1
|
Roseti L, Borciani G, Grassi F, Desando G, Gambari L, Grigolo B. Nutraceuticals in osteoporosis prevention. Front Nutr 2024; 11:1445955. [PMID: 39416651 PMCID: PMC11479890 DOI: 10.3389/fnut.2024.1445955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Nutraceuticals are gaining popularity as they can contribute to bone health by delaying the onset or slowing down the progression of pathological bone loss. Osteoporosis's bone loss is a concern for older adults and a crucial aspect of aging. Maintaining healthy bones is the key to living a full and active life. Our review explores the current knowledge on the role of nutraceuticals in preventing osteoporosis by focusing on three main aspects. First, we provide an overview of osteoporosis. Second, we discuss the latest findings on natural nutraceuticals and their efficacy in reducing bone loss, emphasizing clinical trials. Third, we conduct a structured analysis to evaluate nutraceuticals' pros and cons and identify translational gaps. In conclusion, we must address several challenges to consolidate our knowledge, better support clinicians in their prescriptions, and provide people with more reliable nutritional recommendations to help them lead healthier lives.
Collapse
Affiliation(s)
| | - Giorgia Borciani
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | | | | |
Collapse
|
2
|
Lin CR, Tsai SHL, Huang KY, Tsai PA, Chou H, Chang SH. Analgesic efficacy of collagen peptide in knee osteoarthritis: a meta-analysis of randomized controlled trials. J Orthop Surg Res 2023; 18:694. [PMID: 37717022 PMCID: PMC10505327 DOI: 10.1186/s13018-023-04182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND The management of knee osteoarthritis involves various treatment strategies. It is important to explore alternative therapies that are both safe and effective. Collagen peptides have emerged as a potential intervention for knee osteoarthritis. This study aims to evaluate the analgesic effects and safety of collagen peptide in patients diagnosed with knee osteoarthritis. METHODS We conducted a systematic literature search following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Multiple databases including PubMed, Scopus, EMBASE, Web of Science, Cochrane, and ClinicalTrials.gov were searched for randomized controlled trials (RCTs) published up to 27 May 2023 that focused on the analgesic outcomes and adverse events associated with collagen peptides or hydrolyzed collagen in patients with osteoarthritis. We assessed the quality of the included studies and the strength of evidence using the Cochrane ROB 2.0 tool and Grading of Recommendations, Assessment, Development, and Evaluations. RESULTS Four trials involving 507 patients with knee osteoarthritis were included and analyzed using the random-effects model. All these trials were considered to have a high risk of bias. Our results revealed a significant difference in pain relief between the collagen peptide group and the placebo group in patients with knee osteoarthritis (standardized mean difference: - 0.58; 95% CI - 0.98, - 0.18, p = 0.004; I2: 68%; quality of evidence: moderate). However, there was no significant difference in the risk of adverse events between collagen peptide and placebo (odds ratio: 1.66; 95% CI 0.99, 2.78, p = 0.05; I2: 0%; quality of evidence: very low). CONCLUSIONS Our findings demonstrate significant pain relief in patients with knee osteoarthritis who received collagen peptides compared to those who received placebo. In addition, the risk of adverse events did not differ significantly between the collagen peptide group and the placebo group. However, due to potential biases and limitations, well-designed randomized controlled trials are needed to validate and confirm these findings.
Collapse
Affiliation(s)
- Chun-Ru Lin
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan
| | - Sung Huang Laurent Tsai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Keelung Branch, and Chang Gung University, F7, No 222 Mai-King Road, Keelung, Taiwan
| | - Ko-Yen Huang
- Department of Medical Education, Taipei Medical University-Shuang Ho Hospital, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 235041, Taiwan
| | - Po-An Tsai
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan
| | - Hsuan Chou
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242008, Taiwan
| | - Shu-Hao Chang
- Department of Orthopedics, Fu Jen Catholic University Hospital, Fu Jen Catholic University, No. 69, Guizi Rd., Taishan Dist., New Taipei City, 24352, Taiwan.
