1
|
Karapapak M, Demirtola İ, Kelebek M, Ozal E, Ermis S, Ozal S. Evaluation of the effect of atorvastatin on corneal endothelial cells during the initial 12-month period after acute coronary syndrome. Indian J Ophthalmol 2024; 72:1142-1146. [PMID: 39078958 PMCID: PMC11451795 DOI: 10.4103/ijo.ijo_3201_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 10/06/2024] Open
Abstract
PURPOSE It was aimed to compare corneal endothelial changes during the initial 12-month period in which patients started using atorvastatin after a diagnosis of acute coronary syndrome (ACS). METHODS Forty-six participants (group 1) who underwent cardiac angioplasty and stenting for ACS and started using 80 mg atorvastatin in the early period were included in the study. In the study, a control group comprising 71 healthy adults (group 2) was included. These individuals did not use medication for any known systemic disease, had never taken statins, had no history of ocular surgery, and did not have any cornea-related eye diseases. Baseline and 12th month endothelial evaluations of group 1 and 2 participants were compared using specular microscopy. RESULTS There were 28 female and 18 male participants in group 1 and 48 female and 23 male participants in group 2 (P = 0.455). The mean baseline corneal endothelial cell density (CECD) was not significantly higher in group 1 compared to group 2 (2471.4 ± 200 cells/mm2 vs 2428.2 ± 539.8 cells/mm2, P = 0.230). When the change between baseline and 12th month CECD was examined, the decrease in group 2 was significantly different from that in group 1 (-15,2 ± 31,9 and -44,8 ± 49,6, P = 0,002). Although the percentage of hexagonal cells decreased significantly in group 2 participants, no significant change was observed in group 1 (respectively; P < 0.001, P = 0.073). The endothelial cell coefficient of variation did not differ significantly in group 1 participants over a 1-year period (P = 0.192), and a significant increase was observed in group 2 (P < 0.001). CONCLUSION This study revealed that atorvastatin may have a positive effect on corneal endothelium cell density and morphology.
Collapse
Affiliation(s)
- Murat Karapapak
- Department of Ophthalmology, Başakşehir Çam and Sakura City Hospital, Turkey
| | - İrem Demirtola
- Department of Cardiology, Başakşehir Çam and Sakura City Hospital, Turkey
| | - Merve Kelebek
- Department of Ophthalmology, Başakşehir Çam and Sakura City Hospital, Turkey
| | - Ece Ozal
- Department of Ophthalmology, Başakşehir Çam and Sakura City Hospital, Turkey
| | - Serhat Ermis
- Department of Ophthalmology, Başakşehir Çam and Sakura City Hospital, Turkey
| | - Sadik Ozal
- Department of Ophthalmology, Başakşehir Çam and Sakura City Hospital, Turkey
| |
Collapse
|
2
|
Müller H, Hahn J, Gierke A, Stark R, Brunner C, Hoffmann TK, Greve J, Wittekindt O, Lochbaum R. Establishment of the deuterium oxide dilution method as a new possibility for determining the transendothelial water permeability. Pflugers Arch 2024; 476:993-1005. [PMID: 38438679 PMCID: PMC11139723 DOI: 10.1007/s00424-024-02934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/01/2024] [Accepted: 02/25/2024] [Indexed: 03/06/2024]
Abstract
Increase in transendothelial water permeability is an essential etiological factor in a variety of diseases like edema and shock. Despite the high clinical relevance, there has been no precise method to detect transendothelial water flow until now. The deuterium oxide (D2O) dilution method, already established for measuring transepithelial water transport, was used to precisely determine the transendothelial water permeability. It detected appropriate transendothelial water flow induced by different hydrostatic forces. This was shown in four different endothelial cell types. The general experimental setup was verified by gravimetry and absorbance spectroscopy. Determination of transendothelial electrical resistance (TEER) and immunocytochemical staining for proteins of the cell-cell contacts were performed to ensure that no damage to the endothelium occurred because of the measurements. Furthermore, endothelial barrier function was modulated. Measurement of transendothelial water flux was verified by measuring the TEER, the apparent permeability coefficient and the electrical capacity. The barrier-promoting substances cyclic adenosine monophosphate and iloprost reduced TEER and electrical capacity and increased permeability. This was accompanied by a reduced transendothelial water flux. In contrast, the barrier-damaging substances thrombin, histamine and bradykinin reduced TEER and electrical capacity, but increased permeability. Here, an increased water flow was shown. This newly established in vitro method for direct measurement of transendothelial water permeability was verified as a highly precise technique in various assays. The use of patient-specific endothelial cells enables individualized precision medicine in the context of basic edema research, for example regarding the development of barrier-protective pharmaceuticals.
