1
|
Shafiq M, Ahmed I, Saeed M, Malik A, Fatima S, Akhtar S, Khurshid M, Hyder MZ. Predominance of blaNDM- and blaIMP-Harboring Escherichia coli Belonging to Clonal Complexes 131 and 23 in a Major University Hospital. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1528. [PMID: 39336569 PMCID: PMC11434522 DOI: 10.3390/medicina60091528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Carbapenem resistance is a growing global challenge for healthcare, and, therefore, monitoring its prevalence and patterns is crucial for implementing targeted interventions to mitigate its impact on patient outcomes and public health. This study aimed to determine the prevalence of carbapenem resistance among Escherichia coli (E. coli) strains in the largest tertiary care hospital of the capital territory of Pakistan and to characterize the isolates for the presence of antimicrobial resistance genes. Additionally, the most prevalent sequence types were analyzed. Materials and Methods: A total of 15,467 clinical samples were collected from November 2020 to May 2022, underwent antimicrobial susceptibility testing, and were analyzed for antimicrobial resistance genes through conventional PCR and sequence typing using MLST. Results: In carbapenem-resistant E. coli (CR-EC), 74.19% of isolates harbored the blaNDM gene, with blaNDM-1 (66.96%), blaNDM-5 (12.17%), and blaNDM-7 (20.87%) variants detected. Additionally, blaIMP was found in 25.81% and blaOXA-48 in 35.48% of isolates. The presence of blaCTX-M15 and blaTEM was identified in 83.87% and 73.55% of CR-EC isolates, respectively, while armA and rmtB were detected in 40% and 65.16% of isolates, respectively. Colistin and tigecycline were the most effective drugs against CR-EC isolates, with both showing an MIC50 of 0.5 µg/mL. The MIC90 for colistin was 1 µg/mL, while for tigecycline, it was 2 µg/mL. MLST analysis revealed that the CR-EC isolates belonged to ST131 (24.52%), ST2279 (23.87%), ST3499 (16.13%), ST8051 (15.48%), ST8900 (9.68%), ST3329 (7.10%), ST88 (1.94%), and ST6293 (1.29%). The ST131 complex (70.97%) was the most prevalent, harboring 95.65% of the blaNDM gene, while the ST23 complex (18.06%) harbored 62.50% of the blaIMP gene. Conclusions: Implementing large-scale surveillance studies to monitor the spread of specific pathogens, along with active infection control policies, is crucial for the effective containment and prevention of future epidemics.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan; (M.S.); (M.S.)
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agriculture Research Centre, Park Road, Islamabad 45500, Pakistan;
| | - Muhammad Saeed
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan; (M.S.); (M.S.)
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia;
| | - Sabiha Fatima
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12371, Saudi Arabia;
| | - Suhail Akhtar
- Department of Biochemistry, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA;
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Zeeshan Hyder
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan; (M.S.); (M.S.)
| |
Collapse
|
2
|
Zerrouki H, Hamieh A, Hadjadj L, Rolain JM, Baron SA. The effect of combinations of a glyphosate-based herbicide with various clinically used antibiotics on phenotypic traits of Gram-negative species from the ESKAPEE group. Sci Rep 2024; 14:21006. [PMID: 39251613 PMCID: PMC11383965 DOI: 10.1038/s41598-024-68968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/30/2024] [Indexed: 09/11/2024] Open
Abstract
The emission of glyphosate and antibiotic residues from human activities threatens the diversity and functioning of the microbial community. This study examines the impact of a glyphosate-based herbicide (GBH) and common antibiotics on Gram-negative bacteria within the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli). Ten strains, including type and multidrug-resistant strains for each species were analysed and eight antibiotics (cefotaxime, meropenem, aztreonam, ciprofloxacin, gentamicin, tigecycline, sulfamethoxazole-trimethoprim, and colistin) were combined with the GBH. While most combinations yielded additive or indifferent effects in 70 associations, antagonistic effects were observed with ciprofloxacin and gentamicin in five strains. GBH notably decreased the minimum inhibitory concentration of colistin in eight strains and displayed synergistic activity with meropenem against metallo-β-lactamase (MBL)-producing strains. Investigation into the effect of GBH properties on outer membrane permeability involved exposing strains to a combination of this GBH and vancomycin. Results indicated that GBH rendered strains sensitive to vancomycin, which is typically ineffective against Gram-negative bacteria. Furthermore, we examined the impact of GBH in combination with three carbapenem agents on 14 strains exhibiting varying carbapenem-resistance mechanisms to assess its effect on carbapenemase activity. The GBH efficiently inhibited MBL activity, demonstrating similar effects to EDTA (ethylenediaminetetraacetic acid). Chelating effect of GBH may have multifaceted impacts on bacterial cells, potentially by increasing outer membrane permeability and inactivating metalloenzyme activity.
