1
|
Li S, Wang H, Ma J, Gu G, Chen Z, Guo Z. One-pot four-enzyme synthesis of thymidinediphosphate-l-rhamnose. Chem Commun (Camb) 2016; 52:13995-13998. [DOI: 10.1039/c6cc08366h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A concise and effective one-pot four-enzyme synthesis of dTDP-Rha, the substrate of rhamnosyltransferases, is described.
Collapse
Affiliation(s)
- Siqiang Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Jinan 250100
- China
| | - Hong Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Jinan 250100
- China
| | - Juncai Ma
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Jinan 250100
- China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Jinan 250100
- China
| | - Zonggang Chen
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Jinan 250100
- China
| | - Zhongwu Guo
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| |
Collapse
|
2
|
Abstract
The outer surface of many archaea and bacteria is coated with a proteinaceous surface layer (known as an S-layer), which is formed by the self-assembly of monomeric proteins into a regularly spaced, two-dimensional array. Bacteria possess dedicated pathways for the secretion and anchoring of the S-layer to the cell wall, and some Gram-positive species have large S-layer-associated gene families. S-layers have important roles in growth and survival, and their many functions include the maintenance of cell integrity, enzyme display and, in pathogens and commensals, interaction with the host and its immune system. In this Review, we discuss our current knowledge of S-layer and related proteins, including their structures, mechanisms of secretion and anchoring and their diverse functions.
Collapse
|
3
|
Yan Q, Hu X, Wang N. The novel virulence-related gene nlxA in the lipopolysaccharide cluster of Xanthomonas citri ssp. citri is involved in the production of lipopolysaccharide and extracellular polysaccharide, motility, biofilm formation and stress resistance. MOLECULAR PLANT PATHOLOGY 2012; 13:923-934. [PMID: 22458688 PMCID: PMC6638664 DOI: 10.1111/j.1364-3703.2012.00800.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Lipopolysaccharide (LPS) is an important virulence factor of Xanthomonas citri ssp. citri, the causative agent of citrus canker disease. In this research, a novel gene, designated as nlxA (novel LPS cluster gene of X. citri ssp. citri), in the LPS cluster of X. citri ssp. citri 306, was characterized. Our results indicate that nlxA is required for O-polysaccharide biosynthesis by encoding a putative rhamnosyltransferase. This is supported by several lines of evidence: (i) NlxA shares 40.14% identity with WsaF, which acts as a rhamnosyltransferase; (ii) sodium dodecylsulphate-polyacrylamide gel electrophoresis analysis showed that four bands of the O-antigen part of LPS were missing in the LPS production of the nlxA mutant; this is also consistent with a previous report that the O-antigen moiety of LPS of X. citri ssp. citri is composed of a rhamnose homo-oligosaccharide; (iii) mutation of nlxA resulted in a significant reduction in the resistance of X. citri ssp. citri to different stresses, including sodium dodecylsulphate, polymyxin B, H(2)O(2), phenol, CuSO(4) and ZnSO(4). In addition, our results indicate that nlxA plays an important role in extracellular polysaccharide production, biofilm formation, stress resistance, motility on semi-solid plates, virulence and in planta growth in the host plant grapefruit.
Collapse
Affiliation(s)
- Qing Yan
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL 33850, USA
| | | | | |
Collapse
|
4
|
Abstract
Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles.
Collapse
|
5
|
The s-layer glycome-adding to the sugar coat of bacteria. Int J Microbiol 2010; 2011. [PMID: 20871840 PMCID: PMC2943079 DOI: 10.1155/2011/127870] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/29/2010] [Indexed: 11/29/2022] Open
Abstract
The amazing repertoire of glycoconjugates present on bacterial cell surfaces includes lipopolysaccharides, capsular polysaccharides, lipooligosaccharides, exopolysaccharides, and glycoproteins. While the former are constituents of Gram-negative cells, we review here the cell surface S-layer glycoproteins of Gram-positive bacteria. S-layer glycoproteins have the unique feature of self-assembling into 2D lattices providing a display matrix for glycans with periodicity at the nanometer scale. Typically, bacterial S-layer glycans are O-glycosidically linked to serine, threonine, or tyrosine residues, and they rely on a much wider variety of constituents, glycosidic linkage types, and structures than their eukaryotic counterparts. As the S-layer glycome of several bacteria is unravelling, a picture of how S-layer glycoproteins are biosynthesized is evolving. X-ray crystallography experiments allowed first insights into the catalysis mechanism of selected enzymes. In the future, it will be exciting to fully exploit the S-layer glycome for glycoengineering purposes and to link it to the bacterial interactome.