- School of Medicine, College of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 24205, Taiwan.
| |
Collapse
|
3
|
Chen CC, Chang SS, Chang CH, Hu CC, Nakao Y, Yong SM, Mandy YLO, Lim CJ, Shim EKS, Shih HN. Randomized, double-blind, four-arm pilot study on the effects of chicken essence and type II collagen hydrolysate on joint, bone, and muscle functions. Nutr J 2023; 22:17. [PMID: 36918892 PMCID: PMC10015953 DOI: 10.1186/s12937-023-00837-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/05/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (OA) is a leading cause of disability among older adults. Medical and surgical treatments are costly and associated with side effects. A natural nutraceutical, collagen hydrolysate, has received considerable attention due to its relieving effects on OA-associated symptoms. This study investigated the effects of hydrolyzed collagen type II (HC-II) and essence of chicken (BRAND'S Essence of Chicken) with added HC-II (EC-HC-II) on joint, muscle, and bone functions among older adults with OA. METHODS Patients (n = 160) with grade 1-3 knee OA according to the Kellgren-Lawrence classification system, joint pain for ≥ 3 months, and a Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score of > 6 were randomly assigned with equal probability to consume EC-HC-II, HC-II, glucosamine HCl, or a placebo for 24 weeks in combination with resistance training. Outcome measurements were WOMAC score, visual analogue scale (VAS) pain score, grip strength, fat-free mass (FFM), and bone mass. RESULTS All groups exhibited similar levels of improvement in WOMAC index scores after 24 weeks. HC-II significantly reduced VAS pain score by 0.9 ± 1.89 (p = 0.034) after 14 days. A repeated-measures analysis of variance showed that HC-II reduced pain levels more than the placebo did (mean ± standard error: - 1.3 ± 0.45, p = 0.021) after 14 days; the EC-HC-II group also had significantly higher FFM than the glucosamine HCl (p = 0.02) and placebo (p = 0.017) groups and significantly higher grip strength than the glucosamine HCl group (p = 0.002) at 24 weeks. CONCLUSION HC-II reduces pain, and EC-HC-II may improve FFM and muscle strength. This suggests that EC-HC-II may be a novel holistic solution for mobility by improving joint, muscle, and bone health among older adults. Large-scale studies should be conducted to validate these findings. TRIAL REGISTRATION This trial was retrospectively registered at ClinicalTrials.gov (NCT04483024).
Collapse
Affiliation(s)
- Chun-Chieh Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan.,College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing Street, Guishan District, Taoyuan City, 333, Taiwan
| | - Shih-Sheng Chang
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan.,College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing Street, Guishan District, Taoyuan City, 333, Taiwan
| | - Chih-Hsiang Chang
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan.,College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing Street, Guishan District, Taoyuan City, 333, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1St Road, Guishan District, Taoyuan City, 333, Taiwan
| | - Chih-Chien Hu
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan.,College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing Street, Guishan District, Taoyuan City, 333, Taiwan
| | - Yoshihiro Nakao
- Research and Development, Suntory Beverage and Food Asia, 3 Biopolis Drive, #06-14/19, Synapse, Singapore, 138623, Singapore
| | - Shan May Yong
- Research and Development, Suntory Beverage and Food Asia, 3 Biopolis Drive, #06-14/19, Synapse, Singapore, 138623, Singapore
| | - Yen Ling Ow Mandy
- Research and Development, Suntory Beverage and Food Asia, 3 Biopolis Drive, #06-14/19, Synapse, Singapore, 138623, Singapore
| | - Chia Juan Lim
- Research and Development, Suntory Beverage and Food Asia, 3 Biopolis Drive, #06-14/19, Synapse, Singapore, 138623, Singapore
| | - Eric Kian-Shiun Shim
- Research and Development, Suntory Beverage and Food Asia, 3 Biopolis Drive, #06-14/19, Synapse, Singapore, 138623, Singapore
| | - Hsin-Nung Shih
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan. .,College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan. .,Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, No. 5, Fuxing Street, Guishan District, Taoyuan City, 333, Taiwan.