Collapse
Affiliation(s)
- Hannes Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - Janina Hahn
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - Angelina Gierke
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - Robert Stark
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - Thomas K Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - Jens Greve
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - Oliver Wittekindt
- Department of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Robin Lochbaum
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany.
| |
Collapse
|
3
|
Santander-García D, Ortega MC, Benito-Martínez S, Barroso S, Jiménez-Alfaro I, Millán J. A human cellular system for analyzing signaling during corneal endothelial barrier dysfunction. Exp Eye Res 2016; 153:8-13. [PMID: 27697549 DOI: 10.1016/j.exer.2016.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/25/2016] [Accepted: 09/30/2016] [Indexed: 02/07/2023]
Abstract
Correct corneal endothelial barrier function is essential for maintaining corneal transparency. However, research on cell signaling pathways mediating corneal endothelial barrier dysfunction has progressed more slowly than that involving other cellular barriers because of the lack of human corneal endothelial cell models. Here we have optimized the culture of the human corneal endothelial cell (HCEC) line B4G12 as a model for studying paracellular permeability. We show that B4G12-HCECs form confluent monolayers with stable cell-cell junctions when cultured on plastic, but not glass, surfaces precoated with various extracellular matrix components. Cell morphometry and measuring intercellular spaces and transendothelial electric resistance indicate that B4G12-HCECs form optimal monolayers on collagen and fibronectin. Based on the use of specific inhibitors, it has been proposed that the Rho-regulated kinases, ROCK-I and ROCK-II, mediate actomyosin-induced contraction in corneal endothelial cell barriers. ROCKs are effectors of RhoA, RhoB and RhoC. We show that the GTPase RhoA and its effector ROCK-II are predominantly expressed in B4G12-HCECs and primary human corneal endothelial cells. The activation of Rho GTPases during acute barrier disruption has not been investigated in corneal endothelial cells. RhoA, but not other related GTPases that are highly expressed in B4G12-HCECs, such as Rac1 and Cdc42, is transiently activated during barrier disruption in response to the inflammatory mediator thrombin. Pharmacological inhibition of RhoA and ROCK reduces B4G12-HCEC acute contraction. We propose that exploiting B4G12-HCECs is a useful experimental strategy for gaining further insight into the signaling pathways involved in human corneal endothelial barrier function.
Collapse
Affiliation(s)
- Diana Santander-García
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain; Department of Ophthalmology, Hospital Universitario Rey Juan Carlos, Mostoles, Spain; Department of Ophthalmology, Fundación Jiménez Díaz, Madrid, Spain; Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Madrid, Spain
| | | | | | - Susana Barroso
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Ignacio Jiménez-Alfaro
- Department of Ophthalmology, Fundación Jiménez Díaz, Madrid, Spain; Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
4
|
Elevated cytokines, thrombin and PAI-1 in severe HCPS patients due to Sin Nombre virus. Viruses 2015; 7:559-89. [PMID: 25674766 PMCID: PMC4353904 DOI: 10.3390/v7020559] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022] Open
Abstract
Sin Nombre Hantavirus (SNV, Bunyaviridae Hantavirus) is a Category A pathogen that causes Hantavirus Cardiopulmonary Syndrome (HCPS) with case fatality ratios generally ranging from 30% to 50%. HCPS is characterized by vascular leakage due to dysregulation of the endothelial barrier function. The loss of vascular integrity results in non-cardiogenic pulmonary edema, shock, multi-organ failure and death. Using Electric Cell-substrate Impedance Sensing (ECIS) measurements, we found that plasma samples drawn from University of New Mexico Hospital patients with serologically-confirmed HCPS, induce loss of cell-cell adhesion in confluent epithelial and endothelial cell monolayers grown in ECIS cultureware. We show that the loss of cell-cell adhesion is sensitive to both thrombin and plasmin inhibitors in mild cases, and to thrombin only inhibition in severe cases, suggesting an increasing prothrombotic state with disease severity. A proteomic profile (2D gel electrophoresis and mass spectrometry) of HCPS plasma samples in our cohort revealed robust antifibrinolytic activity among terminal case patients. The prothrombotic activity is highlighted by acute ≥30 to >100 fold increases in active plasminogen activator inhibitor (PAI-1) which, preceded death of the subjects within 48 h. Taken together, this suggests that PAI-1 might be a response to the severe pathology as it is expected to reduce plasmin activity and possibly thrombin activity in the terminal patients.