Collapse
|
6
|
Construction of a gene knockout system for application in Paenibacillus alvei CCM 2051T, exemplified by the S-layer glycan biosynthesis initiation enzyme WsfP. Appl Environ Microbiol 2009; 75:3077-85. [PMID: 19304819 DOI: 10.1128/aem.00087-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive bacterium Paenibacillus alvei CCM 2051T is covered by an oblique surface layer (S-layer) composed of glycoprotein subunits. The S-layer O-glycan is a polymer of [-->3)-beta-D-Galp-(1[alpha-D-Glcp-(1-->6)]-->4)-beta-D-ManpNAc-(1-->] repeating units that is linked by an adaptor of -[GroA-2-->OPO2-->4-beta-D-ManpNAc-(1-->4)]-->3)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-beta-D-Galp-(1--> to specific tyrosine residues of the S-layer protein. For elucidation of the mechanism governing S-layer glycan biosynthesis, a gene knockout system using bacterial mobile group II intron-mediated gene disruption was developed. The system is further based on the sgsE S-layer gene promoter of Geobacillus stearothermophilus NRS 2004/3a and on the Geobacillus-Bacillus-Escherichia coli shuttle vector pNW33N. As a target gene, wsfP, encoding a putative UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase, representing the predicted initiation enzyme of S-layer glycan biosynthesis, was disrupted. S-layer protein glycosylation was completely abolished in the insertional P. alvei CCM 2051T wsfP mutant, according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis evidence and carbohydrate analysis. Glycosylation was fully restored by plasmid-based expression of wsfP in the glycan-deficient P. alvei mutant, confirming that WsfP initiates S-layer protein glycosylation. This is the first report on the successful genetic manipulation of bacterial S-layer protein glycosylation in vivo, including transformation of and heterologous gene expression and gene disruption in the model organism P. alvei CCM 2051T.
Collapse
|
7
|
Steiner K, Novotny R, Patel K, Vinogradov E, Whitfield C, Valvano MA, Messner P, Schäffer C. Functional characterization of the initiation enzyme of S-layer glycoprotein glycan biosynthesis in Geobacillus stearothermophilus NRS 2004/3a. J Bacteriol 2007; 189:2590-8. [PMID: 17237178 PMCID: PMC1855796 DOI: 10.1128/jb.01592-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glycan chain of the S-layer glycoprotein of Geobacillus stearothermophilus NRS 2004/3a is composed of repeating units [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-l-Rhap-(1-->], with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain, a core saccharide composed of two or three alpha-l-rhamnose residues, and a beta-d-galactose residue as a linker to the S-layer protein. In this study, we report the biochemical characterization of WsaP of the S-layer glycosylation gene cluster as a UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase that primes the S-layer glycoprotein glycan biosynthesis of Geobacillus stearothermophilus NRS 2004/3a. Our results demonstrate that the enzyme transfers in vitro a galactose-1-phosphate from UDP-galactose to endogenous phosphoryl-polyprenol and that the C-terminal half of WsaP carries the galactosyltransferase function, as already observed for the UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase WbaP from Salmonella enterica. To confirm the function of the enzyme, we show that WsaP is capable of reconstituting polysaccharide biosynthesis in WbaP-deficient strains of Escherichia coli and Salmonella enterica serovar Typhimurium.
Collapse
Affiliation(s)
- Kerstin Steiner
- Zentrum für NanoBiotechnologie, Universität für Bodenkultur Wien, A-1180 Wien, Austria
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mohamed HE, van de Meene AML, Roberson RW, Vermaas WFJ. Myxoxanthophyll is required for normal cell wall structure and thylakoid organization in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2005; 187:6883-92. [PMID: 16199557 PMCID: PMC1251633 DOI: 10.1128/jb.187.20.6883-6892.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxoxanthophyll is a carotenoid glycoside in cyanobacteria that is of unknown biological significance. The sugar moiety of myxoxanthophyll in Synechocystis sp. strain PCC 6803 was identified as dimethyl fucose. The open reading frame sll1213 encoding a fucose synthetase orthologue was deleted to probe the role of fucose and to determine the biological significance of myxoxanthophyll in Synechocystis sp. strain PCC 6803. Upon deletion of sll1213, a pleiotropic phenotype was obtained: when propagated at 0.5 micromol photons m(-2) s(-1), photomixotrophic growth of cells lacking sll1213 was poor. When grown at 40 micromol photons m(-2) s(-1), growth was comparable to that of the wild type, but cells showed a severe reduction in or loss of the glycocalyx (S-layer). As a consequence, cells aggregated in liquid as well as on plates. At both light intensities, new carotenoid glycosides accumulated, but myxoxanthophyll was absent. New carotenoid glycosides may be a consequence of less-specific glycosylation reactions that gained prominence upon the disappearance of the native sugar moiety (fucose) of myxoxanthophyll. In the mutant, the N-storage compound cyanophycin accumulated, and the organization of thylakoid membranes was altered. Altered cell wall structure and thylakoid membrane organization and increased cyanophycin accumulation were also observed for deltaslr0940K, a strain lacking zeta-carotene desaturase and thereby all carotenoids but retaining fucose. Therefore, lack of myxoxanthophyll and not simply of fucose results in most of the phenotypic effects described here. It is concluded that myxoxanthophyll contributes significantly to the vigor of cyanobacteria, as it stabilizes thylakoid membranes and is critical for S-layer formation.