| |
Collapse
|
4
|
Li X, He Z, Xu J, Su C, Xiao X, Zhang L, Zhang H, Li H. Conformational Changes in Proteins Caused by High-Pressure Homogenization Promote Nanoparticle Formation in Natural Bone Aqueous Suspension. Foods 2022; 11:2869. [PMID: 36140999 PMCID: PMC9498631 DOI: 10.3390/foods11182869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
As a natural calcium resource, animal bone needs to be miniaturized to the nanoscale to improve palatability and absorption capacity. To explore the mechanism of high-pressure homogenization (HPH) in preparing natural bone aqueous nanosuspensions, the relationships between the changes in protein conformation, solubility and quality characteristics of rabbit bone aqueous suspensions (RBAS) prepared by different HPH cycles were studied. The results showed that the improvements in particle size, stability and calcium solubility of RBASs could be mainly attributed to the improvement of protein solubility induced by the changes in protein conformation. HPH treatment led to the denaturation and degradation of protein in rabbit bone, generating soluble peptides and improving the stability of the suspensions by enhancing the surface charge of the particles. When collagen as the main protein was partially degraded, the hydroxyapatite in the bone was crushed into tiny particles. The increase in the particle-specific surface area led to the release of calcium ions, which chelated with the peptides to produce peptide calcium. However, excessive HPH treatment caused the production of protein macromolecular aggregates and affected the quality of RBASs. This study is helpful to promote the application of HPH technology in animal bone nanoprocessing.
Collapse
Affiliation(s)
- Xue Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Zhifei He
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jingbing Xu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Chang Su
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xu Xiao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Huanhuan Zhang
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Hongjun Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
5
|
Lampropoulou-Adamidou K, Karlafti E, Argyrou C, Makris K, Trovas G, Dontas IA, Tournis S, Triantafyllopoulos IK. Effect of Calcium and Vitamin D Supplementation With and Without Collagen Peptides on Volumetric and Areal Bone Mineral Density, Bone Geometry and Bone Turnover in Postmenopausal Women With Osteopenia. J Clin Densitom 2022; 25:357-372. [PMID: 34980546 DOI: 10.1016/j.jocd.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Collagen peptides (CPs) have been shown to potentially have a role as a treatment option in osteopenia. In the present randomized prospective study, we examined the effect of calcium, vitamin D with and without CPs supplementation on changes in volumetric bone mineral density (vBMD) and bone geometry assessed by peripheral quantitative computed tomography at the tibia, areal bone mineral density (aBMD) assessed by dual-energy X-ray absorptiometry at the lumbar spine and the hip and bone turnover markers over 12-mo. Fifty-one postmenopausal women with osteopenia were allocated to Group A who received orally 5 g CPs, 500 mg calcium and 400 IU vitamin D3 and Group B who received the same dose of calcium and vitamin D3 per day. The primary endpoint was the change of trabecular bone mineral content (BMC) and vBMD after 12-mo supplementation in Groups A and B. At the trabecular site (4% of the tibia length), Group A had a significant increase of total BMC by 1.96 ± 2.41% and cross-sectional area by 2.58 ± 3.91%, trabecular BMC by 5.24 ± 6.48%, cross-sectional area by 2.58 ± 3.91% and vBMD by 2.54 ± 3.43% and a higher % change of these parameters at 12 mo in comparison to Group B (p < 0.01, p = 0.04, p < 0.01, p = 0.04, p = 0.02, respectively). At the cortical site (38% of the tibia length), total and cortical vBMD increased by 1.01 ± 2.57% and 0.67 ± 1.71%. Furthermore, the mean aBMD at the spine was higher (p = 0.01), while bone markers decreased in Group A compared to Group B. The present study shows improvement of trabecular and cortical parameters as assessed by peripheral quantitative computed tomography at the tibia, prevention of aBMD decline and decrease of bone turnover after 12-mo supplementation with calcium, vitamin D with CPs.