Collapse
Affiliation(s)
- Hanane Zerrouki
- MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Aïcha Hamieh
- MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Linda Hadjadj
- MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Jean-Marc Rolain
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
- APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
| | - Sophie Alexandra Baron
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
- APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
| |
Collapse
|
3
|
Gondal AJ, Choudhry N, Niaz A, Yasmin N. Molecular Analysis of Carbapenem and Aminoglycoside Resistance Genes in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Strains: A Challenge for Tertiary Care Hospitals. Antibiotics (Basel) 2024; 13:191. [PMID: 38391577 PMCID: PMC10886086 DOI: 10.3390/antibiotics13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) strains have become a global threat due to their remarkable capability to survive and disseminate successfully by the acquisition of resistance genes. As a result, the treatment strategies have been severely compromised. Due to the insufficient available data regarding P. aeruginosa resistance from Pakistan, we aimed to investigate the resistance mechanisms of 249 P. aeruginosa strains by antimicrobial susceptibility testing, polymerase chain reaction for the detection of carbapenemases, aminoglycoside resistance genes, extended-spectrum beta-lactamases (ESBLs), sequence typing and plasmid typing. Furthermore, we tested silver nanoparticles (AgNPs) to evaluate their in vitro sensitivity against antimicrobial-resistant P. aeruginosa strains. We observed higher resistance against antimicrobials in the general surgery ward, general medicine ward and wound samples. Phenotypic carbapenemase-producer strains comprised 80.7% (201/249) with 89.0% (179/201) demonstrating genes encoding carbapenemases: blaNDM-1 (32.96%), blaOXA48 (37.43%), blaIMP (7.26%), blaVIM (5.03%), blaKPC-2 (1.12%), blaNDM-1/blaOXA48 (13.97%), blaOXA-48/blaVIM (1.68%) and blaVIM/blaIMP (0.56%). Aminoglycoside-modifying enzyme genes and 16S rRNA methylase variants were detected in 43.8% (109/249) strains: aac(6')-lb (12.8%), aac(3)-lla (12.0%), rmtB (21.1%), rmtC (11.0%), armA (12.8%), rmtD (4.6%), rmtF (6.4%), rmtB/aac(3)-lla (8.2%), rmtB/aac(6')-lla (7.3%) and rmtB/armA (3.6%). In total, 43.0% (77/179) of the strains coharbored carbapenemases and aminoglycoside resistance genes with 83.1% resistant to at least 1 agent in 3 or more classes and 16.9% resistant to every class of antimicrobials tested. Thirteen sequence types (STs) were identified: ST235, ST277, ST234, ST170, ST381, ST175, ST1455, ST1963, ST313, ST207, ST664, ST357 and ST348. Plasmid replicon types IncFI, IncFII, IncA/C, IncL/M, IncN, IncX, IncR and IncFIIK and MOB types F11, F12, H121, P131 and P3 were detected. Meropenem/AgNPs and Amikacin/AgNPs showed enhanced antibacterial activity. We reported the coexistence of carbapenemases and aminoglycoside resistance genes among carbapenem-resistant P. aeruginosa with diverse clonal lineages from Pakistan. Furthermore, we highlighted AgNP's potential role in handling future antimicrobial resistance concerns.
Collapse
Affiliation(s)
- Aamir Jamal Gondal
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Ammara Niaz
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Nighat Yasmin
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| |
Collapse
|
4
|
Kiran S, Tariq A, Iqbal S, Naseem Z, Siddique W, Jabeen S, Bashir R, Hussain A, Rahman M, Habib FE, Rauf W, Ali A, Sarwar Y, Jander G, Iqbal M. Punicalagin, a pomegranate polyphenol sensitizes the activity of antibiotics against three MDR pathogens of the Enterobacteriaceae. BMC Complement Med Ther 2024; 24:93. [PMID: 38365729 PMCID: PMC10870630 DOI: 10.1186/s12906-024-04376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Multidrug resistance (MDR) in the family Enterobacteriaceae is a perniciously increasing threat to global health security. The discovery of new antimicrobials having the reversing drug resistance potential may contribute to augment and revive the antibiotic arsenal in hand. This study aimed to explore the anti-Enterobacteriaceae capability of bioactive polyphenols from Punica granatum (P. granatum) and their co-action with antibiotics against clinical isolates of Enterobacteriaceae predominantly prevalent in South Asian countries. METHODS The Kandhari P. granatum (Pakistani origin) extracts were tested for anti-Enterobacteriaceae activity by agar well diffusion assay against MDR Salmonella enterica serovar Typhi, serovar Typhimurium and Escherichia coli. Predominant compounds of active extract were determined by mass spectrometry and screened for bioactivity by agar well diffusion and minimum inhibitory concentration (MIC) assay. The active punicalagin was further evaluated at sub-inhibitory concentrations (SICs) for coactivity with nine conventional antimicrobials using a disc diffusion assay followed by time-kill experiments that proceeded with SICs of punicalagin and antimicrobials. RESULTS Among all P. granatum crude extracts, pomegranate peel methanol extract showed the largest inhibition zones of 25, 22 and 19 mm, and the MICs as 3.9, 7.8 and 7.8 mg/mL for S. typhi, S. typhimurium and E. coli, respectively. Punicalagin and ellagic acid were determined as predominant compounds by mass spectrometry. In plate assay, punicalagin (10 mg/mL) was active with hazy inhibition zones of 17, 14, and 13 mm against S. typhi, S. typhimurium and E. coli, respectively. However, in broth dilution assay punicalagin showed no MIC up to 10 mg/mL. The SICs 30 μg, 100 μg, and 500 μg of punicalagin combined with antimicrobials i.e., aminoglycoside, β-lactam, and fluoroquinolone act in synergy against MDR strains with % increase in inhibition zone values varying from 3.4 ± 2.7% to 73.8 ± 8.4%. In time-kill curves, a significant decrease in cell density was observed with the SICs of antimicrobials/punicalagin (0.03-60 μg/mL/30, 100, 500 μg/mL of punicalagin) combinations. CONCLUSIONS The P. granatum peel methanol extract exhibited antimicrobial activity against MDR Enterobacteriaceae pathogens. Punicalagin, the bacteriostatic flavonoid act as a concentration-dependent sensitizing agent for antimicrobials against Enterobacteriaceae. Our findings for the therapeutic punicalagin-antimicrobial combination prompt further evaluation of punicalagin as a potent activator for drugs, which otherwise remain less or inactive against MDR strains.
