1
|
Eid AH, Khachab M, Kobeissy F, Sahebkar A. Pharmacotherapeutic perspectives on nutraceuticals in the treatment of MASLD and MASH. Ther Adv Chronic Dis 2025; 16:20406223251339388. [PMID: 40415898 PMCID: PMC12103661 DOI: 10.1177/20406223251339388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/14/2025] [Indexed: 05/27/2025] Open
Affiliation(s)
- Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Maha Khachab
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Firat YY, Cicek B, Kara A, Ozturk NK, Ilgun S. Effects of Thyme, Cumin, and Sumac Extracts on Apoptosis and Paraptosis in Hepatocellular Carcinoma: Synergistic, Antagonistic, or Additive Properties. Food Sci Nutr 2025; 13:e70106. [PMID: 40129995 PMCID: PMC11931446 DOI: 10.1002/fsn3.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/05/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
This study evaluated the effect of single, double, and triple combined doses of sumac, thyme, and cumin extracts on apoptosis and paraptosis in the HepG2 cell line. The effect of thyme and cumin extracts was higher in proteins (mTOR, caspase-8, caspase-9, Bax and bcl-2) other than caspase-3 protein. The expression of caspase-3 protein was higher in the sumac extract-treated groups. The expression levels of GRP78/Bip and DDIT3/Chop proteins, which are indicators of paraptosis, did not exert a significant difference between the extracts. Even though their protein expression is different, according to MTT results, sumac and thyme extracts showed an additive effect, thyme and cumin extracts showed an antagonistic effect, sumac and cumin extracts showed a synergistic effect, and sumac, thyme, and cumin extracts showed a synergistic effect. Sumac, thyme, and cumin extracts induced cell death by causing apoptosis in HepG2 cells, and they may have a supportive impact on the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yagmur Yasar Firat
- Department of Nutrition Dietetic, Faculty of Health SciencesErciyes UniversityKayseriTürkiye
| | - Betul Cicek
- Department of Nutrition Dietetic, Faculty of Health SciencesErciyes UniversityKayseriTürkiye
| | - Ayca Kara
- Betül Ziya Eren Genom and Stem Cell CenterErciyes UniversityKayseriTürkiye
| | - Nurefsan Konyaligil Ozturk
- Department of Nutrition Dietetic, Faculty of Health SciencesBolu Abant İzzet Baysal UniversityBoluTürkiye
| | - Selen Ilgun
- Department of Nutrition Dietetic, Faculty of Health SciencesBolu Abant İzzet Baysal UniversityBoluTürkiye
- Department of Pharmacognosy, Faculty of PharmacyErciyes UniversityKayseriTürkiye
| |
Collapse
|
3
|
Owczarek K, Caban M, Sosnowska D, Kajszczak D, Lewandowska U. The Anti-Metastatic Potential of Aronia Leaf Extracts on Colon Cancer Cells. Nutrients 2024; 16:4110. [PMID: 39683504 DOI: 10.3390/nu16234110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Numerous studies have demonstrated the health benefits of polyphenols found in aronia fruits; however, little is known about how aronia leaf polyphenols impact colorectal cancer (CRC). This study aimed to evaluate the in vitro anti-metastatic and anti-invasive activity of crude aronia leaf extract (ACE) and purified phenolic-rich aronia leaf extract (APE) against two CRC cell lines (SW-480 and HT-29). METHODS Migration and invasion potential of ACE and APE were evaluated. Moreover, ELISA and gelatin zymography were performed to detect translational and activity changes in CRC cells after aronia extracts treatment. RESULTS We found that a 100 µg/mL concentration of ACE and APE almost entirely downregulated the migration and invasion of SW-480 cells, showing greater effectiveness than HT-29 cells. The observed inhibition was concentration-dependent and statistically significant. Additionally, extracts reduced the product of MMP-2 and MMP-9 gene expression at the protein level and simultaneously inhibited the activity of both MMPs. An APE at 300 µg/mL for SW-480 and 600 µg/mL for HT-29 resulted in a notable reduction in MMP-2 protein synthesis by 72% and 50%, respectively. In contrast, MMP-9 protein synthesis decreased by 48% and 59% in HT-29 cells treated with 300 µg/mL and 600 µg/mL of ACE, respectively. The levels of gelatinase activity were similar for both CRC lines, and the APE tested at a concentration of 300 µg/mL reached almost the IC50 value after 48 h of incubation. CONCLUSIONS Based on the presented results, we provided an experimental foundation for future in vitro and in vivo studies on the potential effects and activities of aronia leaves.