Collapse
Affiliation(s)
- Kalliopi Lampropoulou-Adamidou
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece.
| | - Efthymia Karlafti
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece
| | - Chrysoula Argyrou
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece
| | - Konstantinos Makris
- Clinical Biochemistry Department, KAT General Hospital of Athens, Athens, Greece
| | - George Trovas
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece
| | - Ismene A Dontas
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece
| | - Symeon Tournis
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece
| | - Ioannis K Triantafyllopoulos
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece; 5th Orthopaedic Department, HYGEIA Hospital, Athens, Greece
| |
Collapse
|
6
|
Modulatory activity of a bovine hydrolyzed collagen-hydroxyapatite food complex on human primary osteoblasts after simulating its gastrointestinal digestion and absorption. NUTR HOSP 2022; 39:644-651. [PMID: 35485386 DOI: 10.20960/nh.03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
INTRODUCTION osteoporosis is the most prevalent bone disease and one of the main causes of chronic disability in middle and advanced ages. Conventional pharmacological treatments are still limited, and their prolonged use can cause adverse effects that motivate poor adherence to treatment. Nutritional strategies are traditionally based on supplementing the diet with calcium and vitamin D. Recent studies confirm that the results of this supplementation are significantly improved if it is accompanied by the intake of oral hydrolyzed collagen. OBJECTIVE to evaluate the possible in vitro osteogenic activity of a peptide-mineral complex formed by bovine hydrolyzed collagen and bovine hydroxyapatite (Phoscollagen®, PHC®). METHODS the digestion and absorption of PHC® were simulated using the dynamic gastrointestinal digester of AINIA and Caco-2 cell model, respectively. Primary cultures of human osteoblasts were treated with the resulting fraction of PHC® and changes were evaluated in the proliferation of preosteoblasts and in the mRNA expression of osteogenic biomarkers at different stages of osteoblast maturation: Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteocalcin (OC) and type I collagen (ColA1). RESULTS an increase in preosteoblastic proliferation was observed (p ≤ 0,05). No changes were detected in the biomarkers of osteoblasts with 5 days of differentiation, but were with 14 days, registering an increase in Runx2 (p = 0.0008), ColA1 (p = 0.035), OC (p = 0.027) and ALP (without significance). CONCLUSION these results show that the PHC® peptide-mineral complex stimulates the activity of mature osteoblasts, being capable of promoting bone formation.
Collapse
|
7
|
Stimulation of the Runx2 P1 promoter by collagen-derived dipeptide prolyl-hydroxyproline bound to Foxg1 and Foxo1 in osteoblasts. Biosci Rep 2021; 41:230239. [PMID: 34779485 PMCID: PMC8655505 DOI: 10.1042/bsr20210304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Collagen-derived dipeptide prolyl-hydroxyproline (Pro-Hyp) directly binds to the forkhead box g1 (Foxg1) protein and causes it to undergo structural alteration. Pro-Hyp also promotes the production of a regulator of osteoblast differentiation, Runt-related transcription factor 2 (Runx2), through Foxg1, inducing osteoblast differentiation. In addition, Pro-Hyp disrupts the interaction between Foxg1 and Runx2, and Foxg1 appears to interact with Runx2 in the absence of Pro-Hyp. To elucidate the mechanism of Pro-Hyp that promotes osteoblast differentiation, we investigated whether Pro-Hyp regulates the Runx2 P1 promoter together with Foxg1. The present study revealed that Pro-Hyp is taken up by osteoblastic cells via the solute carrier family 15 member (Slc15a) 4. In the presence of Pro-Hyp, Runx2 is translocated from the nucleus to the cytoplasm and Foxg1 is translocated from the cytoplasm to the nucleus. We also found that Pro-Hyp promoted the interaction between Forkhead box o1 (Foxo1) and Runx2 and the dissociation of Foxg1 from Runx2. Moreover, we identified the Pro-Hyp response element in the Runx2 distal P1 promoter at nt −375 to −316, including the Runx2 binding sites and Fox core sequence. In the presence of Pro-Hyp, Runx2 is dissociated from the Pro-Hyp response element in the Runx2 distal P1 promoter. Subsequently, Foxg1 and Foxo1 activated the Runx2 promoter by binding to the Pro-Hyp response element. In summary, we delineated the mechanism by which Pro-Hyp stimulates the bone-related Runx2 distal P1 promoter activity in osteoblastic cells through Foxg1, Foxo1, and Runx2.
