal diseases. Helicobacter 2020; 25:e12667. [PMID: 31702083 DOI: 10.1111/hel.12667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND IL-27 has dual roles in the immune response either stimulating Th1 or inhibiting Th17 cells. Because there is a particular link of IL-23/Th17 axis in the development of cancer and IL-27 has been considered a potential treatment for cancer, we evaluated the gastric and serum concentrations of IL-27 in two mutually exclusive Helicobacter pylori-associated diseases, gastric cancer (GC) and duodenal ulcer (DU). MATERIAL AND METHODS We prospectively studied 110 H pylori-positive patients and 40 healthy blood donors. Serum and gastric concentrations of IL-27 and cytokines of the Th1/Th17 cells were assessed by ELISA. RESULTS IL-27 was not detected in GC patients, but the cytokine concentration was very high in the patients with DU. IL-27 was also detected in the gastritis patients and in the H pylori-positive blood donors. IL27RA mRNA expression in peripheral blood mononuclear cells, evaluated by rt-PCR, was stimulated by H pylori strains. The cytokine concentration positively correlated with the Th1 and negatively with Th17 cell representative cytokine levels. Gastric IL-27 concentrations were positively correlated with increased degree of mononuclear and polymorphonuclear cells on the antral gastric mucosa of DU patients in consonance with the DU gastritis pattern. IL-12p70 and IFN-γ gastric concentrations were significantly higher in DU than in GC. Conversely, gastric concentrations of Th17 cell-associated cytokines (IL-1β, IL-6, IL-17A, IL-23, and TGF-β) were significantly higher in GC than in DU patients. CONCLUSION Although H pylori infection is able to elicit IL-27 and IL-27Rα secretion, DU and GC have diametrically opposed cytokine patterns.
Collapse
Affiliation(s)
- Gifone A Rocha
- Laboratory of Research in Bacteriology, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício F de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Brazil
| | - Mônica M D A Cabral
- Department of Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Breno B de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Brazil
| | | | - Dulciene M M Queiroz
- Laboratory of Research in Bacteriology, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Zhang S, Li J, Fan J, Wu X. Bisphenol A triggers the malignancy of acute myeloid leukemia cells via regulation of IL‐4 and IL‐6. J Biochem Mol Toxicol 2019; 34:e22412. [PMID: 31714645 DOI: 10.1002/jbt.22412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/17/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Suwei Zhang
- Department of Clinical LaboratoryShantou Central Hospital Shantou Guangdong China
| | - Jiazhen Li
- Department of Clinical LaboratoryShantou Central Hospital Shantou Guangdong China
| | - Jingru Fan
- Department of EmergencyShantou Central Hospital Shantou Guangdong China
| | - Xianheng Wu
- Department of RadiologyShantou Central Hospital Shantou Guangdong China
| |
Collapse
|
22
|
Kourko O, Seaver K, Odoardi N, Basta S, Gee K. IL-27, IL-30, and IL-35: A Cytokine Triumvirate in Cancer. Front Oncol 2019; 9:969. [PMID: 31681561 PMCID: PMC6797860 DOI: 10.3389/fonc.2019.00969] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
The role of the immune system in anti-tumor immunity cannot be overstated, as it holds the potential to promote tumor eradication or prevent tumor cell escape. Cytokines are critical to influencing the immune responses and interactions with non-immune cells. Recently, the IL-12 and IL-6 family of cytokines have accumulated newly defined members each with specific immune functions related to various cancers and tumorigenesis. There is a need to better understand how cytokines like IL-27, IL-30, and IL-35 interact with one another, and how a developing tumor can exploit these interactions to enhance immune suppression. Current cytokine-based immunotherapies are associated with cytotoxic side effects which limits the success of treatment. In addition to this toxicity, understanding the complex interactions between immune and cancer cells may be one of the greatest challenges to developing a successful immunotherapy. In this review, we bring forth IL-27, IL-30, and IL-35, “sister cytokines,” along with more recent additions to the IL-12 family, which serve distinct purposes despite sharing structural similarities. We highlight how these cytokines function in the tumor microenvironment by examining their direct effects on cancer cells as well their indirect actions via regulatory functions of immune cells that act to either instigate or inhibit tumor progression. Understanding the context dependent immunomodulatory outcomes of these sister cytokines, as well as their regulation within the tumor microenvironment, may shed light onto novel cancer therapeutic treatments or targets.