Collapse
|
5
|
Rajashekhar G, Shivanna M, Kompella UB, Wang Y, Srinivas SP. Role of MMP-9 in the breakdown of barrier integrity of the corneal endothelium in response to TNF-α. Exp Eye Res 2014; 122:77-85. [DOI: 10.1016/j.exer.2014.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/11/2023]
|
6
|
Xiao H, Qin X, Ping D, Zuo K. Inhibition of Rho and Rac geranylgeranylation by atorvastatin is critical for preservation of endothelial junction integrity. PLoS One 2013; 8:e59233. [PMID: 23555637 PMCID: PMC3596292 DOI: 10.1371/journal.pone.0059233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 02/12/2013] [Indexed: 11/20/2022] Open
Abstract
Background Small GTPases (guanosine triphosphate, GTP) are involved in many critical cellular processes, including inflammation, proliferation, and migration. GTP loading and isoprenylation are two important post-translational modifications of small GTPases, and are critical for their normal function. In this study, we investigated the role of post-translational modifications of small GTPases in regulating endothelial cell inflammatory responses and junctional integrity. Methods and Results Confluent human umbilical vein endothelial cell (HUVECs ) treated with atorvastatin demonstrated significantly decreased lipopolysaccharide (LPS)-mediated IL-6 and IL-8 generation. The inhibitory effect of atorvastatin (Atorva) was attenuated by co-treatment with 100 µM mevalonate (MVA) or 10 µM geranylgeranyl pyrophosphate (GGPP), but not by 10 µM farnesyl pyrophosphate (FPP). Atorvastatin treatment of HUVECs produced a time-dependent increase in GTP loading of all Rho GTPases, and induced the translocation of small Rho GTPases from the cellular membrane to the cytosol, which was reversed by 100 µM MVA and 10 µM GGPP, but not by 10 µM FPP. Atorvastatin significantly attenuated thrombin-induced HUVECs permeability, increased VE-cadherin targeting to cell junctions, and preserved junction integrity. These effects were partially reversed by GGPP but not by FPP, indicating that geranylgeranylation of small GTPases plays a major role in regulating endothelial junction integrity. Silencing of small GTPases showed that Rho and Rac, but not Cdc42, play central role in HUVECs junction integrity. Conclusions In conclusion, our studies show that post-translational modification of small GTPases plays a vital role in regulating endothelial inflammatory response and endothelial junction integrity. Atorvastatin increased GTP loading and inhibited isoprenylation of small GTPases, accompanied by reduced inflammatory response and preserved cellular junction integrity.
Collapse
Affiliation(s)
- Hongbing Xiao
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | | | | | | |
Collapse
|
7
|
Lovastatin-induced decrease of intracellular cholesterol level attenuates fibroblast-to-myofibroblast transition in bronchial fibroblasts derived from asthmatic patients. Eur J Pharmacol 2013; 704:23-32. [PMID: 23485731 DOI: 10.1016/j.ejphar.2013.02.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 01/17/2023]
Abstract
Chronic inflammation of the airways and structural changes in the bronchial wall are basic hallmarks of asthma. Human bronchial fibroblasts derived from patients with diagnosed asthma display in vitro predestination towards TGF-β-induced fibroblast-to-myofibroblast transition (FMT), a key event in the bronchial wall remodelling. Statins inhibit 3-hydroxymethyl-3-glutaryl coenzyme A reductase, a key enzyme in the cholesterol synthesis pathway and are widely used as antilipidemic drugs. The pleiotropic anti-inflammatory effects of statins, independent of their cholesterol-lowering capacity, are also well established. Since commonly used anti-asthmatic drugs do not reverse the structural remodelling of the airways and statins have tentative anti-asthmatic activity, we have studied the effect of lovastatin on FMT in populations of human bronchial fibroblasts derived from asthmatic patients. We demonstrate that the intensity of FMT induced by TGF-β1 was strongly and dose-dependently attenuated by lovastatin. Furthermore, we show that neither the suppression of prenylation of signalling proteins nor the effect on reactive oxygen species formation are important for lovastatin-induced inhibition of myofibroblast differentiation. On the other hand, we show that a squalene synthase inhibitor, zaragozic acid A, reduced the TGF-β1-induced FMT to an extent comparable to lovastatin effect. Additionally we demonstrate that in bronchial fibroblast populations, both inhibitors (lovastatin and zaragozic acid A) attenuate the TGF-β1-induced Smad2 nuclear translocation in a manner dependent on intracellular cholesterol level. Our data suggest that statins can directly, by decrease of intracellular cholesterol level, affect basic cell signalling events crucial for asthmatic processes and potentially prevent perilous bronchial wall remodelling associated with intensive myofibroblast formation.