Collapse
Affiliation(s)
- Saba Kiran
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, 38000, Pakistan
| | - Anam Tariq
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, 38000, Pakistan
| | - Shoaib Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, 38000, Pakistan
| | - Zubera Naseem
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, 38000, Pakistan
| | - Waqar Siddique
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, 38000, Pakistan
| | - Sobia Jabeen
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, 38000, Pakistan
| | - Rizwan Bashir
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, 38000, Pakistan
| | - Ashfaq Hussain
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, 38000, Pakistan
| | - Moazur Rahman
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, Punjab, Pakistan
| | - Fazal-E Habib
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, 38000, Pakistan
| | - Waqar Rauf
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, 38000, Pakistan.
| | - Aamir Ali
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, 38000, Pakistan
| | - Yasra Sarwar
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, 38000, Pakistan
| | - Georg Jander
- Boyce Thompson Institute, Cornell University, 14850 Ithaca, New York, USA
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, 38000, Pakistan.
| |
Collapse
|
5
|
Abdullah S, Almusallam A, Li M, Mahmood MS, Mushtaq MA, Eltai NO, Toleman MA, Mohsin M. Whole genome-based genetic insights of blaNDM producing clinical E. coli isolates in hospital settings of Pakistan. Microbiol Spectr 2023; 11:e0058423. [PMID: 37668386 PMCID: PMC10581159 DOI: 10.1128/spectrum.00584-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/02/2023] [Indexed: 09/06/2023] Open
Abstract
Carbapenem resistance among Enterobacterales has become a global health concern. Clinical Escherichia coli isolates producing the metallo β-lactamase NDM have been isolated from two hospitals in Faisalabad, Pakistan. These E. coli strains were characterized by MALDI-TOF, PCR, antimicrobial susceptibility testing, XbaI and S1 nuclease pulsed-field gel electrophoresis (PFGE), conjugation assay, DNA hybridization, whole genome sequencing, bioinformatic analysis, and Galleria mellonella experiments. Thirty-four blaNDM producing E. coli strains were identified among 52 nonduplicate carbapenem-resistant strains. More than 90% of the isolates were found to be multidrug resistant by antimicrobial susceptibility testing. S1 PFGE confirmed the presence of blaNDM gene on plasmids ranging from 40 kbps to 250 kbps, and conjugation assays demonstrated transfer frequencies of blaNDM harboring plasmids ranging from 1.59 × 10-1 to 6.46 × 10-8 per donor. Whole genome sequencing analysis revealed blaNDM-5 as the prominent NDM subtype with the highest prevalence of blaOXA-1, blaCTX-M-15, aadA2, aac(6')-Ib-cr, and tet(A) associated resistant determinants. E. coli sequence types: ST405, ST361, and ST167 were prominent, and plasmid Inc types: FII, FIA, FIB, FIC, X3, R, and Y, were observed among all isolates. The genetic environment of blaNDM region on IncF plasmids included partial ISAba125, the bleomycin ble gene, and a class I integron. The virulence genes terC, traT, gad, fyuA, irp2, capU, and sitA were frequently observed, and G. mellonella experiments showed that virulence correlated with the number of virulence determinants. A strong infection control management in the hospital is necessary to check the emergence of carbapenem resistance in Gram-negative bacteria.IMPORTANCEWe describe a detailed analysis of highly resistant clinical E. coli isolates from two tertiary care centers in Pakistan including carbapenem resistance as well as common co-resistance mechanisms. South Asia has a huge problem with highly resistant E. coli. However, we find that though these isolates are very difficult to treat they are of low virulence. Thus the Western world has an increasing problem with virulent E. coli that are mostly of low antibiotic resistance, whereas, South Asia has an increasing problem with highly resistant E. coli that are of low virulence potential. These observations allow us to start to devise methodologies to limit both virulence and resistance and combat problems in developing nations as well as the Western world.