Collapse
Affiliation(s)
- Hatem E Mohamed
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ 85287-4501, USA
| | | | | | | |
Collapse
|
9
|
|
10
|
Novotny R, Scheberl A, Giry-Laterriere M, Messner P, Schäffer C. Gene cloning, functional expression and secretion of the S-layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a in Lactococcus lactis. FEMS Microbiol Lett 2005; 242:27-35. [PMID: 15675069 DOI: 10.1016/j.femsle.2004.10.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The ~93-kDa surface layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a forms a regular crystalline array providing a nanopatterned matrix for the future display of biologically relevant molecules. Lactococcus lactis NZ9000 was established as a safe expression host for the controlled targeted production of SgsE based on the broad host-range plasmid pNZ124Sph, into which the nisA promoter was introduced. SgsE devoid of its signal peptide-encoding sequence was cloned into the new vector and purified from the cytoplasm at a yield of 220 mg l- of expression culture. Secretion constructs were based on the signal peptide of the Lactobacillus brevis SlpA protein or the L. lactis Usp45 protein, allowing isolation of 95 mg of secreted rSgsE l-1. N-terminal sequencing confirmed correct processing of SgsE in L. lactis NZ9000. The ability of rSgsE to self-assemble in suspension and to recrystallize on solid supports was demonstrated by electron and atomic force microscopy.
Collapse
Affiliation(s)
- René Novotny
- Center for NanoBiotechnology, University of Natural Resources and Applied Life Sciences, Wien, Austria
| | | | | | | | | |
Collapse
|
11
|
Kählig H, Kolarich D, Zayni S, Scheberl A, Kosma P, Schäffer C, Messner P. N-acetylmuramic acid as capping element of alpha-D-fucose-containing S-layer glycoprotein glycans from Geobacillus tepidamans GS5-97T. J Biol Chem 2005; 280:20292-9. [PMID: 15781455 DOI: 10.1074/jbc.m501724200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Geobacillus tepidamans GS5-97(T) is a novel Gram-positive, moderately thermophilic bacterial species that is covered by a glycosylated surface layer (S-layer) protein. The isolated and purified S-layer glycoprotein SgtA was ultrastructurally and chemically investigated and showed several novel properties. By SDS-PAGE, SgtA was separated into four distinct bands in an apparent molecular mass range of 106-166 kDa. The three high molecular mass bands gave a positive periodic acid-Schiff staining reaction, whereas the 106-kDa band was nonglycosylated. Glycosylation of SgtA was investigated by means of chemical analyses, 600-MHz nuclear magnetic resonance spectroscopy, and electrospray ionization quadrupole time-of-fight mass spectrometry. Glycopeptides obtained after Pronase digestion revealed the glycan structure [-->2)-alpha-L-Rhap-(1-->3)-alpha-D-Fucp-(1-->](n=approximately 20), with D-fucopyranose having never been identified before as a constituent of S-layer glycans. The rhamnose residue at the nonreducing end of the terminal repeating unit of the glycan chain was di-substituted. For the first time, (R)-N-acetylmuramic acid, the key component of prokaryotic peptidoglycan, was found in an alpha-linkage to carbon 3 of the terminal rhamnose residue, serving as capping motif of an S-layer glycan. In addition, that rhamnose was substituted at position 2 with a beta-N-acetylglucosamine residue. The S-layer glycan chains were bound via the trisaccharide core -->2)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1--> to carbon 3 of beta-D-galactose, which was attached in O-glycosidic linkage to serine and threonine residues of SgtA of G. tepidamans GS5-97(T).