Collapse
|
8
|
Ying H, Shen X, Yue BYJT. Establishment of inducible wild type and mutant myocilin-GFP-expressing RGC5 cell lines. PLoS One 2012; 7:e47307. [PMID: 23082156 PMCID: PMC3474840 DOI: 10.1371/journal.pone.0047307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/11/2012] [Indexed: 11/22/2022] Open
Abstract
Background Myocilin is a gene linked directly to juvenile- and adult-onset open angle glaucoma. Mutations including Gln368stop (Q368X) and Pro370Leu (P370L) have been identified in patients. The exact role of myocilin and its functional association with glaucoma are still unclear. In the present study, we established tetracycline-inducible (Tet-on) wild type and mutant myocilin-green fluorescence protein (GFP) expressing RGC5 stable cell lines and studied the changes in cell migration and barrier function upon induction. Methodology/Principal Findings After several rounds of selection, clones that displayed low, moderate, or high expression of wild type, Q368X or P370L myocilin-GFP upon doxycycline (Dox) induction were obtained. The levels of wild type and mutant myocilin-GFP in various clones were confirmed by Western blotting. Compared to non-induced controls, the cell migration was retarded, the actin stress fibers were fewer and shorter, and the trypsinization time needed for cells to round up was reduced when wild type or mutant myocilin was expressed. The barrier function was in addition aberrant following induced expression of wild type, Q368X or P370L myocilin. Immunoblotting further showed that tight junction protein occludin was downregulated in induced cells. Conclusions/Significance Tet-on inducible, stable RGC5 cell lines were established. These cell lines, expressing wild type or mutant (Q368X or P370L) myocilin-GFP upon Dox induction, are valuable in facilitating studies such as proteomics, as well as functional and pathogenesis investigations of disease-associated myocilin mutants. The barrier function was found impaired and the migration of cells was hindered with induced expression of wild type and mutant myocilin in RGC5 cell lines. The reduction in barrier function might be related to the declined level of occludin. The retarded cell migration was consistent with demonstrated myocilin phenotypes including the loss of actin stress fibers, lowered RhoA activities and compromised cell-matrix adhesiveness.
Collapse
Affiliation(s)
- Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Beatrice Y. J. T. Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
9
|
Gerrits L, Overheul GJ, Derks RC, Wieringa B, Hendriks WJ, Wansink DG. Gene duplication and conversion events shaped three homologous, differentially expressed myosin regulatory light chain (MLC2) genes. Eur J Cell Biol 2012; 91:629-39. [DOI: 10.1016/j.ejcb.2012.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/30/2012] [Accepted: 02/03/2012] [Indexed: 10/28/2022] Open
|
10
|
Qiao-bing H. Barrier stabilizing mediators in regulation of microvascular endothelial permeability. Chin J Traumatol 2012; 15. [PMID: 22480675 PMCID: PMC7129994 DOI: 10.3760/cma.j.issn.1008-1275.2012.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increase of microvascular permeability is one of the most important pathological events in the pathogenesis of trauma and burn injury. Massive leakage of fluid from vascular space leads to lose of blood plasma and decrease of effective circulatory blood volume, resulting in formation of severe tissue edema, hypotension or even shock, especially in severe burn injury. Fluid resuscitation has been the only valid approach to sustain patient's blood volume for a long time, due to the lack of overall and profound understanding of the mechanisms of vascular hyperpermeability response. There is an emerging concept in recent years that some so-called barrier stabilizing mediators play a positive role in preventing the increase of vascular permeability. These mediators may be released in response to proinflammatory mediators and serve to restore endothelial barrier function. Some of these stabilizing mediators are important even in quiescent state because they preserve basal vascular permeability at low levels. This review introduces some of these mediators and reveals their underlying signaling mechanisms during endothelial barrier enhancing process.