Collapse
|
8
|
Zdzieblik D, Oesser S, König D. Specific Bioactive Collagen Peptides in Osteopenia and Osteoporosis: Long-Term Observation in Postmenopausal Women. J Bone Metab 2021; 28:207-213. [PMID: 34520654 PMCID: PMC8441532 DOI: 10.11005/jbm.2021.28.3.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Background The effects of specific collagen peptides on bone mineral density (BMD) in subjects with osteoporosis or osteopenia have already been investigated in 131 postmenopausal women in a randomized controlled trial. The purpose of this follow-up observation was to determine the longer-term effects of the same specific bioactive collagen peptides after a total intervention time of 4 years. Methods In this open-label follow-up observation, 31 postmenopausal women with reduced BMD (initial T-score lower than −1 of either the femoral neck or the lumbar spine) completed the follow-up. BMD was measured via dual energy X-ray absorptiometry. Absolute changes in BMD and T-scores in the spine and femoral neck were assessed. The number of fractures was also recorded. All participants received specific bioactive collagen peptides. Results Supplementation with bioactive collagen peptides during follow-up led to a clinically relevant increase in BMD in the spine. These findings were consistent with the results for the femoral neck. Conclusions Long-term supplementation with specific bioactive collagen peptides appears to be effective in counteracting losses in BMD. Moreover, significant increases in BMD could contribute to improved bone stability.
Collapse
Affiliation(s)
| | | | - Daniel König
- Center of Sports Science, Department for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria.,Faculty of Life Sciences, Department for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Cao C, Xiao Z, Ge C, Wu Y. Animal by-products collagen and derived peptide, as important components of innovative sustainable food systems-a comprehensive review. Crit Rev Food Sci Nutr 2021; 62:8703-8727. [PMID: 34080446 DOI: 10.1080/10408398.2021.1931807] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 2020, the world's food crisis and health industry ushered into a real outbreak. On one side, there were natural disasters such as the novel coronavirus (2019-nCoV), desert locusts, floods, and droughts exacerbating the world food crisis, while on the other side, the social development and changes in lifestyles prompted the health industry to gradually shift from a traditional medical model to a new pattern of prevention, treatment, and nourishment. Therefore, this article reviews animal by-products collagen and derived peptide, as important components of innovative sustainable food systems. The review also considered the preparation, identification, and characterization of animal by-product collagen and collagen peptides as well as their impacts on the food system (including food processing, packaging, preservation, and functional foods). Finally, the application and research progress of animal by-product collagen and peptide in the food system along with the future development trend were discussed. This knowledge would be of great significance for a comprehensive understanding of animal by-product collagen and collagen peptides and would encourage the use of collagen in food processing, preservation, and functional foods.
Collapse
Affiliation(s)
- Changwei Cao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhichao Xiao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Changrong Ge
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yinglong Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
10
|
Deane CS, Bass JJ, Crossland H, Phillips BE, Atherton PJ. Animal, Plant, Collagen and Blended Dietary Proteins: Effects on Musculoskeletal Outcomes. Nutrients 2020; 12:E2670. [PMID: 32883033 PMCID: PMC7551889 DOI: 10.3390/nu12092670] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
Dietary protein is critical for the maintenance of musculoskeletal health, whereappropriate intake (i.e., source, dose, timing) can mitigate declines in muscle and bone mass and/orfunction. Animal-derived protein is a potent anabolic source due to rapid digestion and absorptionkinetics stimulating robust increases in muscle protein synthesis and promoting bone accretion andmaintenance. However, global concerns surrounding environmental sustainability has led to anincreasing interest in plant- and collagen-derived protein as alternative or adjunct dietary sources.This is despite the lower anabolic profile of plant and collagen protein due to the inferior essentialamino acid profile (e.g., lower leucine content) and subordinate digestibility (versus animal). Thisreview evaluates the efficacy of animal-, plant- and collagen-derived proteins in isolation, and asprotein blends, for augmenting muscle and bone metabolism and health in the context of ageing,exercise and energy restriction.