Collapse
Affiliation(s)
- Katarzyna Owczarek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Miłosz Caban
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Dorota Sosnowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland
| | - Dominika Kajszczak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland
| | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
4
|
Martins-Gomes C, Nunes FM, Silva AM. Linking Variability in Phytochemical Composition with Safety Profile of Thymus carnosus Boiss. Extracts: Effect of Major Compounds and Evaluation of Markers of Oxidative Stress and Cell Death. Int J Mol Sci 2024; 25:5343. [PMID: 38791385 PMCID: PMC11120720 DOI: 10.3390/ijms25105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Natural products are generally considered safe for human consumption, but this classification is often based on ethnobotanical surveys or their use in traditional medicine over a long period of time. However, edaphoclimatic factors are known to produce different chemotypes, which may affect the safety profile and bioactivities, and are not commonly considered for plants exploited as crops worldwide. Thymus carnosus Boiss., a thyme species with various health-promoting effects, has potential pharmaceutical applications, but edaphoclimatic factors were found to significantly impact its phytochemical composition. Thus, we aimed to assess the safety profile of T. carnosus extracts obtained from plants harvested in two locations over three consecutive years and to establish an association with specific components, an essential study in the search for new sources of nutraceuticals. Thus, the antiproliferative effect of an aqueous decoction (AD), hydroethanolic (HE) extracts, and major extracts' components of T. carnosus was evaluated on intestinal (Caco-2) and hepatic (HepG2) cell models, revealing effects dependent on extract type, cell line, and tested compounds. Flavonoids induced different cytotoxic patterns, which could be attributed to molecular structural differences. Flow cytometry analysis showed apoptosis and necrosis induction, mediated by the modulation of intracellular reactive oxygen species and mitochondrial membrane potential, effects that were dependent on the cell line and phytochemical composition and on the synergism between extracts components, rather than on the activity of an isolated compound. While ursolic acid was the component with the strongest impact on the difference between extraction methods, flavonoids assumed a pivotal role in the response of different cell lines to the extracts. We report for the first time, for Thymus spp. extracts, that variations in the phytochemical composition clearly influence the cellular response, thus highlighting the need for extract standardization for medicinal applications.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
5
|
Lee YR, Lee HB, Oh MJ, Kim Y, Park HY. Thyme Extract Alleviates High-Fat Diet-Induced Obesity and Gut Dysfunction. Nutrients 2023; 15:5007. [PMID: 38068865 PMCID: PMC10708554 DOI: 10.3390/nu15235007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Prolonged intake of a high-fat diet (HFD) disturbs the composition of gut microbiota, contributing to the development of metabolic diseases, notably obesity and increased intestinal permeability. Thyme (Thymus vulgaris L.), an aromatic plant, is known for its several therapeutic properties. In this study, we explored the potential of thyme extract (TLE) to mitigate HFD-induced metabolic derangements and improve the gut environment. Eight-week-old C57BL/6 mice were administered 50 or 100 mg/kg TLE for eight weeks. Administration of 100 mg/kg TLE resulted in decreased weight gain and body fat percentage, alongside the regulation of serum biomarkers linked to obesity induced by a HFD. Moreover, TLE enhanced intestinal barrier function by increasing the expression of tight junction proteins and ameliorated colon shortening. TLE also altered the levels of various metabolites. Especially, when compared with a HFD, it was confirmed that 2-hydroxypalmitic acid and 3-indoleacrylic acid returned to normal levels after TLE treatment. Additionally, we investigated the correlation between fecal metabolites and metabolic parameters; deoxycholic acid displayed a positive correlation with most parameters, except for colon length. In contrast, hypoxanthine was negatively correlated with most parameters. These results suggest a promising role for thyme in ameliorating obesity and related gut conditions associated with a HFD.
Collapse
Affiliation(s)
- Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.-B.L.); (M.-J.O.); (Y.K.)
| | - Hye-Bin Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.-B.L.); (M.-J.O.); (Y.K.)
| | - Mi-Jin Oh
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.-B.L.); (M.-J.O.); (Y.K.)
| | - Yoonsook Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.-B.L.); (M.-J.O.); (Y.K.)
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.-B.L.); (M.-J.O.); (Y.K.)
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Benedetti S, Nasoni MG, Luchetti F, Palma F. New insights into the cytotoxic effects of Thymus vulgaris essential oil on the human triple-negative breast cancer cell line MDA-MB-231. Toxicol In Vitro 2023; 93:105705. [PMID: 37775061 DOI: 10.1016/j.tiv.2023.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Essential oils (EOs) are natural products that have gained wide interest due to their biological activities and anticancer properties through various mechanisms. The present study aimed to test the cytotoxicity of Thymus vulgaris L. (thyme) EO of Italian origin, rich in thymol (49.6%) and p-cymene (18.8%), towards the triple-negative breast cancer cell line MDA-MB-231 and to investigate the biochemical mechanisms underlying its antitumor activity. Thyme EO reduced cancer cell viability in a dose-dependent manner after 24 h treatment, with an IC50 value equal to 75.1 ± 15.2 μg/ml; simultaneously, the inhibition of cancer cell migration and colony formation capacity was evidenced. Thyme EO antiproliferative effects were related to the induction of apoptosis as demonstrated by the increased expression of the pro-apoptotic proteins Bax, cleaved caspase-3, phospho-p53, and SMAC/Diablo and by the reduction of the anti-apoptotic proteins Bcl-2, cIAP-1, cIAP-2, HIF-1α, survivin, and XIAP. Thyme EO administration led to the early formation of intracellular ROS, followed by the increment of MDA as an index of lipid peroxidation and by the decreased expression of the antioxidant enzymes catalase and PON2. The upregulation of Nrf2 mRNA expression and the strong induction of HO-1 sustained the activation of the Nrf2 pathway by thyme EO. These data showed that the EO from Thymus vulgaris L. might inhibit the malignant phenotype of MDA-MB-231, thus suggesting potential benefits against human triple-negative breast cancer.
Collapse
Affiliation(s)
- Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, Italy.
| | - Maria Gemma Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, Italy
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, Italy
| | - Francesco Palma
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, Italy
| |
Collapse
|
7
|
Bıtgen N, Onder GO, Baran M, Yay A. Cytotoxicity screening of Thymus vulgaris L. in breast cancer: in vitro study. Toxicol Res (Camb) 2023; 12:584-590. [PMID: 37663807 PMCID: PMC10470352 DOI: 10.1093/toxres/tfad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 09/05/2023] Open
Abstract
Breast cancer is one of the leading causes of cancer-related deaths due to its aggressive course. There is an increasing need for alternative therapy strategies, including herbal medications, to treat the disease because of its high incidence. Medicinal plants, such as Thymus vulgaris L. (T. vulgaris), have recently attracted great interest due to the antitumor properties of their extracts. The purpose of this investigation was to ascertain whether T. vulgaris had any cytotoxic effects on two different breast cancer cell lines. MTT test was applied to evaluate the effect of T. vulgaris on cell viability. TUNEL method was used to determine its apoptotic effect. LC3 and Beclin-1 expression levels were determined by immunofluorescence staining method and its autophagic effect was evaluated. Our findings demonstrate that T. vulgaris greately lowers proliferation, both in terms of concentration and duration. Consistent with decreased proliferation, an increase in apoptotic and autophagic cell death were also observed. The migration capacity of MCF-7 and MDA-MB-231 breast cancer cells was greatly suppressed by T. vulgaris, while significantly reducing colony formation. This study is the first to look into how T. vulgaris methanol extract affects breast cancer cells. All of these findings demonstrate that T. vulgaris prevents breast cancer cells from developing a malignant phenotype. It is possible to say that the methanol extract of T. vulgaris is suitable for the treatment of breast cancer, including aggressive types. However, in vivo research should support these results.