Collapse
Affiliation(s)
- Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Kyle Seaver
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Natalya Odoardi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
23
|
Investigation of Interleukin-27 in the Sera of Nonmelanoma Skin Cancer Patients. Dermatol Res Pract 2018; 2018:8321302. [PMID: 30581461 PMCID: PMC6276429 DOI: 10.1155/2018/8321302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/15/2018] [Accepted: 11/11/2018] [Indexed: 01/08/2023] Open
Abstract
IL-27 has been shown to have both tumor promoting and suppressing functions. IL-27, with its diverse influences on immune responses, has not been studied extensively in nonmelanoma skin cancers (NMSC), including Squamous and Basal Cell Carcinomas (SCC and BCC), and its roles in tumor initiation, progression, and its probable use in NMSC treatment have yet to be unveiled. A cross-sectional analytical study was designed to investigate the serum levels of IL-27 in NMSC patients in comparison to normal individuals. Levels of IL-27 in the sera of 60 NMSC patients along with 28 healthy controls were measured by means of quantitative enzyme-linked immunosorbent assay (ELISA). In this study we observed that IL-27 serum levels were significantly higher in NMSC patients in comparison to healthy individuals (0.0134 versus 0.0008 ng/ml; P<0.001). Furthermore, when subcategorized based on pathological diagnosis, both BCC and SCC patients had higher levels of IL-27 in their sera compared to controls (P=0.002 and P=0.033; respectively). However, these levels were not different among SCC and BCC patients. According to our results, it seems that IL-27 is involved in antitumor immune responses in NMSCs. On the other hand, these observations might be indicative of this cytokine involvement in NMSC tumorigenesis and progression. Therefore, administration of this cytokine for therapeutic purposes in patients with such conditions should be erred on the side of caution.
Collapse
|
24
|
Zheng Y, Feng W, Wang YJ, Sun Y, Shi G, Yu Q. Galectins as potential emerging key targets in different types of leukemia. Eur J Pharmacol 2018; 844:73-78. [PMID: 30452910 DOI: 10.1016/j.ejphar.2018.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/20/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023]
Abstract
Galectins are carbohydrate-binding proteins and these have very high affinity for β-galactoside containing glycoproteins and glycolipids. Amongst sixteen types of galectin, the role of galectin 1, 3, 9 and 12 is defined in the development and progression of different types of leukemia including acute myeloid leukemia, acute promyelocytic leukemia, B-cell precursor acute lymphoblastic leukemia, adult T cell leukemia and chronic lymphocytic leukemia. There are multiple mechanisms through which these galectins may affect tumor proliferation. These may include increased production of tumor resistance conferring proteins such as multidrug resistance (MDR-1) and myeloid cell leukemia (MCL-1). Moreover, galectin-9 may act on Tim-3 receptors present on the circulating CD8+ T cells to impair immune system function and the latter provide an ideal environment for the proliferation of leukemic cells. The present review describes the role and mechanisms involved in galectin-mediated development and progression of different types of leukemia.
Collapse
Affiliation(s)
- Yan Zheng
- The Department of Anesthesia, China-Japan Union Hospital of Jilin University, China.
| | - Wei Feng
- The Department of Anesthesia, China-Japan Union Hospital of Jilin University, China
| | - Yu-Juan Wang
- The Department of Hematology and Oncology, The Second Hospital of Jilin University, China.
| | - Yan Sun
- The Department of Hematology and Oncology, The Second Hospital of Jilin University, China.
| | - Guang Shi
- The Department of Hematology and Oncology, The Second Hospital of Jilin University, China.
| | - Qiong Yu
- The Department of Hematology and Oncology, The Second Hospital of Jilin University, China.