Collapse
Affiliation(s)
- Colleen S Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK;
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Joseph J Bass
- MRC versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (J.J.B.); (H.C.); (B.E.P.)
| | - Hannah Crossland
- MRC versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (J.J.B.); (H.C.); (B.E.P.)
| | - Bethan E Phillips
- MRC versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (J.J.B.); (H.C.); (B.E.P.)
| | - Philip J Atherton
- MRC versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK; (J.J.B.); (H.C.); (B.E.P.)
| |
Collapse
|
11
|
Wang J, Zhang B, Lu W, Liu J, Zhang W, Wang Y, Ma M, Cao X, Guo Y. Cell Proliferation Stimulation Ability and Osteogenic Activity of Low Molecular Weight Peptides Derived from Bovine Gelatin Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7630-7640. [PMID: 32633950 DOI: 10.1021/acs.jafc.0c02717] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It has been recognized that collagen peptides of MW 878 Da (CP1) promote osteoblast proliferation and mineralization. The objective of this study is to identify the peptides responsible for proliferation of osteoblast growth, enhancement of ALP (alkaline phosphatase) activity in osteoblasts and promotion of osteoblast mineralization. To this end, the CP1 were fractioned by a series of chromatography procedures, and 51 peptides from the fraction possessing the most powerful cell proliferation ability were identified by LC-MS-MS. The peptides, GPAGPSGPAGK and GPPGSPGPR, were validated on a simultaneous basis as possessing enhanced bioactivity-inducing properties. In particular, the ALP activity of the cells treated with these two peptides was almost twice that of the control cells. Hydrogen bonds were formed, and the hydrophobic interactions with the EGFR (epidermal growth factor receptor) might be responsible for the osteoblast proliferation activity. On this basis, the two peptides might be potential lead compounds against osteoporosis and osteoarthritis.
Collapse
Affiliation(s)
- Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Bing Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junli Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weijie Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Yihu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaofeng Cao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Zhou S, Tao Z, Zhu Y, Tao L. Mapping theme trends and recognizing hot spots in postmenopausal osteoporosis research: a bibliometric analysis. PeerJ 2019; 7:e8145. [PMID: 31788368 PMCID: PMC6882420 DOI: 10.7717/peerj.8145] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/03/2019] [Indexed: 12/22/2022] Open
Abstract
Background This study aimed to draw a series of scientific maps to quantitatively and qualitatively evaluate hot spots and trends in postmenopausal osteoporosis research using bibliometric analysis. Methods Scientific papers published on postmenopausal osteoporosis were extracted from the Web of Science Core Collection and PubMed database. Extracted information was analyzed quantitatively with bibliometric analysis by CiteSpace, the Online Analysis Platform of Literature Metrology and Bibliographic Item Co-Occurrence Matrix Builder (BICOMB). To explore the hot spots in this field, co-word biclustering analysis was conducted by gCLUTO based on the major MeSH terms/MeSH subheading terms-source literatures matrix. Results We identified that a total of 5,247 publications related to postmenopausal osteoporosis were published between 2013 and 2017. The overall trend decreased from 1,071 literatures in 2013 to 1,048 literatures in 2017. Osteoporosis International is the leading journal in the field of postmenopausal osteoporosis research, both in terms of impact factor score (3.819) and H-index value (157). The United States has retained a top position and has exerted a pivotal influence in this field. The University of California, San Francisco was identified as a leading institution for research collaboration, and Professors Reginster and Kanis have made great achievements in this area. Eight research hot spots were identified. Conclusions Our study found that in the past few years, the etiology and drug treatment of postmenopausal osteoporosis have been research hot spots. They provide a basis for the study of the pathogenesis of osteoporosis and guidelines for the drug treatment of osteoporosis.