Collapse
Affiliation(s)
- Nazmiye Bıtgen
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Melikgazi 38039, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Melikgazi 38039, Kayseri, Turkey
| | - Gozde Ozge Onder
- Genome and Stem Cell Center (GENKOK), Erciyes University, Melikgazi 38039, Kayseri, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Melikgazi 38039, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Melikgazi 38039, Kayseri, Turkey
| | - Arzu Yay
- Genome and Stem Cell Center (GENKOK), Erciyes University, Melikgazi 38039, Kayseri, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Melikgazi 38039, Kayseri, Turkey
| |
Collapse
|
8
|
El Orfi N, Boutayeb S, Haddou Rahou B, Errihani H. Use of Medicinal Plants by Cancer Patients Under Chemotherapy in the Northwest of Morocco (Rabat Area) : Cross-Sectional Study. J Evid Based Integr Med 2022; 27:2515690X221128036. [PMID: 36254459 PMCID: PMC9580094 DOI: 10.1177/2515690x221128036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Variety of conventional treatments are used to treat cancer. Cancer patients adopt other alternative therapies including medicinal plants. Their curative power results in the presence of secondary metabolites in its different parts. However, they can have toxic effects and interactions with conventional treatment and even chemosensitivity of the cancer cells. OBJECTIVES This study aims to determine the prevalence of the use of medecinal plants by cancer patients undergoing chemotherapy, list the medecinal plants used, identify the most consumed, present the reported adverse effects and determine the predictive factors of their use. MATERIALS AND METHODS This was a cross-sectional study of 203 patients followed at the National Institute of Oncology in Rabat from 01 October 2018 to 30 November 2018. Regarding socio-demographic and clinical characteristics and data on the use of medicinal plants were collected from a questionnaire. FINDINGS of 203 patients, 37% used medicinal plants. 30 plants also the honey were identified during this study. The "euphorbia honey"was consumed at (40%), The most used plants were garlic (13%), turmeric, fenugreek and thyme (11% each). 5% of patients presented side effects related to the consumption of medicinal plants. There is a significant association between the use of medicinal plants and socio-economic level (p = 0.004) and duration of illness (p = 0.048). CONCLUSION This study revealed a high prevalence of medicinal plants used by cancer patients receiving chemotherapy at National Institute of Oncology. The more clinical studies are desirable to demonstrate the efficacy of medicinal plants and their therapeutic effects to encourage their consumption or prohibit them.
Collapse
Affiliation(s)
- Nadia El Orfi
- Life and Health Department, University of Medicine and Pharmacy Mohammed V, Rabat, Morocco,Nadia El Orfi. (PhD student), Adress: 46, hay nahda 1 complement, groupe el aahd, Rabat, Morroco.
| | | | - Bouchra Haddou Rahou
- Research department, High Institute of Nursing Professions and Technical Health, Rabat, Morocco
| | | |
Collapse
|
9
|
AlKahlout A, Fardoun M, Mesmar J, Abdallah R, Badran A, Nasser SA, Baydoun S, Kobeissy F, Shaito A, Iratni R, Muhammad K, Baydoun E, Eid AH. Origanum syriacum L. Attenuates the Malignant Phenotype of MDA-MB231 Breast Cancer Cells. Front Oncol 2022; 12:922196. [PMID: 35847867 PMCID: PMC9280492 DOI: 10.3389/fonc.2022.922196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths among women. Among breast cancer types, triple negative breast cancer (TNBC) is the most aggressive, and is resistant to hormonal and chemotherapeutic treatments. As such, alternative approaches that may provide some benefit in fighting this debilitating pathology are critically needed; hence the utilization of herbal medicine. Origanum syriacum L., one of the most regularly consumed plants in the Mediterranean region, exhibits antiproliferative effect on several cancer cell lines. However, whether this herb modulates the malignant phenotype of TNBC remains poorly investigated. Here, we show that in MDA-MB-231, a TNBC cell line, Origanum syriacum L. aqueous extract (OSE) inhibited cellular viability, induced autophagy determined by the accumulation of lipidized LC3 II, and triggered apoptosis. We also show that OSE significantly promoted homotypic cell-cell adhesion while it decreased cellular migration, adhesion to fibronectin, and invasion of MDA-MB-231 cells. This was supported by decreased activity of focal adhesion kinase (FAK), reduced α2 integrin expression, and downregulation of secreted PgE2, MMP2 and MMP-9, in OSE-treated cells. Finally, we also show that OSE significantly inhibited angiogenesis and downregulated the level of nitric oxide (NO) production. Our findings demonstrate the ability of OSE to attenuate the malignant phenotype of the MDA-MB-231 cells, thus presenting Origanum syriacum L. as a promising potential source for therapeutic compounds for TNBC.