Collapse
Affiliation(s)
- Sabahat Abdullah
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Abdulrahman Almusallam
- Department of Medical Microbiology, School of Medicine, Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Mei Li
- Department of Medical Microbiology, School of Medicine, Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | | | | | - Nahla O. Eltai
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Mark A. Toleman
- Department of Medical Microbiology, School of Medicine, Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Diorio-Toth L, Wallace MA, Farnsworth CW, Wang B, Gul D, Kwon JH, Andleeb S, Burnham CAD, Dantas G. Intensive care unit sinks are persistently colonized with multidrug resistant bacteria and mobilizable, resistance-conferring plasmids. mSystems 2023; 8:e0020623. [PMID: 37439570 PMCID: PMC10469867 DOI: 10.1128/msystems.00206-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 07/14/2023] Open
Abstract
Contamination of hospital sinks with microbial pathogens presents a serious potential threat to patients, but our understanding of sink colonization dynamics is largely based on infection outbreaks. Here, we investigate the colonization patterns of multidrug-resistant organisms (MDROs) in intensive care unit sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. Using culture-based methods, we recovered 822 bacterial isolates representing 104 unique species and genomospecies. Genomic analyses revealed long-term colonization by Pseudomonas spp. and Serratia marcescens strains across multiple rooms. Nanopore sequencing uncovered examples of long-term persistence of resistance-conferring plasmids in unrelated hosts. These data indicate that antibiotic resistance (AR) in Pseudomonas spp. is maintained both by strain colonization and horizontal gene transfer (HGT), while HGT maintains AR within Acinetobacter spp. and Enterobacterales, independent of colonization. These results emphasize the importance of proactive, genomic-focused surveillance of built environments to mitigate MDRO spread. IMPORTANCE Hospital sinks are frequently linked to outbreaks of antibiotic-resistant bacteria. Here, we used whole-genome sequencing to track the long-term colonization patterns in intensive care unit (ICU) sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. We analyzed 822 bacterial genomes, representing over 100 different species. We identified long-term contamination by opportunistic pathogens, as well as transient appearance of other common pathogens. We found that bacteria recovered from the ICU had more antibiotic resistance genes (ARGs) in their genomes compared to matched community spaces. We also found that many of these ARGs are harbored on mobilizable plasmids, which were found shared in the genomes of unrelated bacteria. Overall, this study provides an in-depth view of contamination patterns for common nosocomial pathogens and identifies specific targets for surveillance.
Collapse
Affiliation(s)
- Luke Diorio-Toth
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher W. Farnsworth
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Danish Gul
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Jennie H. Kwon
- Department of Medicine, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Saadia Andleeb
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Zhang Y, Yang X, Liu C, Huang L, Shu L, Sun Q, Zhou H, Huang Y, Cai C, Wu X, Chen S, Zhang R. Increased clonal dissemination of OXA-232-producing ST15 Klebsiella pneumoniae in Zhejiang, China from 2018 to 2021. Infect Dis Poverty 2023; 12:25. [PMID: 36949496 PMCID: PMC10031881 DOI: 10.1186/s40249-023-01051-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/03/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND OXA-232-producing Klebsiella pneumoniae was first identified in China in 2016, and its clonal transmission was reported in 2019. However, there are no prevalence and genotypic surveillance data available for OXA-232 in China. Therefore, we investigated the trends and characteristics of OXA-232 type carbapenemase in Zhejiang Province, China from 2018 to 2021. METHODS A total of 3278 samples from 1666 patients in the intensive care units were collected from hospitals in Zhejiang Province from 2018 to 2021. Carbapenem-resistant isolates were initially selected by China Blue agar plates supplemented with 0.3 μg/ml meropenem, and further analyzed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry identification, immune colloidal gold technique, conjugation experiment, antimicrobial susceptibility testing and whole genome sequencing. RESULTS A total of 79 OXA-producing strains were recovered, with the prevalence increased from 1.8% [95% confidence interval (CI): 0.7-3.7%] in 2018 to 6.0% (95% CI: 4.4-7.9%) in 2021. Seventy-eight strains produced OXA-232 and one produced OXA-181. The blaOXA-232 gene in all strains was located in a 6141-bp ColKP3-type non-conjugative plasmid and the blaOXA-181 gene was located in a 51,391-bp ColKP3/IncX3-type non-conjugative plasmid. The blaOXA-232-producing K. pneumoniae was dominated (75/76) by isolates of sequence type 15 (ST15) that differed by less than 80 SNPs. All OXA-producing strains (100%, 95% CI: 95.4-100.0%) were multidrug-resistant. CONCLUSIONS From 2018 to 2021, OXA-232 is the most prevalent OXA-48-like derivative in Zhejiang Province, and ST15 K. pneumoniae isolates belonging to the same clone are the major carriers. The transmission of ColKP3-type plasmid to E. coli highlighted that understanding the transmission mechanism is of great importance to delay or arrest the propagation of OXA-232 to other species.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuemei Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Congcong Liu
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Huang
- Department of Clinical Laboratory Medicine, Maternal and Child Health Hospital of Yuhang District, Hangzhou, China
| | - Lingbin Shu
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaoling Sun
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Zhou
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonglu Huang
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Cai
- College of Animal Science and Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Xiaoyan Wu
- The Clinical Laboratory, Jiaxing Second Hospital, Jiaxing, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Estimation, Evaluation and Characterization of Carbapenem Resistance Burden from a Tertiary Care Hospital, Pakistan. Antibiotics (Basel) 2023; 12:antibiotics12030525. [PMID: 36978392 PMCID: PMC10044297 DOI: 10.3390/antibiotics12030525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Carbapenem resistance has become major concern in healthcare settings globally; therefore, its monitoring is crucial for intervention efforts to halt resistance spread. During May 2019–April 2022, 2170 clinical strains were characterized for antimicrobial susceptibility, resistance genes, replicon and sequence types. Overall, 42.1% isolates were carbapenem-resistant, and significantly associated with Klebsiella pneumoniae (K. pneumoniae) (p = 0.008) and Proteus species (p = 0.043). Carbapenemases were detected in 82.2% of isolates, with blaNDM-1 (41.1%) associated with the ICU (p < 0.001), cardiology (p = 0.042), pediatric medicine (p = 0.013) and wound samples (p = 0.041); blaOXA-48 (32.6%) was associated with the ICU (p < 0.001), cardiology (p = 0.008), pediatric medicine (p < 0.001), general surgery (p = 0.001), general medicine (p = 0.005) and nephrology (p = 0.020); blaKPC-2 (5.5%) was associated with general surgery (p = 0.029); blaNDM-1/blaOXA-48 (11.4%) was associated with general surgery (p < 0.001), and wound (p = 0.002), urine (p = 0.003) and blood (p = 0.012) samples; blaOXA-48/blaVIM (3.1%) was associated with nephrology (p < 0.001) and urine samples (p < 0.001). Other detected carbapenemases were blaVIM (3.0%), blaIMP (2.7%), blaOXA-48/blaIMP (0.1%) and blaVIM/blaIMP (0.3%). Sequence type (ST)147 (39.7%) represented the most common sequence type identified among K. pneumoniae, along with ST11 (23.0%), ST14 (15.4%), ST258 (10.9%) and ST340 (9.6%) while ST405 comprised 34.5% of Escherichia coli (E. coli) isolates followed by ST131 (21.2%), ST101 (19.7%), ST10 (16.0%) and ST69 (7.4%). Plasmid replicon types IncFII, IncA/C, IncN, IncL/M, IncFIIA and IncFIIK were observed. This is first report describing the carbapenem-resistance burden and emergence of blaKPC-2-ST147, blaNDM-1-ST340 and blaNDM-1-ST14 in K. pneumoniae isolates and blaNDM-1-ST69 and blaNDM-1/blaOXA-48-ST69 in E. coli isolates coharboring extended-spectrum beta-lactamases (ESBLs) from Pakistan.