Collapse
Affiliation(s)
- Siming Zhou
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhengbo Tao
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Zhu
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lin Tao
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Human Enriched Serum Following Hydrolysed Collagen Absorption Modulates Bone Cell Activity: from Bedside to Bench and Vice Versa. Nutrients 2019; 11:nu11061249. [PMID: 31159319 PMCID: PMC6627680 DOI: 10.3390/nu11061249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/03/2023] Open
Abstract
Collagen proteins are crucial components of the bone matrix. Since collagen-derived products are widely used in the food and supplement industry, one may raise the question whether collagen-enriched diets can provide benefits for the skeleton. In this study, we designed an innovative approach to investigate this question taking into account the metabolites that are formed by the digestive tract and appear in the circulation after ingestion of hydrolysed collagen. Blood samples collected in clinical and pre-clinical trials following ingestion and absorption of hydrolysed collagen were processed and applied on bone-related primary cell cultures. This original ex vivo methodology revealed that hydrolysed collagen-enriched serum had a direct impact on the behaviour of cells from both human and mouse origin that was not observed with controls (bovine serum albumin or hydrolysed casein-enriched serum). These ex vivo findings were fully in line with in vivo results obtained from a mouse model of post-menopausal osteoporosis. A significant reduction of bone loss was observed in mice supplemented with hydrolysed collagen compared to a control protein. Both the modulation of osteoblast and osteoclast activity observed upon incubation with human or mouse serum ex vivo and the attenuation of bone loss in vivo, clearly indicates that the benefits of hydrolysed collagen for osteoporosis prevention go beyond the effect of a simple protein supplementation.
Collapse
|
14
|
Song H, Zhang S, Zhang L, Li B. Ingestion of collagen peptides prevents bone loss and improves bone microarchitecture in chronologically aged mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
15
|
Fu Y, Therkildsen M, Aluko RE, Lametsch R. Exploration of collagen recovered from animal by-products as a precursor of bioactive peptides: Successes and challenges. Crit Rev Food Sci Nutr 2018; 59:2011-2027. [DOI: 10.1080/10408398.2018.1436038] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yu Fu
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Rotimi E. Aluko
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Winnipeg, Canada
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
16
|
König D, Oesser S, Scharla S, Zdzieblik D, Gollhofer A. Specific Collagen Peptides Improve Bone Mineral Density and Bone Markers in Postmenopausal Women-A Randomized Controlled Study. Nutrients 2018; 10:E97. [PMID: 29337906 PMCID: PMC5793325 DOI: 10.3390/nu10010097] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/29/2022] Open
Abstract
Introduction: Investigations in rodents as well as in vitro experiments have suggested an anabolic influence of specific collagen peptides (SCP) on bone formation and bone mineral density (BMD). The goal of the study was to investigate the effect of 12-month daily oral administration of 5 g SCP vs. placebo (CG: control group) on BMD in postmenopausal women with primary, age-related reduction in BMD. Methods: 131 women were enrolled in this randomized, placebo-controlled double-blinded investigation. The primary endpoint was the change in BMD of the femoral neck and the spine after 12 months. In addition, plasma levels of bone markers-amino-terminal propeptide of type I collagen (P1NP) and C-telopeptide of type I collagen (CTX 1)-were analysed. Results: A total of 102 women completed the study, but all subjects were included in the intention-to-treat (ITT) analysis (age 64.3 ± 7.2 years; Body Mass Index, BMI 23.6 ± 3.6 kg/m²; T-score spine -2.4 ± 0.6; T-score femoral neck -1.4 ± 0.5). In the SCP group (n = 66), BMD of the spine and of the femoral neck increased significantly compared to the control group (n = 65) (T-score spine: SCP +0.1 ± 0.26; CG -0.03 ± 0.18; ANCOVA p = 0.030; T-score femoral neck: SCP +0.09 ± 0.24; CG -0.01 ± 0.19; ANCOVA p = 0.003). P1NP increased significantly in the SCP group (p = 0.007), whereas CTX 1 increased significantly in the control group (p = 0.011). Conclusions: These data demonstrate that the intake of SCP increased BMD in postmenopausal women with primary, age-related reduction of BMD. In addition, SCP supplementation was associated with a favorable shift in bone markers, indicating increased bone formation and reduced bone degradation.