Collapse
Affiliation(s)
| | - Manal Fardoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Joelle Mesmar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Rola Abdallah
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Adnan Badran
- Department of Basic Sciences, University of Petra, Amman, Jordan
| | - Suzanne A. Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Serine Baydoun
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, United States
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainseville, FL, United States
| | | | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khalid Muhammad
- Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Mostafavi E, Zarepour A, Barabadi H, Zarrabi A, Truong LB, Medina-Cruz D. Antineoplastic activity of biogenic silver and gold nanoparticles to combat leukemia: Beginning a new era in cancer theragnostic. BIOTECHNOLOGY REPORTS 2022; 34:e00714. [PMID: 35686001 PMCID: PMC9171450 DOI: 10.1016/j.btre.2022.e00714] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
The American Cancer Society estimated around 61,090 new cases of leukemia were diagnosed, and around 23,660 people died from this disease in the United States alone in 2021. Due to its burden on society, there is an unmet need to explore innovative approaches to overcome leukemia. Among different strategies that have been explored, nanotechnology appears to be a promising and effective approach for therapeutics. Specifically, biogenic silver and gold nanoparticles (NPs) have attracted significant attention for their antineoplastic activity toward leukemia cancer cells due to their unique physicochemical properties. Indeed, these nanostructures have emerged as useful approaches in anti-leukemic applications, either as carriers to enhance drug bioavailability and its targeted delivery to a specific organ or as a novel therapeutic agent. This review explores recent advances in green synthesized nanomaterials and their potential use against leukemia, especially focusing on silver (Ag) and gold (Au) nanostructures. In detail, we have reviewed various eco-friendly methods of bio-synthesized NPs, their analytical properties, and toxicity effects against leukemic models. This overview confirms the satisfactory potency of biogenic NPs toward leukemic cells and desirable safety profiles against human native cells, which opens a promising door toward commercializing these types of nontherapeutic agents if challenges involve clinical validations, reproducibility, and scalability could be resolved.
Collapse
|
11
|
Hamedi A, Bayat M, Asemani Y, Amirghofran Z. A review of potential anti-cancer properties of some selected medicinal plants grown in Iran. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Hammoudi Halat D, Krayem M, Khaled S, Younes S. A Focused Insight into Thyme: Biological, Chemical, and Therapeutic Properties of an Indigenous Mediterranean Herb. Nutrients 2022; 14:2104. [PMID: 35631245 PMCID: PMC9147557 DOI: 10.3390/nu14102104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
A perennial wild shrub from the Lamiaceae family and native to the Mediterranean region, thyme is considered an important wild edible plant studied for centuries for its unique importance in the food, pharmaceutical, and cosmetic industry. Thyme is loaded with phytonutrients, minerals and vitamins. It is pungent in taste, yet rich in moisture, proteins, crude fiber, minerals and vitamins. Its chemical composition may vary with geographical location but is mainly composed of flavonoids and antioxidants. Previous studies have illustrated the therapeutic effects of thyme and its essential oils, especially thymol and carvacrol, against various diseases. This is attributed to its multi-pharmacological properties that include, but are not limited to, antioxidant, anti-inflammatory, and antineoplastic actions. Moreover, thyme has long been known for its antiviral, antibacterial, antifungal, and antiseptic activities, in addition to remarkable disruption of microbial biofilms. In the COVID-19 era, some thyme constituents were investigated for their potential in viral binding. As such, thyme presents a wide range of functional possibilities in food, drugs, and other fields and prominent interest as a nutraceutical. The aims of the current review are to present botanical and nutritive values of this herb, elaborate its major constituents, and review available literature on its dietetic and biological activities.
Collapse
Affiliation(s)
- Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon
| | - Maha Krayem
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Sanaa Khaled
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon;
| |
Collapse
|
13
|
Newly Synthesized Thymol Derivative and Its Effect on Colorectal Cancer Cells. Molecules 2022; 27:molecules27092622. [PMID: 35565973 PMCID: PMC9103784 DOI: 10.3390/molecules27092622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/24/2022] Open
Abstract
Thymol affects various types of tumor cell lines, including colorectal cancer cells. However, the hydrophobic properties of thymol prevent its wider use. Therefore, new derivatives (acetic acid thymol ester, thymol β-D-glucoside) have been synthesized with respect to hydrophilic properties. The cytotoxic effect of the new derivatives on the colorectal cancer cell lines HT-29 and HCT-116 was assessed via MTT assay. The genotoxic effect was determined by comet assay and micronucleus analysis. ROS production was evaluated using ROS-Glo™ H2O2 Assay. We confirmed that one of the thymol derivatives (acetic acid thymol ester) has the potential to have a cyto/genotoxic effect on colorectal cancer cells, even at much lower (IC50~0.08 μg/mL) concentrations than standard thymol (IC50~60 μg/mL) after 24 h of treatment. On the other side, the genotoxic effect of the second studied derivative-thymol β-D-glucoside was observed at a concentration of about 1000 μg/mL. The antiproliferative effect of studied derivatives of thymol on the colorectal cancer cell lines was found to be both dose- and time-dependent at 100 h. Moreover, thymol derivative-treated cells did not show any significantly increased rate of micronuclei formation. New derivatives of thymol significantly increased ROS production too. The results confirmed that the effect of the derivative on tumor cells depends on its chemical structure, but further detailed research is needed. However, thymol and its derivatives have great potential in the prevention and treatment of colorectal cancer, which remains one of the most common cancers in the world.