Collapse
|
9
|
Kamel NA, Tohamy ST, Yahia IS, Aboshanab KM. Insights on the performance of phenotypic tests versus genotypic tests for the detection of carbapenemase-producing Gram-negative bacilli in resource-limited settings. BMC Microbiol 2022; 22:248. [PMID: 36229768 PMCID: PMC9563167 DOI: 10.1186/s12866-022-02660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background:
Carbapenemase-producing Gram-negative (CPGN) bacteria impose life-threatening infections with limited treatment options. Rigor and rapid detection of CPGN-associated infections is usually associated with proper treatment and better disease prognosis. Accordingly, this study aimed at evaluating the phenotypic methods versus genotypic methods used for the detection of such pathogens and determining their sensitivity/specificity values. Methods:
A total of 71 CPGN bacilli (30 Enterobacterales and 41 non-glucose-fermenting bacilli) were tested for the carbapenemase production by the major phenotypic approaches including, the modified Hodge test (MHT), modified carbapenem inactivation method (mCIM), combined disk test by EDTA (CDT) and blue-carba test (BCT). The obtained results were statistically analyzed and correlated to the obtained resistant genotypes that were determined by using polymerase chain reactions (PCR) for the detection of the major carbapenemase-encoding genes covering the three classes (Class A, B, and D) of carbapenemases. Results:
In comparison to PCR, the overall sensitivity/specificity values for detection of carbapenemase-producing organism were 65.62%/100% for MHT, 68.65%/100% for mCIM, 55.22%/100% for CDT and 89.55%/75% for BCT. The sensitivity/specificity values for carbapenemase-producing Enterobacterales were, 74%100% for MHT, 51.72%/ 100% for mCIM, 62.07%/100% for CDT and 82.75%/100% for BCT. The sensitivity/specificity values for carbapenemase-producing non-glucose fermenting bacilli were, 62.16%/100% for MHT, 81.57%/100% for mCIM, 50/100% for CDT and 94.74%/66.66% for BCT. Considering these findings, BCT possess a relatively high performance for the efficient and rapid detection of carbapenemase producing isolates. Statistical analysis showed significant association (p < 0.05) between blaNDM and/or blaVIM genotypes with MHT/CDT; blaKPC/blaGIM genotypes with CDT and blaGIM genotype with BCT. Conclusion:
The current study provides an update on the performance of the phenotypic tests which are varied depending on the tested bacterial genera and the type of the carbapenemase. The overall sensitivity/specificity values for detection of CPO were 65.62%/100% for MHT, 68.65%/100% for mCIM, 55.22%/100% for CDT and 89.55%/75% for BCT. Based on its respective diagnostic efficiency and rapid turnaround time, BCT is more likely to be recommended in a resource-limited settings particularly, when molecular tests are not available. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02660-5.
Collapse
Affiliation(s)
- Noha A Kamel
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), 19648, Cairo, Egypt
| | - Sally T Tohamy
- Department of Microbiology & Immunology, Faculty of pharmacy-Girls, Al-Azhar University, 11651, Cairo, Egypt
| | - Ibrahim S Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Semiconductor Lab, Department of Physics, Faculty of Education, Ain Shams University, 11757, Roxy, Cairo, Egypt
| | - Khaled M Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African union organization Street, 11566, Abbassia, Cairo, Egypt.