Collapse
|
12
|
Pfoestl A, Hofinger A, Kosma P, Messner P. Biosynthesis of dTDP-3-acetamido-3,6-dideoxy-alpha-D-galactose in Aneurinibacillus thermoaerophilus L420-91T. J Biol Chem 2003; 278:26410-7. [PMID: 12740380 DOI: 10.1074/jbc.m300858200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycan chain of the S-layer protein of Aneurinibacillus thermoaerophilus L420-91T (DSM 10154) consists of d-rhamnose and 3-acetamido-3,6-dideoxy-d-galactose (d-Fucp3NAc). Thymidine diphosphate-activated d-Fucp3NAc serves as precursor for the assembly of structural polysaccharides in Gram-positive and Gram-negative organisms. The biosynthesis of dTDP-3-acetamido-3,6-dideoxy-alpha-d-galactose (dTDP-d-Fucp3NAc) involves five enzymes. The first two steps of the reaction are catalyzed by enzymes that are part of the well studied dTDP-l-rhamnose biosynthetic pathway, namely d-glucose-1-phosphate thymidyltransferase (RmlA) and dTDP-d-glucose-4,6-dehydratase (RmlB). The enzymes catalyzing the last three synthesis reactions have not been characterized biochemically so far. These steps include an isomerase, a transaminase, and a transacetylase. We identified all five genes involved by chromosome walking in the Gram-positive organism A. thermoaerophilus L420-91T and overexpressed the three new enzymes heterologously in Escherichia coli. The activities of these enzymes were monitored by reverse phase high performance liquid chromatography, and the intermediate products formed were characterized by 1H and 13C nuclear magnetic resonance spectroscopy analysis. Alignment of the newly identified proteins with known sequences revealed that the elucidated pathway in this Gram-positive organism may also be valid in the biosynthesis of the O-antigen of lipopolysaccharides of Gram-negative organisms. The key enzyme in the biosynthesis of dTDP-d-Fucp3NAc has been identified as an isomerase, which converts the 4-keto educt into the 3-keto product, with concomitant epimerization at C-4 to produce a 6-deoxy-d-xylo configuration. This is the first report of the functional characterization of the biosynthesis of dTDP-d-Fucp3NAc and description of a novel type of isomerase capable of synthesizing dTDP-6-deoxy-d-xylohex-3-ulose from dTDP-6-deoxy-d-xylohex-4-ulose.
Collapse
Affiliation(s)
- Andreas Pfoestl
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, A-1180 Wien, Austria
| | | | | | | |
Collapse
|
13
|
Messner P, Schäffer C. Prokaryotic glycoproteins. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 2003; 85:51-124. [PMID: 12602037 DOI: 10.1007/978-3-7091-6051-0_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- P Messner
- Zentrum für Ultrastrukturforschung, Ludwig-Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, Austria
| | | |
Collapse
|
14
|
Schäffer C, Beckedorf AI, Scheberl A, Zayni S, Peter-Katalinić J, Messner P. Isolation of glucocardiolipins from Geobacillus stearothermophilus NRS 2004/3a. J Bacteriol 2002; 184:6709-13. [PMID: 12426359 PMCID: PMC135447 DOI: 10.1128/jb.184.23.6709-6713.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose-substituted cardiolipins account for about 4 mol% of total phospholipid extracted from exponentially grown cells of Geobacillus stearothermophilus NRS 2004/3a. Individual glucocardiolipin species exhibited differences in fatty acid substitution, with iso-C(15:0) and anteiso-C(17:0) prevailing. The compounds were purified to homogeneity by a novel protocol and precharacterized by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
Collapse
Affiliation(s)
- Christina Schäffer
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, A-1180 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
15
|
Beckedorf AI, Schäffer C, Messner P, Peter-Katalinić J. Mapping and sequencing of cardiolipins from Geobacillus stearothermophilus NRS 2004/3a by positive and negative ion nanoESI-QTOF-MS and MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:1086-1094. [PMID: 12375283 DOI: 10.1002/jms.369] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the course of systematic studies on surface layer (S-layer) glycoproteins of bacilli, the chloroform/methanol extract from whole cells of Geobacillus stearothermophilus NRS 2004/3a has been submitted to MS analysis. Glucosylated cardiolipins were found as minor components of the total lipid and phospholipid mixture by de novo identification. After purification of the crude extract using a combined column chromatography/2D TLC protocol, structural investigations of components in the lipid fraction by high resolution ESI-QTOF MS analysis provided evidence about homologous molecules attributable to the cardiolipin species containing a glycosylated backbone, and about a diversity of ester-linked fatty acid substituents. In comparative studies by positive and negative ion nanoESI-QTOF-CID-MS, maps of cardiolipin molecular ions were obtained, followed by MS/MS of the most abundant species, to provide structural details of D-glucopyranosylcardiolipin and the fatty acid substituent patterns. Experiments of the parent ion scan type revealed the presence of fatty acid moieties as isobaric combinations, represented in single molecular ion species.