Collapse
|
14
|
Singla RK, Sharma P, Dubey AK, Gundamaraju R, Kumar D, Kumar S, Madaan R, Shri R, Tsagkaris C, Parisi S, Joon S, Singla S, Kamal MA, Shen B. Natural Product-Based Studies for the Management of Castration-Resistant Prostate Cancer: Computational to Clinical Studies. Front Pharmacol 2021; 12:732266. [PMID: 34737700 PMCID: PMC8560712 DOI: 10.3389/fphar.2021.732266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background: With prostate cancer being the fifth-greatest cause of cancer mortality in 2020, there is a dire need to expand the available treatment options. Castration-resistant prostate cancer (CRPC) progresses despite androgen depletion therapy. The mechanisms of resistance are yet to be fully discovered. However, it is hypothesized that androgens depletion enables androgen-independent cells to proliferate and recolonize the tumor. Objectives: Natural bioactive compounds from edible plants and herbal remedies might potentially address this need. This review compiles the available cheminformatics-based studies and the translational studies regarding the use of natural products to manage CRPC. Methods: PubMed and Google Scholar searches for preclinical studies were performed, while ClinicalTrials.gov and PubMed were searched for clinical updates. Studies that were not in English and not available as full text were excluded. The period of literature covered was from 1985 to the present. Results and Conclusion: Our analysis suggested that natural compounds exert beneficial effects due to their broad-spectrum molecular disease-associated targets. In vitro and in vivo studies revealed several bioactive compounds, including rutaecarpine, berberine, curcumin, other flavonoids, pentacyclic triterpenoids, and steroid-based phytochemicals. Molecular modeling tools, including machine and deep learning, have made the analysis more comprehensive. Preclinical and clinical studies on resveratrol, soy isoflavone, lycopene, quercetin, and gossypol have further validated the translational potential of the natural products in the management of prostate cancer.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
- Khalsa College of Pharmacy, Amritsar, India
| | | | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, Sri Sai College of Pharmacy, Amritsar, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Salvatore Parisi
- Lourdes Matha Institute of Hotel Management and Catering Technology, Thiruvananthapuram, India
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Niksic H, Becic F, Koric E, Gusic I, Omeragic E, Muratovic S, Miladinovic B, Duric K. Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci Rep 2021; 11:13178. [PMID: 34162964 PMCID: PMC8222331 DOI: 10.1038/s41598-021-92679-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/09/2021] [Indexed: 12/09/2022] Open
Abstract
Among natural products, essential oils from aromatic plants have been reported to possess potent anticancer properties. In this work, we aimed to perform the cytotoxic concentration range screening and antiproliferative activity screening of chemically characterized Thymus vulgaris L. essential oil. In vivo bioassay was conducted using the brine shrimp lethality test (BSLT). In vitro evaluation of antiproliferative activity was carried out on three human tumor cell lines: breast adenocarcinoma MCF-7, lung carcinoma H460 and acute lymphoblastic leukemia MOLT-4 using MTT assay. Essential oil components thymol (36.7%), p-cymene (30.0%), γ-terpinene (9.0%) and carvacrol (3.6%) were identified by gas chromatography/mass spectrometry. Analyzed essential oil should be considered as toxic/highly toxic with LC50 60.38 µg/mL in BSLT and moderate/weakly cytotoxic with IC50 range 52.65-228.78 µg/mL in vitro, according to evaluated cytotoxic criteria. Essential oil induced a dose-dependent inhibition of cell proliferation in all tested tumor cell lines and showed different sensitivity. Dose dependent toxicity observed in bioassay as well as the in vitro assay confirmed that brine shrimp lethality test is an adequate method for preliminary toxicity testing of Thymus vulgaris L. essential oil in tumor cell lines.
Collapse
Affiliation(s)
- Haris Niksic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Fahir Becic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Emina Koric
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina.
| | - Irma Gusic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Elma Omeragic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Samija Muratovic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Bojana Miladinovic
- Faculty of Medicine, University of Nis, Dr Zoran Djindjic Boulevard 81, 18000, Niš, Serbia
| | - Kemal Duric
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
16
|
Almnhawy M, Jebur M, Alhajamee M, Marai K, Tabrizi MH. PLGA-Based Nano-Encapsulation of Trachyspermum Ammi Seed Essential Oil (TSEO-PNP) as a Safe, Natural, Efficient, Anticancer Compound in Human HT-29 Colon Cancer Cell Line. Nutr Cancer 2020; 73:2808-2820. [PMID: 33319599 DOI: 10.1080/01635581.2020.1862256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Colorectal cancer is a lethal and commonly diagnosed cancer worldwide. To halt its burden more efficient targeted strategies are needed. Trachyspermum ammi seed essential oil (TSEO) contains several anticancer phytochemicals that maybe more effective via PLGA-based nano-encapsulation. TSEO-PNP nanoparticles were synthesized utilizing evaporation and ultra-sonication-based emulsification methods. Their size, morphology, and stability were defined by DLS, SEM, and surface zeta-potential data, respectively. The TSEO-PNP antioxidant apoptotic, cytotoxic, and antiangiogenic impacts on both cell lines (HT-29 and HUVEC) were studied by FRAP/ABTS, Q-PCR, MTT, and CAM assays, respectively. Moreover, further confirmatory measurements such as AO/EB fluorescent staining and flow cytometry analysis were performed to verify apoptosis. Stable (-32.42 mV) 206.21-nm TSEO-PNP induced apoptosis in the HT-29 cells. Apoptosis was confirmed by significant overexpression of apoptotic genes (Cas-9 and BAX), down-regulation of the anti-apoptotic (BCL-2) gene, fluorescent AO/EB staining, and flow cytometry data following increased TSEO-PNP treatment doses. TSEO-PNP exhibited a meaningful dose- and time-dependent cancer-specific cytotoxic impact on HT-29 cells. The TSEO-PNP has three main anticancer activities on HT-29 colon cancer cells including oxidant reduction, apoptosis induction, and angiogenesis suppression.