| |
Collapse
|
10
|
Habib A, Lo S, Villageois-Tran K, Petitjean M, Malik SA, Armand-Lefèvre L, Ruppé E, Zahra R. Dissemination of carbapenemase-producing Enterobacterales in the community of Rawalpindi, Pakistan. PLoS One 2022; 17:e0270707. [PMID: 35802735 PMCID: PMC9269877 DOI: 10.1371/journal.pone.0270707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Carbapenems are considered last-line beta-lactams for the treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, their activity is compromised by the rising prevalence of carbapenemase-producing Enterobacterales (CPE), which are especially marked in the Indian subcontinent. In Pakistan, previous reports have warned about the possible spread of CPE in the community, but data are still partial. This study was carried out to analyse the prevalence of CPE, the genetic characterisation, and phylogenetic links among the spreading CPE in the community. In this cohort study, we collected 306 rectal swabs from patients visiting Benazir Bhutto hospital, Rawalpindi. CPEs were screened by using ertapenem-supplemented MacConkey agar. Identification was performed by using conventional biochemical tests, and genomes were sequenced using Illumina chemistry. Antibiotic resistance genes, plasmid incompatibility groups, and Escherichia coli phylogroups were determined in silico. Sequence types were determined by using MLST tool. The prevalence of CPE carriage observed was 14.4% (44/306 samples). The most common carbapenemase-encoding gene was bla-NDM-5 (n = 58) followed by blaNDM-1 (n = 7), blaNDM (non-assigned variant, n = 4), blaOXA-181 (n = 3), blaOXA-232 (n = 3) and blaNDM-7 (n = 1). Most of the CPE were E. coli (55/64, 86%), and the genomic analysis revealed a pauciclonal diffusion of E. coli with ST167 (n = 14), 405 (n = 10), 940 (n = 8), 648 (n = 6) and 617 (n = 5). We obtained a second sample from 94 patients during their hospital stay in whom carriage was negative at admission and found that 7 (7.4%) acquired a CPE. Our results indicate that the prevalence of CPE carriage in the Pakistani urban community was high and driven by the dissemination of some E. coli clones, with ST167 being the most frequent. The high CPE carriage in the community poses a serious public health threat and calls for implementation of adequate preventive measures.
Collapse
Affiliation(s)
- Amina Habib
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Stéphane Lo
- Université de Paris, IAME, INSERM, Paris, France
- APHP, Laboratoire de Bactériologie, Hôpital Bichat, Paris, France
| | - Khanh Villageois-Tran
- Université de Paris, IAME, INSERM, Paris, France
- APHP, Laboratoire de Bactériologie, Hôpital Beaujon, Clichy, France
| | | | - Shaheen Akhtar Malik
- Accident and Emergency Department, Benazir Bhutto Hospital, Rawalpindi, Pakistan
| | - Laurence Armand-Lefèvre
- Université de Paris, IAME, INSERM, Paris, France
- APHP, Laboratoire de Bactériologie, Hôpital Bichat, Paris, France
| | - Etienne Ruppé
- Université de Paris, IAME, INSERM, Paris, France
- APHP, Laboratoire de Bactériologie, Hôpital Bichat, Paris, France
| | - Rabaab Zahra
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
11
|
Diorio-Toth L, Irum S, Potter RF, Wallace MA, Arslan M, Munir T, Andleeb S, Burnham CAD, Dantas G. Genomic Surveillance of Clinical Pseudomonas aeruginosa Isolates Reveals an Additive Effect of Carbapenemase Production on Carbapenem Resistance. Microbiol Spectr 2022; 10:e0076622. [PMID: 35638817 PMCID: PMC9241860 DOI: 10.1128/spectrum.00766-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 01/15/2023] Open
Abstract
Carbapenem resistance in Pseudomonas aeruginosa is increasing globally, and surveillance to define the mechanisms of such resistance in low- and middle-income countries is limited. This study establishes the genotypic mechanisms of β-lactam resistance by whole-genome sequencing (WGS) in 142 P. aeruginosa clinical isolates recovered from three hospitals in Islamabad and Rawalpindi, Pakistan between 2016 and 2017. Isolates were subjected to antimicrobial susceptibility testing (AST) by Kirby-Bauer disk diffusion, and their genomes were assembled from Illumina sequencing data. β-lactam resistance was high, with 46% of isolates resistant to piperacillin-tazobactam, 42% to cefepime, 48% to ceftolozane-tazobactam, and 65% to at least one carbapenem. Twenty-two percent of isolates were resistant to all β-lactams tested. WGS revealed that carbapenem resistance was associated with the acquisition of metallo-β-lactamases (MBLs) or extended-spectrum β-lactamases (ESBLs) in the blaGES, blaVIM, and blaNDM families, and mutations in the porin gene oprD. These resistance determinants were found in globally distributed lineages, including ST235 and ST664, as well as multiple novel STs which have been described in a separate investigation. Analysis of AST results revealed that acquisition of MBLs/ESBLs on top of porin mutations had an additive effect on imipenem resistance, suggesting that there is a selective benefit for clinical isolates to encode multiple resistance determinants to the same drugs. The strong association of these resistance determinants with phylogenetic background displays the utility of WGS for monitoring carbapenem resistance in P. aeruginosa, while the presence of these determinants throughout the phylogenetic tree shows that knowledge of the local epidemiology is crucial for guiding potential treatment of multidrug-resistant P. aeruginosa infections. IMPORTANCE Pseudomonas aeruginosa is associated with serious infections, and treatment can be challenging. Because of this, carbapenems and β-lactam/β-lactamase inhibitor combinations have become critical tools in treating multidrug-resistant (MDR) P. aeruginosa infections, but increasing resistance threatens their efficacy. Here, we used WGS to study the genotypic and phylogenomic patterns of 142 P. aeruginosa isolates from the Potohar region of Pakistan. We sequenced both MDR and antimicrobial susceptible isolates and found that while genotypic and phenotypic patterns of antibiotic resistance correlated with phylogenomic background, populations of MDR P. aeruginosa were found in all major phylogroups. We also found that isolates possessing multiple resistance mechanisms had significantly higher levels of imipenem resistance compared to the isolates with a single resistance mechanism. This study demonstrates the utility of WGS for monitoring patterns of antibiotic resistance in P. aeruginosa and potentially guiding treatment choices based on the local spread of β-lactamase genes.