Collapse
Affiliation(s)
- Anke I Beckedorf
- Institut für Medizinische Physik and Biophysik, Universität Münster, Robert-Koch-Strasse 31, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
16
|
Graninger M, Kneidinger B, Bruno K, Scheberl A, Messner P. Homologs of the Rml enzymes from Salmonella enterica are responsible for dTDP-beta-L-rhamnose biosynthesis in the gram-positive thermophile Aneurinibacillus thermoaerophilus DSM 10155. Appl Environ Microbiol 2002; 68:3708-15. [PMID: 12147463 PMCID: PMC124034 DOI: 10.1128/aem.68.8.3708-3715.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glycan chains of the surface layer (S-layer) glycoprotein from the gram-positive, thermophilic bacterium Aneurinibacillus (formerly Bacillus) thermoaerophilus strain DSM 10155 are composed of L-rhamnose- and D-glycero-D-manno-heptose-containing disaccharide repeating units which are linked to the S-layer polypeptide via core structures that have variable lengths and novel O-glycosidic linkages. In this work we investigated the enzymes involved in the biosynthesis of thymidine diphospho-L-rhamnose (dTDP-L-rhamnose) and their specific properties. Comparable to lipopolysaccharide O-antigen biosynthesis in gram-negative bacteria, dTDP-L-rhamnose is synthesized in a four-step reaction sequence from dTTP and glucose 1-phosphate by the enzymes glucose-1-phosphate thymidylyltransferase (RmlA), dTDP-D-glucose 4,6-dehydratase (RmlB), dTDP-4-dehydrorhamnose 3,5-epimerase (RmlC), and dTDP-4-dehydrorhamnose reductase (RmlD). The rhamnose biosynthesis operon from A. thermoaerophilus DSM 10155 was sequenced, and the genes were overexpressed in Escherichia coli. Compared to purified enterobacterial Rml enzymes, the enzymes from the gram-positive strain show remarkably increased thermostability, a property which is particularly interesting for high-throughput screening and enzymatic synthesis. The closely related strain A. thermoaerophilus L420-91(T) produces D-rhamnose- and 3-acetamido-3,6-dideoxy-D-galactose-containing S-layer glycan chains. Comparison of the enzyme activity patterns in A. thermoaerophilus strains DSM 10155 and L420-91(T) for L-rhamnose and D-rhamnose biosynthesis indicated that the enzymes are differentially expressed during S-layer glycan biosynthesis and that A. thermoaerophilus L420-91(T) is not able to synthesize dTDP-L-rhamnose. These findings confirm that in each strain the enzymes act specifically on S-layer glycoprotein glycan formation.
Collapse
Affiliation(s)
- Michael Graninger
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | | | | | | | | |
Collapse
|
17
|
Schäffer C, Wugeditsch T, Kählig H, Scheberl A, Zayni S, Messner P. The surface layer (S-layer) glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. Analysis of its glycosylation. J Biol Chem 2002; 277:6230-9. [PMID: 11741945 DOI: 10.1074/jbc.m108873200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Geobacillus stearothermophilus NRS 2004/3a possesses an oblique surface layer (S-layer) composed of glycoprotein subunits as the outermost component of its cell wall. In addition to the elucidation of the complete S-layer glycan primary structure and the determination of the glycosylation sites, the structural gene sgsE encoding the S-layer protein was isolated by polymerase chain reaction-based techniques. The open reading frame codes for a protein of 903 amino acids, including a leader sequence of 30 amino acids. The mature S-layer protein has a calculated molecular mass of 93,684 Da and an isoelectric point of 6.1. Glycosylation of SgsE was investigated by means of chemical analyses, 600-MHz nuclear magnetic resonance spectroscopy, and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Glycopeptides obtained after Pronase digestion revealed the glycan structure [-->2)-alpha-L-Rhap-(1-->3)-beta-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->](n = 13-18), with a 2-O-methyl group capping the terminal trisaccharide repeating unit at the non-reducing end of the glycan chains. The glycan chains are bound via the disaccharide core -->3)-alpha-l-Rhap-(1-->3)-alpha-L-Rhap-(L--> and the linkage glycose beta-D-Galp in O-glycosidic linkages to the S-layer protein SgsE at positions threonine 620 and serine 794. This S-layer glycoprotein contains novel linkage regions and is the first one among eubacteria whose glycosylation sites have been characterized.