Collapse
Affiliation(s)
- Mokhalad Almnhawy
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammed Jebur
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Maitham Alhajamee
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Khadeeja Marai
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
17
|
N. Adham A, F. Hegazy ME, Naqishbandi AM, Efferth T. Induction of Apoptosis, Autophagy and Ferroptosis by Thymus vulgaris and Arctium lappa Extract in Leukemia and Multiple Myeloma Cell Lines. Molecules 2020; 25:molecules25215016. [PMID: 33138135 PMCID: PMC7663330 DOI: 10.3390/molecules25215016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Thymus vulgaris and Arctium lappa have been used as a folk remedy in the Iraqi Kurdistan region to deal with different health problems. The aim of the current study is to investigate the cytotoxicity of T. vulgaris and A. lappa in leukemia and multiple myeloma (MM) cell lines and determine the mode of cell death triggered by the most potent cytotoxic fractions of both plants in MM. Resazurin assay was used to evaluate cytotoxic and ferroptosis activity, apoptosis, and modulation in the cell cycle phase were investigated via Annexin V-FITC/PI dual stain and cell-cycle arrest assays. Furthermore, we used western blotting assay for the determination of autophagy cell death. n-Hexane, chloroform, ethyl acetate, and butanol fractions of T. vulgaris and A. lappa exhibited cytotoxicity in CCRF-CEM and CEM/ADR 5000 cell lines at concentration range 0.001–100 μg/mL with potential activity revealed by chloroform and ethyl acetate fractions. NCI-H929 displayed pronounced sensitivity towards T. vulgaris (TCF) and A. lappa (ACF) chloroform fractions with IC50 values of 6.49 ± 1.48 and 21.9 ± 0.69 μg/mL, respectively. TCF induced apoptosis in NCI-H929 cells with a higher ratio (71%), compared to ACF (50%) at 4 × IC50. ACF demonstrated more potent autophagy activity than TCF. TCF and ACF induced cell cycle arrest and ferroptosis. Apigenin and nobiletin were identified in TCF, while nobiletin, ursolic acid, and lupeol were the main compounds identified in ACF. T. vulgaris and A. lappa could be considered as potential herbal drug candidates, which arrest cancer cell proliferation by induction of apoptosis, autophagic, and ferroptosis.
Collapse
Affiliation(s)
- Aveen N. Adham
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq;
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Mohamed Elamir F. Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Alaadin M. Naqishbandi
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq;
- Correspondence: (A.M.N.); (T.E.); Tel.: +964-75-0448-2788 (A.M.N.); +49-6131-3925751 (T.E.)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
- Correspondence: (A.M.N.); (T.E.); Tel.: +964-75-0448-2788 (A.M.N.); +49-6131-3925751 (T.E.)
| |
Collapse
|
18
|
Afonso AF, Pereira OR, Cardoso SM. Health-Promoting Effects of Thymus Phenolic-Rich Extracts: Antioxidant, Anti-Inflammatory and Antitumoral Properties. Antioxidants (Basel) 2020; 9:E814. [PMID: 32882987 PMCID: PMC7555682 DOI: 10.3390/antiox9090814] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Thymus genus comprises numerous species that are particularly abundant in the West Mediterranean region. A growing body of evidence suggests that many of these species are a rich source of bioactive compounds, including phenolic compounds such as rosmarinic acid, salvianolic acids and luteolin glycosides, able to render them potential applications in a range of industrial fields. This review collects the most relevant studies focused on the antioxidant, anti-inflammatory and anti-cancer of phenolic-rich extracts from Thymus plants, highlighting correlations made by the authors with respect to the main phenolic players in such activities.
Collapse
Affiliation(s)
- Andrea F. Afonso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Public Health Laboratory of Bragança, Local Health Unit, Rua Eng. Adelino Amaro da Costa, 5300-146 Bragança, Portugal
| | - Olívia R. Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
19
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
20
|
Aiello P, Sharghi M, Mansourkhani SM, Ardekan AP, Jouybari L, Daraei N, Peiro K, Mohamadian S, Rezaei M, Heidari M, Peluso I, Ghorat F, Bishayee A, Kooti W. Medicinal Plants in the Prevention and Treatment of Colon Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2075614. [PMID: 32377288 PMCID: PMC7187726 DOI: 10.1155/2019/2075614] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/03/2019] [Indexed: 01/04/2023]
Abstract
The standard treatment for cancer is generally based on using cytotoxic drugs, radiotherapy, chemotherapy, and surgery. However, the use of traditional treatments has received attention in recent years. The aim of the present work was to provide an overview of medicinal plants effective on colon cancer with special emphasis on bioactive components and underlying mechanisms of action. Various literature databases, including Web of Science, PubMed, and Scopus, were used and English language articles were considered. Based on literature search, 172 experimental studies and 71 clinical cases on 190 plants were included. The results indicate that grape, soybean, green tea, garlic, olive, and pomegranate are the most effective plants against colon cancer. In these studies, fruits, seeds, leaves, and plant roots were used for in vitro and in vivo models. Various anticolon cancer mechanisms of these medicinal plants include induction of superoxide dismutase, reduction of DNA oxidation, induction of apoptosis by inducing a cell cycle arrest in S phase, reducing the expression of PI3K, P-Akt protein, and MMP as well; reduction of antiapoptotic Bcl-2 and Bcl-xL proteins, and decrease of proliferating cell nuclear antigen (PCNA), cyclin A, cyclin D1, cyclin B1 and cyclin E. Plant compounds also increase both the expression of the cell cycle inhibitors p53, p21, and p27, and the BAD, Bax, caspase 3, caspase 7, caspase 8, and caspase 9 proteins levels. In fact, purification of herbal compounds and demonstration of their efficacy in appropriate in vivo models, as well as clinical studies, may lead to alternative and effective ways of controlling and treating colon cancer.