Collapse
Affiliation(s)
- Luke Diorio-Toth
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sidra Irum
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Robert F. Potter
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Muhammad Arslan
- Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Tehmina Munir
- Department of Microbiology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Saadia Andleeb
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Ahlstrom CA, Woksepp H, Sandegren L, Mohsin M, Hasan B, Muzyka D, Hernandez J, Aguirre F, Tok A, Söderman J, Olsen B, Ramey AM, Bonnedahl J. Genomically diverse carbapenem resistant Enterobacteriaceae from wild birds provide insight into global patterns of spatiotemporal dissemination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153632. [PMID: 35124031 DOI: 10.1016/j.scitotenv.2022.153632] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Carbapenem resistant Enterobacteriaceae (CRE) are a threat to public health globally, yet the role of the environment in the epidemiology of CRE remains elusive. Given that wild birds can acquire CRE, likely from foraging in anthropogenically impacted areas, and may aid in the maintenance and dissemination of CRE in the environment, a spatiotemporal comparison of isolates from different regions and timepoints may be useful for elucidating epidemiological information. Thus, we characterized the genomic diversity of CRE from fecal samples opportunistically collected from gulls (Larus spp.) inhabiting Alaska (USA), Chile, Spain, Turkey, and Ukraine and from black kites (Milvus migrans) sampled in Pakistan and assessed evidence for spatiotemporal patterns of dissemination. Within and among sampling locations, a high diversity of carbapenemases was found, including Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-beta-lactamase (NDM), oxacillinase (OXA), and Verona integron Metallo beta-lactamase (VIM). Although the majority of genomic comparisons among samples did not provide evidence for spatial dissemination, we did find strong evidence for dissemination among Alaska, Spain, and Turkey. We also found strong evidence for temporal dissemination among samples collected in Alaska and Pakistan, though the majority of CRE clones were transitory and were not repeatedly detected among locations where samples were collected longitudinally. Carbapenemase-producing hypervirulent K. pneumoniae was isolated from gulls in Spain and Ukraine and some isolates harbored antimicrobial resistance genes conferring resistance to up to 10 different antibiotic classes, including colistin. Our results are consistent with local acquisition of CRE by wild birds with spatial dissemination influenced by intermediary transmission routes, likely involving humans. Furthermore, our results support the premise that anthropogenically-associated wild birds may be good sentinels for understanding the burden of clinically-relevant antimicrobial resistance in the local human population.
Collapse
Affiliation(s)
- Christina A Ahlstrom
- Alaska Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA
| | - Hanna Woksepp
- Department of Development and Public Health, Kalmar County Hospital, Kalmar 391 85, Sweden; Department of Medicine and Optometry, Linnaeus University, Kalmar 391 85, Sweden
| | - Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Infection biology, antimicrobial resistance and immunology, Uppsala University, Uppsala SE-75185, Sweden
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Badrul Hasan
- Department of Medical Biochemistry and Microbiology, Infection biology, antimicrobial resistance and immunology, Uppsala University, Uppsala SE-75185, Sweden; Animal Bacteriology Section, Microbial Sciences, Pests and Diseases, Agriculture Victoria Research, Bundoora, Victoria 3083, Australia
| | - Denys Muzyka
- National Scientific Center, Institute of Experimental and Clinical Veterinary Medicine, Kharkiv 61023, Ukraine
| | - Jorge Hernandez
- Department of Clinical Microbiology, Kalmar County Hospital, Kalmar SE-39185, Sweden
| | - Filip Aguirre
- Department of Clinical Microbiology, Kalmar County Hospital, Kalmar SE-39185, Sweden
| | - Atalay Tok
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala SE-75185, Sweden
| | - Jan Söderman
- Laboratory Medicine, Jönköping, Region Jönköping County, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Bjorn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala SE-75185, Sweden
| | - Andrew M Ramey
- Alaska Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, USA
| | - Jonas Bonnedahl
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 581 83, Sweden; Department of Infectious Diseases, Region Kalmar County, Kalmar 391 85, Sweden.