| |
Collapse
|
25
|
Gao J, Fan M, Xiang G, Wang J, Zhang X, Guo W, Wu X, Sun Y, Gu Y, Ge H, Tan R, Qiu H, Shen Y, Xu Q. Diptoindonesin G promotes ERK-mediated nuclear translocation of p-STAT1 (Ser727) and cell differentiation in AML cells. Cell Death Dis 2017; 8:e2765. [PMID: 28471454 PMCID: PMC5520695 DOI: 10.1038/cddis.2017.159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/26/2017] [Accepted: 03/13/2017] [Indexed: 12/22/2022]
Abstract
Exploration of a new differentiation therapy that extends the range of differentiation for treating acute myeloid leukemia (AML) is attractive to researchers and clinicians. Here we report that diptoindonesin G (Dip G), a natural resveratrol aneuploid, exerts antiproliferative activity by inducing G2/M phase arrest and cell differentiation in AML cell lines and primary AML cells. Gene-profiling experiments showed that treating human leukemia HL-60 cells with Dip G was associated with a remarkable upregulation of STAT1 target gene expression, including IFIT3 and CXCL10. Mechanistically, Dip G activated ERK, which caused phosphorylation of STAT1 at Ser727 and selectively enhanced the interaction of p-STAT1 (Ser727) and p-ERK, further promoting their nuclear translocation. The nuclear translocation of p-STAT1 and p-ERK enhanced the transactivation of STAT1-targeted genes in AML cells. Furthermore, in vivo treatment of HL-60 xenografts demonstrated that Dip G significantly inhibited tumor growth and reduced tumor weight by inducing cell differentiation. Taken together, these results shed light on an essential role for ERK-mediated nuclear translocation of p-STAT1 (Ser727) and its full transcriptional activity in Dip G-induced differentiation of AML cells. Furthermore, these results demonstrate that Dip G could be used as a differentiation-inducing agent for AML therapy, particularly for non-acute promyelocytic leukemia therapy.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Minmin Fan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Gang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jujuan Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yanhong Gu
- Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huiming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.,Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| | - Hongxia Qiu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.,Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
26
|
Hu X, Chen Q, Sowrirajan B, Bosche M, Imamichi T, Sherman BT. Genome-Wide Analyses of MicroRNA Profiling in Interleukin-27 Treated Monocyte-Derived Human Dendritic Cells Using Deep Sequencing: A Pilot Study. Int J Mol Sci 2017; 18:ijms18050925. [PMID: 28452924 PMCID: PMC5454838 DOI: 10.3390/ijms18050925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression and thereby influence cell fate and function. Recent studies suggest that an abundant class of miRNAs play important roles in immune cells, such as T cells, natural killer (NK) cells, B cells, and dendritic cells (DCs). Interleukin (IL)-27 is a member of the IL-12 family of cytokines with broad anti-viral effects. It is a potent inhibitor of HIV-1 infection in CD4+ T cells and macrophages, as well as monocyte-derived immature dendritic cells (iDCs). This pilot study compared miRNA profiles between iDCs and IL-27-treated iDCs (27DCs) using deep sequencing methods and identified 46 known miRNAs that were significantly differentially expressed in 27DCs: 36 were upregulated and 10 downregulated by IL-27. Many of the potential target genes of these miRNAs are involved in IL-27 associated pathways, such as JAK/STAT, MAPKs, and PI3K and several were also previously reported to be involved in the regulation of human DC function. This study found that these miRNAs also potentially target several viral genomes and therefore may have antiviral effects. Four of these differential miRNAs (miR-99a-5p, miR-222-3p, miR-138-5p, and miR-125b-5p) were validated using quantitative reverse transcription PCR (RT-qPCR). Twenty-two novel miRNAs were discovered from deep sequencing and confirmed using RT-qPCR. This study furthers the understanding of the role of IL-27 in immunity and lays a foundation for future characterization of the role of specific miRNAs in DCs.
Collapse
Affiliation(s)
- Xiaojun Hu
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Bharatwaj Sowrirajan
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Marjorie Bosche
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Brad T Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
27
|
Fabbi M, Carbotti G, Ferrini S. Dual Roles of IL-27 in Cancer Biology and Immunotherapy. Mediators Inflamm 2017; 2017:3958069. [PMID: 28255204 PMCID: PMC5309407 DOI: 10.1155/2017/3958069] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 01/09/2023] Open
Abstract
IL-27 is a pleiotropic two-chain cytokine, composed of EBI3 and IL-27p28 subunits, which is structurally related to both IL-12 and IL-6 cytokine families. IL-27 acts through a heterodimer receptor consisting of IL-27Rα (WSX1) and gp130 chains, which mediate signaling predominantly through STAT1 and STAT3. IL-27 was initially reported as an immune-enhancing cytokine that supports CD4+ T cell proliferation, T helper (Th)1 cell differentiation, and IFN-γ production, acting in concert with IL-12. However, subsequent studies demonstrated that IL-27 displays complex immune-regulatory functions, which may result in either proinflammatory or anti-inflammatory effects in relationship to the biological context and experimental models considered. Several pieces of evidence, obtained in preclinical tumor models, indicated that IL-27 has a potent antitumor activity, related not only to the induction of tumor-specific Th1 and cytotoxic T lymphocyte (CTL) responses but also to direct inhibitory effects on tumor cell proliferation, survival, invasiveness, and angiogenic potential. Nonetheless, given its immune-regulatory functions, the effects of IL-27 on cancer may be dual and protumor effects may also occur. Here, we will summarize IL-27 biological activities and its functional overlaps with the IFNs and discuss its dual role in tumors in the light of potential applications to cancer immunotherapy.
Collapse
Affiliation(s)
- Marina Fabbi
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Grazia Carbotti
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Silvano Ferrini
- Laboratory of Biotherapy, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| |
Collapse
|