Collapse
Affiliation(s)
- Paola Aiello
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
- Department of Physiology and Pharmacology “V. Erspamer”, La Sapienza University of Rome, Rome, Italy
| | - Maedeh Sharghi
- Nursing and Midwifery School, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Azam Pourabbasi Ardekan
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Jouybari
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nahid Daraei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khadijeh Peiro
- Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran
| | - Sima Mohamadian
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdiyeh Rezaei
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Heidari
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ilaria Peluso
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Fereshteh Ghorat
- Traditional and Complementary Medicine Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| | - Wesam Kooti
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
21
|
Anticancer Activities of Thymus vulgaris L. in Experimental Breast Carcinoma in Vivo and in Vitro. Int J Mol Sci 2019; 20:ijms20071749. [PMID: 30970626 PMCID: PMC6479806 DOI: 10.3390/ijms20071749] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022] Open
Abstract
Naturally-occurring mixtures of phytochemicals present in plant foods are proposed to possess tumor-suppressive activities. In this work, we aimed to evaluate the antitumor effects of Thymus vulgaris L. in in vivo and in vitro mammary carcinoma models. Dried T. vulgaris (as haulm) was continuously administered at two concentrations of 0.1% and 1% in the diet in a chemically-induced rat mammary carcinomas model and a syngeneic 4T1 mouse model. After autopsy, histopathological and molecular analyses of rodent mammary carcinomas were performed. In addition, in vitro evaluations using MCF-7 and MDA-MB-231 cells were carried out. In mice, T. vulgaris at both doses reduced the volume of 4T1 tumors by 85% (0.1%) and 84% (1%) compared to the control, respectively. Moreover, treated tumors showed a substantial decrease in necrosis/tumor area ratio and mitotic activity index. In the rat model, T. vulgaris (1%) decreased the tumor frequency by 53% compared to the control. Analysis of the mechanisms of anticancer action included well-described and validated diagnostic and prognostic markers that are used in both clinical approach and preclinical research. In this regard, the analyses of treated rat carcinoma cells showed a CD44 and ALDH1A1 expression decrease and Bax expression increase. Malondialdehyde (MDA) levels and VEGFR-2 expression were decreased in rat carcinomas in both the T. vulgaris treated groups. Regarding the evaluations of epigenetic changes in rat tumors, we found a decrease in the lysine methylation status of H3K4me3 in both treated groups (H3K9m3, H4K20m3, and H4K16ac were not changed); up-regulations of miR22, miR34a, and miR210 expressions (only at higher doses); and significant reductions in the methylation status of four gene promoters—ATM serin/threonine kinase, also known as the NPAT gene (ATM); Ras-association domain family 1, isoform A (RASSF1); phosphatase and tensin homolog (PTEN); and tissue inhibitor of metalloproteinase-3 (TIMP3) (the paired-like homeodomain transcription factor (PITX2) promoter was not changed). In vitro study revealed the antiproliferative and proapoptotic effects of essential oils of T. vulgaris in MCF-7 and MDA-MB-231 cells (analyses of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS); 5-bromo-20-deoxyuridine (BrdU); cell cycle; annexin V/PI; caspase-3/7; Bcl-2; PARP; and mitochondrial membrane potential). T. vulgaris L. demonstrated significant chemopreventive and therapeutic activities against experimental breast carcinoma.
Collapse
|
22
|
Martins-Gomes C, Souto EB, Cosme F, Nunes FM, Silva AM. Thymus carnosus extracts induce anti-proliferative activity in Caco-2 cells through mechanisms that involve cell cycle arrest and apoptosis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
23
|
Zhang QY, Wang FX, Jia KK, Kong LD. Natural Product Interventions for Chemotherapy and Radiotherapy-Induced Side Effects. Front Pharmacol 2018; 9:1253. [PMID: 30459615 PMCID: PMC6232953 DOI: 10.3389/fphar.2018.01253] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death in the world. Chemotherapy and radiotherapy are the common cancer treatments. However, the development of adverse effects resulting from chemotherapy and radiotherapy hinders the clinical use, and negatively reduces the quality of life in cancer patients. Natural products including crude extracts, bioactive components-enriched fractions and pure compounds prepared from herbs as well as herbal formulas have been proved to prevent and treat cancer. Of significant interest, some natural products can reduce chemotherapy and radiotherapy-induced oral mucositis, gastrointestinal toxicity, hepatotoxicity, nephrotoxicity, hematopoietic system injury, cardiotoxicity, and neurotoxicity. This review focuses in detail on the effectiveness of these natural products, and describes the possible mechanisms of the actions in reducing chemotherapy and radiotherapy-induced side effects. Recent advances in the efficacy of natural dietary supplements to counteract these side effects are highlighted. In addition, we draw particular attention to gut microbiotan in the context of prebiotic potential of natural products for the protection against cancer therapy-induced toxicities. We conclude that some natural products are potential therapeutic perspective for the prevention and treatment of chemotherapy and radiotherapy-induced side effects. Further studies are required to validate the efficacy of natural products in cancer patients, and elucidate potential underlying mechanisms.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei-Xuan Wang
- Department of Pathology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Ke-Ke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Association of herbal/botanic supplement use with quality of life, recurrence, and survival in newly diagnosed stage II colon cancer patients: A 2-y follow-up study. Nutrition 2018; 54:1-6. [PMID: 29674230 DOI: 10.1016/j.nut.2018.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/11/2018] [Accepted: 02/03/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Our objective was to investigate the association between herbal/botanic supplement use and perceived quality of life (QoL), cancer recurrence, and all-cause mortality in colon cancer patients. METHODS Patients (n = 453) newly diagnosed with stage II adenocarcinoma of the colon between 2009 and 2011 were recruited from the North Carolina Central Cancer Registry. Data including demographic variables, herbal medicine use and frequency, lifestyle, diet, cancer treatment, and QoL were collected by interviews at diagnosis (baseline) and 1 and 2 y after diagnosis. Mortality information was obtained via the National Death Index. The Functional Assessment of Cancer Therapy-Colorectal (FACT-C) and Medical Outcomes Short Form 12 (SF-12) were used to evaluate QoL. RESULTS At baseline, herbal/botanic supplement users were more likely to have a healthier lifestyle than non-users, including more physical activity (P <0.01), more fruit and vegetable consumption (P = 0.01), less smoking (P <0.01), and less energy intake from fat (P = 0.02). After adjustment for potential confounders, no significant association was found between herbal/botanic supplement use and QoL assessed by FACT-C and SF-12. Similarly, herbal/botanic supplement use was not associated with the risk of recurrence, all-cause mortality or the combined. CONCLUSION In this study, patients with stage II colon cancer using herbal/botanic supplements had no significant improvement in their QoL and no difference in odds of colon cancer recurrence and all-cause mortality over 2 y after diagnosis compared with those who did not use herbs/botanicals. Further studies are warranted to confirm the findings and to focus on types of herbal/botanic supplements.