| |
Collapse
|
13
|
Bird MT, Greig DR, Nair S, Jenkins C, Godbole G, Gharbia SE. Use of Nanopore Sequencing to Characterise the Genomic Architecture of Mobile Genetic Elements Encoding bla CTX-M-15 in Escherichia coli Causing Travellers' Diarrhoea. Front Microbiol 2022; 13:862234. [PMID: 35422790 PMCID: PMC9002331 DOI: 10.3389/fmicb.2022.862234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Increasing levels of antimicrobial resistance (AMR) have been documented in Escherichia coli causing travellers’ diarrhoea, particularly to the third-generation cephalosporins. Diarrhoeagenic E. coli (DEC) can act as a reservoir for the exchange of AMR genes between bacteria residing in the human gut, enabling them to survive and flourish through the selective pressures of antibiotic treatments. Using Oxford Nanopore Technology (ONT), we sequenced eight isolates of DEC from four patients’ specimens who had all recently returned to the United Kingdome from Pakistan. Sequencing yielded two DEC harbouring blaCTX-M-15 per patient, all with different sequence types (ST) and belonging to five different pathotypes. The study aimed to determine whether blaCTX-M-15 was located on the chromosome or plasmid and to characterise the drug-resistant regions to better understand the mechanisms of onward transmission of AMR determinants. Patients A and C both had one isolate where blaCTX-M-15 was located on the plasmid (899037 & 623213, respectively) and one chromosomally encoded (899091 & 623214, respectively). In patient B, blaCTX-M-15 was plasmid-encoded in both DEC isolates (786605 & 7883090), whereas in patient D, blaCTX-M-15 was located on the chromosome in both DEC isolates (542093 & 542099). The two blaCTX-M-15-encoding plasmids associated with patient B were different although the blaCTX-M-15-encoding plasmid isolated from 788309 (IncFIB) exhibited high nucleotide similarity to the blaCTX-M-15-encoding plasmid isolated from 899037 (patient A). In the four isolates where blaCTX-M-15 was chromosomally encoded, two isolates (899091 & 542099) shared the same insertion site. The blaCTX-M-15 insertion site in isolate 623214 was described previously, whereas that of isolate 542093 was unique to this study. Analysis of Nanopore sequencing data enables us to characterise the genomic architecture of mobile genetic elements encoding AMR determinants. These data may contribute to a better understanding of persistence and onward transmission of AMR determinants in multidrug-resistant (MDR) E. coli causing gastrointestinal and extra-intestinal infections.
Collapse
Affiliation(s)
- Matthew T Bird
- National Infection Service, UK Health Security Agency, London, United Kingdom.,Health Protection Research Unit in Genomes and Enabling Data, Warwick, United Kingdom
| | - David R Greig
- National Infection Service, UK Health Security Agency, London, United Kingdom.,NIRH Health Protection Research Unit for Gastrointestinal Pathogens, Liverpool, United Kingdom.,Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Satheesh Nair
- National Infection Service, UK Health Security Agency, London, United Kingdom
| | - Claire Jenkins
- National Infection Service, UK Health Security Agency, London, United Kingdom.,NIRH Health Protection Research Unit for Gastrointestinal Pathogens, Liverpool, United Kingdom
| | - Gauri Godbole
- National Infection Service, UK Health Security Agency, London, United Kingdom
| | - Saheer E Gharbia
- National Infection Service, UK Health Security Agency, London, United Kingdom.,Health Protection Research Unit in Genomes and Enabling Data, Warwick, United Kingdom
| |
Collapse
|
14
|
Ejaz H, Ahmad M, Younas S, Junaid K, Abosalif KOA, Abdalla AE, Alameen AAM, Elamir MYM, Bukhari SNA, Ahmad N, Qamar MU. Molecular Epidemiology of Extensively-Drug Resistant Acinetobacter baumannii Sequence Type 2 Co-Harboring bla NDM and bla OXA From Clinical Origin. Infect Drug Resist 2021; 14:1931-1939. [PMID: 34079303 PMCID: PMC8164867 DOI: 10.2147/idr.s310478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background The therapeutic management of carbapenem-resistant Acinetobacter baumannii (CR-AB) represents a serious challenge to the public health sector because these pathogens are resistant to a wide range of antibiotics, resulting in limited treatment options. The present study was planned to investigate the clonal spread of CR-AB in a clinical setting. Methodology A total of 174 A. baumannii clinical isolates were collected from a tertiary care hospitals in Lahore, Pakistan. The isolates were confirmed by VITEK 2 compact system and molecular identification of recA and blaOXA-51. Antimicrobial profile and the screening of carbapenem-resistant genes were carried out using VITEK 2 system and PCR, respectively. The molecular typing of the isolates was performed according to the Pasteur scheme. Results Of the 174 A. baumannii isolates collected, the majority were isolated from sputum samples (46.5%) and in the intensive care unit (ICU, 75%). Among these, 113/174 (64.9%) were identified as CR-AB, and 49.5% and 24.7% harbored blaOXA-23 and blaNDM-1, respectively. A total of 11 (9.7%) isolates co-harbored blaOXA-51, blaNDM-1, and blaOXA-23. Interestingly, 46.9% of the CR-AB belonged to sequence type 2 (ST2; CC1), whereas 15.9% belonged to ST1 (CC1). All of the CR-AB isolates showed extensive resistance to clinically relevant antibiotics, except colistin. Conclusion The study concluded CR-AB ST2 clone harboring blaOXA-23 and blaNDM-1 are widely distributed in Pakistan’s clinical settings, which could result in increased mortality. Strict compliance with the National Action Plan on Antimicrobial Resistance is necessary to reduce the impacts of these strains.
Collapse
Affiliation(s)
- Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al Jouf, 72388, Saudi Arabia
| | - Mahtab Ahmad
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sonia Younas
- Department of Pathology, Tehsil Headquarter Hospital Kamoke, Kamoke, 50661, Pakistan
| | - Kashaf Junaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al Jouf, 72388, Saudi Arabia
| | - Khalid Omer Abdalla Abosalif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al Jouf, 72388, Saudi Arabia
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al Jouf, 72388, Saudi Arabia
| | - Ayman Ali Mohammed Alameen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al Jouf, 72388, Saudi Arabia
| | - Mohammed Yagoub Mohammed Elamir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al Jouf, 72388, Saudi Arabia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Muhammad Usman Qamar
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|