Collapse
Affiliation(s)
- Christina Schäffer
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, A-1180 Wien, Austria.
| | | | | | | | | | | |
Collapse
|
18
|
Kneidinger B, Graninger M, Puchberger M, Kosma P, Messner P. Biosynthesis of nucleotide-activated D-glycero-D-manno-heptose. J Biol Chem 2001; 276:20935-44. [PMID: 11279237 DOI: 10.1074/jbc.m100378200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycan chain repeats of the S-layer glycoprotein of Aneurinibacillus thermoaerophilus DSM 10155 contain d-glycero-d-manno-heptose, which has also been described as constituent of lipopolysaccharide cores of Gram-negative bacteria. The four genes required for biosynthesis of the nucleotide-activated form GDP-d-glycero-d-manno-heptose were cloned, sequenced, and overexpressed in Escherichia coli, and the corresponding enzymes GmhA, GmhB, GmhC, and GmhD were purified to homogeneity. The isomerase GmhA catalyzed the conversion of d-sedoheptulose 7-phosphate to d-glycero-d-manno-heptose 7-phosphate, and the phosphokinase GmhB added a phosphate group to form d-glycero-d-manno-heptose 1,7-bisphosphate. The phosphatase GmhC removed the phosphate in the C-7 position, and the intermediate d-glycero-alpha-d-manno-heptose 1-phosphate was eventually activated with GTP by the pyrophosphorylase GmhD to yield the final product GDP-d-glycero-alpha-d-manno-heptose. The intermediate and end products were analyzed by high performance liquid chromatography. Nuclear magnetic resonance spectroscopy was used to confirm the structure of these substances. This is the first report of the biosynthesis of GDP-d-glycero-alpha-d-manno-heptose in Gram-positive organisms. In addition, we propose a pathway for biosynthesis of the nucleotide-activated form of l-glycero-d-manno-heptose.
Collapse
Affiliation(s)
- B Kneidinger
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, Gregor-Mendel-Strasse 33, A-1180 Wien, Austria
| | | | | | | | | |
Collapse
|
19
|
Kneidinger B, Graninger M, Adam G, Puchberger M, Kosma P, Zayni S, Messner P. Identification of two GDP-6-deoxy-D-lyxo-4-hexulose reductases synthesizing GDP-D-rhamnose in Aneurinibacillus thermoaerophilus L420-91T. J Biol Chem 2001; 276:5577-83. [PMID: 11096116 DOI: 10.1074/jbc.m010027200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycan repeats of the surface layer glycoprotein of Aneurinibacillus thermoaerophilus L420-91T contain d-rhamnose and 3-acetamido-3,6-dideoxy-d-galactose, both of which are also constituents of lipopolysaccharides of Gram-negative plant and human pathogenic bacteria. The two genes required for biosynthesis of the nucleotide-activated precursor GDP-d-rhamnose, gmd and rmd, were cloned, sequenced, and overexpressed in Escherichia coli. The corresponding enzymes Gmd and Rmd were purified to homogeneity, and functional studies were performed. GDP-d-mannose dehydratase (Gmd) converted GDP-d-mannose to GDP-6-deoxy-d-lyxo-4-hexulose, with NADP+ as cofactor. The reductase Rmd catalyzed the second step in the pathway, namely the reduction of the keto-intermediate to the final product GDP-d-rhamnose using both NADH and NADPH as hydride donor. The elution behavior of the intermediate and end product was analyzed by high performance liquid chromatography. Nuclear magnetic resonance spectroscopy was used to identify the structure of the final product of the reaction sequence as GDP-alpha-d-rhamnose. This is the first characterization of a GDP-6-deoxy-d-lyxo-4-hexulose reductase. In addition, Gmd has been shown to be a bifunctional enzyme with both dehydratase and reductase activities. So far, no enzyme catalyzing these two types of reactions has been identified. Both Gmd and Rmd are members of the SDR (short chain dehydrogenase/reductase) protein family.
Collapse
Affiliation(s)
- B Kneidinger
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, A-1180 Wien, Austria
| | | | | | | | | | | | | |
Collapse
|
20
|
Schäffer C, Dietrich K, Unger B, Scheberl A, Rainey FA, Kählig H, Messner P. A novel type of carbohydrate-protein linkage region in the tyrosine-bound S-layer glycan of Thermoanaerobacterium thermosaccharolyticum D120-70. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5482-92. [PMID: 10951207 DOI: 10.1046/j.1432-1327.2000.01610.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The surface-layer (S-layer) protein of Thermoanaerobacterium thermosaccharolyticum D120-70 contains glycosidically linked glycan chains with the repeating unit structure -->4)[alpha-D-Galp-(1-->2)]-alpha-L-Rhap-(1-->3)[beta-D-Glcp-(1--> 6)] -beta-D-Manp-(1-->4)-alpha-L-Rhap-(1-->3)-alpha-D-Glcp-(1--> . After proteolytic degradation of the S-layer glycoprotein, three glycopeptide pools were isolated, which were analyzed for their carbohydrate and amino-acid compositions. In all three pools, tyrosine was identified as the amino-acid constituent, and the carbohydrate compositions corresponded to the above structure. Native polysaccharide PAGE showed the specific heterogeneity of each pool. For examination of the carbohydrate-protein linkage region, the S-layer glycan chain was partially hydrolyzed with trifluoroacetic acid. 1D and 2D NMR spectroscopy, including a novel diffusion-edited difference experiment, showed the O-glycosidic linkage region beta-D-glucopyranose-->O-tyrosine. No evidence was found of additional sugars originating from a putative core region between the glycan repeating units and the S-layer polypeptide. For the determination of chain-length variability in the S-layer glycan, the different glycopeptide pools were investigated by matrix-assisted laser desorption ionization-time of flight mass spectrometry, revealing that the degree of polymerization of the S-layer glycan repeats varied between three and 10. All masses were assigned to multiples of the repeating units plus the peptide portion. This result implies that no core structure is present and thus supports the data from the NMR spectroscopy analyses. This is the first observation of a bacterial S-layer glycan without a core region connecting the carbohydrate moiety with the polypeptide portion.