Collapse
|
25
|
Tuğlu Mİ, Aydemir I, Kılıçarslan Sönmez P, Buran T, Mete M. The Effects of Medicinal Plants on Cancer Cell Lines and Efficacy of Experimental Animal Model. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2017. [DOI: 10.21448/ijsm.365065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Oliveira JRD, de Jesus Viegas D, Martins APR, Carvalho CAT, Soares CP, Camargo SEA, Jorge AOC, de Oliveira LD. Thymus vulgaris L. extract has antimicrobial and anti-inflammatory effects in the absence of cytotoxicity and genotoxicity. Arch Oral Biol 2017; 82:271-279. [PMID: 28683409 DOI: 10.1016/j.archoralbio.2017.06.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES This study evaluated the biological effects of the T. vulgaris L. extract., such as antimicrobial activity on planktonic cultures and mono- and polymicrobial biofilms, cytotoxicity, anti-inflammatory activity and genotoxicity. METHODS Monomicrobial biofilms of Candida albicans, Staphylococcus aureus, Enterococcus faecalis, Streptococcus mutans and Pseudomonas aeruginosa and polymicrobial biofilms composed by C. albicans with each bacterium were formed for 48h and exposed for 5min to the plant extract. Murine macrophages (RAW 264.7), human gingival fibroblasts (FMM-1), human breast carcinoma cells (MCF-7) and cervical carcinoma cells (HeLa) were also exposed to the plant extract for 5min and the cell viability were analyzed by MTT, neutral red (NR) and crystal violet (CV) assays. Interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) produced by RAW 264.7 was quantified by ELISA, after 24h exposure to the plant extract, both in the absence and presence of lipopolysaccharide (LPS) from Escherichia coli. Genotoxicity of the plant extract was evaluated by micronucleus formation (MN) in 1000 cells. The results were analyzed by T-Test or ANOVA and Tukey's Test (P≤0.05). RESULTS All biofilms showed significant reductions in CFU/mL (colony-forming units per milliliter). Cell viability was above 50% for all cell lines. Anti-inflammatory effect on the synthesis of IL-1β and TNF-α was observed. The MN was similar or lower than the control group in all cells. CONCLUSIONS T. vulgaris L. extract was effective against all biofilms, promoted high cell viability, anti-inflammatory effect and presented no genotoxicity.
Collapse
Affiliation(s)
- Jonatas Rafael de Oliveira
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil.
| | - Daiane de Jesus Viegas
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Ana Paula Réquia Martins
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Cláudio Antonio Talge Carvalho
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Restorative Dentistry. São José dos Campos, SP, Brazil
| | - Cristina Pacheco Soares
- Universidade do Vale do Paraíba (UNIVAP). Institute of Research and Development. São José dos Campos, SP, Brazil
| | - Samira Esteves Afonso Camargo
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Antonio Olavo Cardoso Jorge
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Luciane Dias de Oliveira
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| |
Collapse
|
27
|
Kooti W, Servatyari K, Behzadifar M, Asadi-Samani M, Sadeghi F, Nouri B, Zare Marzouni H. Effective Medicinal Plant in Cancer Treatment, Part 2: Review Study. J Evid Based Complementary Altern Med 2017; 22:982-995. [PMID: 28359161 PMCID: PMC5871268 DOI: 10.1177/2156587217696927] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer is the second cause of death after cardiovascular diseases. With due attention to rapid progress in the phytochemical study of plants, they are becoming popular because of their anticancer effects. The aim of this study was to investigate the effective medicinal plants in the treatment of cancer and study their mechanism of action. In order to gather information the keywords “traditional medicine,” “plant compounds,” “medicinal plant,” “medicinal herb,” “toxicity,” “anticancer effect,” “cell line,” and “treatment” were searched in international databases such as ScienceDirect, PubMed, and Scopus and national databases such as Magiran, Sid, and Iranmedex, and a total of 228 articles were collected. In this phase, 49 nonrelevant articles were excluded. Enhancement P53 protein expression, reducing the expression of proteins P27, P21, NFκB expression and induction of apoptosis, inhibition of the PI3K/Akt pathway, and reduction of the level of acid phosphatase and lipid peroxidation are the most effective mechanisms of herbal plants that can inhibit cell cycle and proliferation. Common treatments such as radiotherapy and chemotherapy can cause some complications. According to results of this study, herbal extracts have antioxidant compounds that can induce apoptosis and inhibit cell proliferation by the investigated mechanisms.
Collapse
Affiliation(s)
- Wesam Kooti
- 1 Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Karo Servatyari
- 1 Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Masoud Behzadifar
- 2 Student of Health Policy, Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Asadi-Samani
- 3 Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Sadeghi
- 1 Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bijan Nouri
- 4 Social Determinants of Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hadi Zare Marzouni
- 5 Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|