Collapse
Affiliation(s)
- Daniel König
- Department for Nutrition, Institute for Sports and Sports Science, University of Freiburg, Schwarzwaldstr. 175, 79117 Freiburg, Germany.
| | - Steffen Oesser
- CRI, Collagen Research Institute GmbH, Schauenburgerstr. 116, 24118 Kiel, Germany.
| | - Stephan Scharla
- Independent Reasercher, Salinenstr. 8, 83435 Bad Reichenhall, Germany.
| | - Denise Zdzieblik
- Department for Nutrition, Institute for Sports and Sports Science, University of Freiburg, Schwarzwaldstr. 175, 79117 Freiburg, Germany.
| | - Albert Gollhofer
- Department for Nutrition, Institute for Sports and Sports Science, University of Freiburg, Schwarzwaldstr. 175, 79117 Freiburg, Germany.
| |
Collapse
|
17
|
Daneault A, Prawitt J, Fabien Soulé V, Coxam V, Wittrant Y. Biological effect of hydrolyzed collagen on bone metabolism. Crit Rev Food Sci Nutr 2017; 57:1922-1937. [PMID: 25976422 DOI: 10.1080/10408398.2015.1038377] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteoporosis is a chronic and asymptomatic disease characterized by low bone mass and skeletal microarchitectural deterioration, increased risk of fracture, and associated comorbidities most prevalent in the elderly. Due to an increasingly aging population, osteoporosis has become a major health issue requiring innovative disease management. Proteins are important for bone by providing building blocks and by exerting specific regulatory function. This is why adequate protein intake plays a considerable role in both bone development and bone maintenance. More specifically, since an increase in the overall metabolism of collagen can lead to severe dysfunctions and a more fragile bone matrix and because orally administered collagen can be digested in the gut, cross the intestinal barrier, enter the circulation, and become available for metabolic processes in the target tissues, one may speculate that a collagen-enriched diet provides benefits for the skeleton. Collagen-derived products such as gelatin or hydrolyzed collagen (HC) are well acknowledged for their safety from a nutritional point of view; however, what is their impact on bone biology? In this manuscript, we critically review the evidence from literature for an effect of HC on bone tissues in order to determine whether HC may represent a relevant alternative in the design of future nutritional approaches to manage osteoporosis prevention.
Collapse
Affiliation(s)
- Audrey Daneault
- a INRA, UMR 1019, UNH, CRNH Auvergne , Clermont-Ferrand , France.,b Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine , Clermont-Ferrand , France
| | | | | | - Véronique Coxam
- a INRA, UMR 1019, UNH, CRNH Auvergne , Clermont-Ferrand , France.,b Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine , Clermont-Ferrand , France
| | - Yohann Wittrant
- a INRA, UMR 1019, UNH, CRNH Auvergne , Clermont-Ferrand , France.,b Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine , Clermont-Ferrand , France
| |
Collapse
|
18
|
Granieri L, Del Pino AM, Mazzoni M, Mancinelli L, Proietti P, Perretti G, Palmerini CA. Chelating properties of beer: Implications on calcium homeostasis in PE/CA-PJ15 cells. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2017. [DOI: 10.1016/j.jnim.2016.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
19
|
Labrie F. Postmenopausal cell and tissue sex-hormone metabolism: mechanisms of intracrinology. Climacteric 2014; 18:101-2. [PMID: 25541856 DOI: 10.3109/13697137.2015.993530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|