Collapse
Affiliation(s)
- C Schäffer
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, Austria
| | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- M Sára
- Centre for Ultrastructure Research and Ludwig Boltzmann Institute for Molecular Nanotechnology, University of Agricultural Sciences, Vienna, Austria.
| | | |
Collapse
|
22
|
Graninger M, Nidetzky B, Heinrichs DE, Whitfield C, Messner P. Characterization of dTDP-4-dehydrorhamnose 3,5-epimerase and dTDP-4-dehydrorhamnose reductase, required for dTDP-L-rhamnose biosynthesis in Salmonella enterica serovar Typhimurium LT2. J Biol Chem 1999; 274:25069-77. [PMID: 10455186 DOI: 10.1074/jbc.274.35.25069] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thymidine diphosphate-L-rhamnose biosynthesis pathway is required for assembly of surface glycoconjugates in a growing list of bacterial pathogens, making this pathway a potential therapeutic target. However, the terminal reactions have not been characterized. To complete assignment of the reactions, the four enzymes (RmlABCD) that constitute the pathway in Salmonella enterica serovar Typhimurium LT2 were overexpressed. The purified RmlC and D enzymes together catalyze the terminal two steps involving NAD(P)H-dependent formation of dTDP-L-rhamnose from dTDP-6-deoxy-D-xylo-4-hexulose. RmlC was assigned as the thymidine diphosphate-4-dehydrorhamnose 3,5-epimerase by showing its activity to be NAD(P)H-independent. Spectrofluorometric and radiolabeling experiments were used to demonstrate the ability of RmlC to catalyze the formation of dTDP-6-deoxy-L-lyxo-4-hexulose from dTDP-6-deoxy-D-xylo-4-hexulose. Under reaction conditions, RmlC converted approximately 3% of its substrate to product. RmlD was unequivocally identified as the thymidine diphosphate-4-dehydrorhamnose reductase. The reductase property of RmlD was shown by equilibrium analysis and its ability to enable efficient biosynthesis of dTDP-L-rhamnose, even in the presence of low amounts of dTDP-6-deoxy-L-lyxo-4-hexulose. Comparison of 23 known and predicted RmlD sequences identified several conserved amino acid residues, especially the serine-tyrosine-lysine catalytic triad, characteristic for members of the reductase/epimerase/dehydrogenase protein superfamily. In conclusion, RmlD is a novel member of this protein superfamily.
Collapse
Affiliation(s)
- M Graninger
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, A-1180 Wien, Austria
| | | | | | | | | |
Collapse
|
23
|
Wugeditsch T, Zachara NE, Puchberger M, Kosma P, Gooley AA, Messner P. Structural heterogeneity in the core oligosaccharide of the S-layer glycoprotein from Aneurinibacillus thermoaerophilus DSM 10155. Glycobiology 1999; 9:787-95. [PMID: 10406844 DOI: 10.1093/glycob/9.8.787] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The surface layer glycoprotein of Aneurinibacillus thermoaerophilus DSM 10155 has a total carbohydrate content of 15% (by mass), consisting of O-linked oligosaccharide chains. After proteolytic digestion of the S-layer glycoprotein byPronase E and subsequent purification of the digestion products by gel permeation chromatography, chromatofocusing and high-performance liquid chromatography two glycopeptide pools A and B with identical glycans and the repeating unit structure -->4)-alpha-l-Rha p -(1-->3)-beta-d- glycero -d- manno -Hep p -(1--> (Kosma et al., 1995b, Glycobiology, 5, 791-796) were obtained. Combined evidence from modified Edman-degradation in combination with liquid chromatography electrospray mass-spectrometry and nuclear magnetic resonance spectroscopy revealed that both glycopeptides contain equal amounts of the complete core structure alpha-l-Rha p -(1-->3)-alpha-l-Rha p -(1-->3)-beta-d-Gal p NAc-(1-->O)-Thr/Ser and the truncated forms alpha-l-Rha p -(1-->3)-beta-d-Gal p NAc-(1-->O)-Thr/Ser and beta-d-Gal p NAc-(1-->O)-Thr/Ser. All glycopeptides possessed the novel linkage types beta-d-Gal p NAc-(1-->O)-Thr/Ser. The different cores were substituted with varying numbers of disaccharide repeating units. By 300 MHz proton nuclear magnetic resonance spectroscopy the complete carbohydrate core structure of the fluorescently labeled glyco-peptide B was determined after Smith-degradation of its glycan chain. The NMR data confirmed and complemented the results of the mass spectroscopy experiments. Based on the S-layer glycopeptide structure, a pathway for its biosynthesis is suggested.