Collapse
|
11
|
Ma S, Ma CCH. Recent development in pleiotropic effects of statins on cardiovascular disease through regulation of transforming growth factor-beta superfamily. Cytokine Growth Factor Rev 2011; 22:167-75. [PMID: 21700485 DOI: 10.1016/j.cytogfr.2011.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/14/2011] [Accepted: 05/24/2011] [Indexed: 01/04/2023]
Abstract
BACKGROUND 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, also known as statins, are a drug class that reduce the level of cholesterol in the blood. As a result, statins are used to suppress the progression of cardiovascular disease. Evidence points to another component of statins involving the non-lipid effects of the drug class in preventing cardiovascular disease. One specific mediator of this action is the transforming growth factor β (TGF-β) superfamily. The TGF-β superfamily consists of proteins that include TGF-β and bone morphogenetic proteins (BMPs). These proteins regulate cellular pathways to mediate effects including immunomodulation, cell cycling, and angiogenesis. One pathway that mediates these effects is Ras. Moreover, within this pathway, different functions are possible depending on the activation of the specific receptor subtype. This review discusses the recent development of the non-lipid effects of statins in preventing cardiovascular disease progression by regulating Ras pathway of the TGF-β superfamily, especially RhoA/ROCK pathway. METHODS A systematic PubMed database search of all English-language articles up to 2011 was conducted using the following terms: statin, TGF-β, Ras, ROCK, GGPP, inducible nitric oxide synthase, endothelial nitric oxide synthase, actin filament formation, PPARγ, MMP-2, and human trials. CONCLUSION With better understanding of the pathway, various mediators were identified; some of these mediators are important biomarkers producing more specific and accurate assessment of the pleiotropic effects of statins. The review of human trials also highlights that more specific biomarkers are employed in recent studies, and the non-lipid effects on human subjects are more accurately documented. Confirmation of the accuracy of these biomarkers by further large-scale studies and further development of new biomarkers may prove an important path leading to better patient selection for treatment, and thus better cost-effectiveness may be achieved.
Collapse
Affiliation(s)
- Sze Ma
- King's College London School of Medicine, London SE1 7GL, United Kingdom
| | | |
Collapse
|
12
|
Shivanna M, Srinivas SP. Elevated cAMP opposes (TNF-alpha)-induced loss in the barrier integrity of corneal endothelium. Mol Vis 2010; 16:1781-90. [PMID: 20824160 PMCID: PMC2932488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/29/2010] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Elevated cyclic adenosine monophosphate (cAMP) enhances the barrier integrity of the corneal endothelium and thereby facilitates stromal hydration control, which is necessary for corneal transparency. This study investigates whether elevated cAMP is effective against the tumor necrosis factor-alpha (TNF-alpha)-induced loss of barrier integrity in monolayers of bovine corneal endothelial cells (BCEC). METHODS BCEC in primary culture were used for the study. Trans-endothelial electrical resistance (TER), a measure of barrier integrity, was determined by electrical cell-substrate impedance sensing. The changes were also ascertained by measuring paracellular permeability to fluorescein isothiocyanate (FITC)-dextran (10 kDa) across cells grown on porous culture inserts, and by immunofluorescence imaging of the apical junctional complex (AJC). The activation of p38 MAP kinase was assessed using western blotting. RESULTS Co-treatment with forskolin, which activates adenylate cyclase, and rolipram, which inhibits cAMP-dependent phosphodiesterase PDE4, reduced the TNF-alpha-induced increase in the flux of FITC-dextran. Similar co-treatment also prevented the TNF-alpha-induced disorganization of zona occludens-1 (ZO-1) and cadherins at the AJC. Co-treatment, as well pre-treatment, with forskolin plus rolipram prevented the TNF-alpha-induced decrease in TER. The influence of the agents was significant after 12 h of exposure to the cytokine. This effect was also mimicked by A2B agonists, adenosine and 5'-N-ethylcarboxamidoadenosine (NECA), which are known to mobilize cAMP in BCEC. Elevated cAMP also inhibited the cytokine-induced activation of p38 MAP kinase, and further blocked the disassembly of microtubules as well as the disruption of the PAMR (peri-junctional actomyosin ring) at the AJC. CONCLUSIONS These results suggest that elevated cAMP opposes the TNF-alpha-induced loss in barrier integrity of the corneal endothelium. This effect follows inhibition of the cytokine-induced activation of p38 MAP kinase and its downstream signaling involved in the disruption of AJC and PAMR, as well as the disassembly of microtubules.
Collapse
|