Collapse
Affiliation(s)
- T Wugeditsch
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur, A-1180 Wien, Austria
| | | | | | | | | | | |
Collapse
|
24
|
van Furth AM, Verhard-Seijmonsbergen EM, Langermans JA, van Dissel JT, van Furth R. Anti-CD14 monoclonal antibodies inhibit the production of tumor necrosis factor alpha and interleukin-10 by human monocytes stimulated with killed and live Haemophilus influenzae or Streptococcus pneumoniae organisms. Infect Immun 1999; 67:3714-8. [PMID: 10417128 PMCID: PMC96644 DOI: 10.1128/iai.67.8.3714-3718.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous studies, we have shown that intact, heat-killed, gram-negative bacteria (GNB) and gram-positive bacteria (GPB) can stimulate the production of various proinflammatory and anti-inflammatory cytokines. The objective of the present study was to investigate whether the production of tumor necrosis factor alpha (TNF) and interleukin-10 (IL-10) by human monocytes stimulated by intact heat-killed or live Haemophilus influenzae or Streptococcus pneumoniae is mediated by CD14. Two anti-CD14 monoclonal antibodies (MAbs) were used to study the interaction between human monocytes and bacteria; lipopolysaccharide (LPS) was used to validate the effect of anti-CD14 MAb. MAb 18E12 decreased significantly TNF and IL-10 production upon stimulation with LPS or heat-killed bacteria and TNF production during stimulation by live bacteria. MAb My-4 decreased production of TNF and IL-10 by monocytes stimulated with LPS, IL-10 but not TNF production upon stimulation with heat-killed H. influenzae, and production of neither TNF nor IL-10 upon stimulation with S. pneumoniae. Together, these results led to the conclusion that CD14 is involved in the recognition and stimulation of human monocytes by intact GNB and GPB. Consequentially, the option for adjunctive treatment of severe infections with anti-CD14 MAb is postulated.
Collapse
Affiliation(s)
- A M van Furth
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Sleytr UB, Messner P, Pum D, Sára M. Kristalline Zelloberflächen-Schichten prokaryotischer Organismen (S-Schichten): von der supramolekularen Zellstruktur zur Biomimetik und Nanotechnologie. Angew Chem Int Ed Engl 1999. [DOI: 10.1002/(sici)1521-3757(19990419)111:8<1098::aid-ange1098>3.0.co;2-f] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Messner P, Allmaier G, Schäffer C, Wugeditsch T, Lortal S, König H, Niemetz R, Dorner M. Biochemistry of S-layers. FEMS Microbiol Rev 1997; 20:25-46. [PMID: 9276927 DOI: 10.1111/j.1574-6976.1997.tb00303.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During evolution prokaryotes have developed different envelope structures exterior to the cell wall proper. Among these surface components are regularly arranged S-layers and capsules. The structural characterization and the detailed chemical analysis of these surface molecules is a prerequisite to understand their biosynthesis and functional role(s) at the molecular level. Of particular interest are the glycosylated S-layer proteins which belong to the first prokaryotic glycoproteins ever described. Their characterization was performed on strains belonging to the thermophilic Bacillaceae and included structural studies and experiments to learn about the pathways for the glycan biosynthesis of S-layer glycoproteins. As an example for non-glycosylated S-layer proteins those of Lactobacillus helveticus strains are described in detail. Recently, a novel type of bacterial glycoconjugate was observed in the cell envelope of the extremely halophilic archaeon Natronococcus occultus which consists of a glycosylated polyglutamyl polymer. Beside the conventional biochemical techniques for the analysis new sophisticated instrumental methods such as X-ray photoelectron spectroscopy and matrix-assisted laser desorption ionization or electrospray ionization mass spectrometry have been introduced for the analysis of the protein and glycan portions of these cell surface macromolecules.
Collapse
Affiliation(s)
- P Messner
- Zentrum für Ultrastrukturforschung, Universität für Bodenkultur, Wien, Austria
| | | | | | | | | | | | | | | |
Collapse
|
27
|
|