1
|
de Assis LVM, Oster H. Non-rhythmic modulators of the circadian system: A new class of circadian modulators. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 393:141-162. [PMID: 40390461 DOI: 10.1016/bs.ircmb.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The temporal organization of biological processes is critical for an organism's fitness and survival. An internal circadian clock network coordinates the alignment between the external and internal milieus via an array of systemic factors carrying temporal information such as core body temperature, autonomic activity, hormonal secretion, and behavioral functions. Collectively, these so called zeitgebers are characterized by strong temporal variations (i.e., high amplitudes). At the same time, target tissues show time windows of highest and lowest sensitivity to specific zeitgebers and, in this way, tissues can further modulate the effect of zeitgeber input in a process known as circadian gating. Such interplay between systemic signals and local circadian gating, however, suggests an additional level of temporal control-the resetting of target tissue rhythms in response to altered levels of tonic (i.e., non-rhythmic) signals. The recently identified tuning of liver transcriptome rhythms by thyroid hormones (THs) is one example of such regulation. THs show low-amplitude rhythms in the serum levels that are easily disrupted by altered thyroid states. At the same time, circadian rhythms in TH target tissues, such as liver, are markedly affected by alterations in TH state. Temporal regulation of TH target genes in other tissues suggests similar effects across the body. This chapter describes the rationale, experimental evidence, and potential consequences of this new level of circadian regulators.
Collapse
Affiliation(s)
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
2
|
Nazar NSBM, Ramanathan A, Ghani WMN, Rokhani FB, Jacob PS, Sabri NEB, Hassan MS, Kadir K, Dharmarajan L. Salivary metabolomics in oral potentially malignant disorders and oral cancer patients-a systematic review with meta-analysis. Clin Oral Investig 2024; 28:98. [PMID: 38225483 DOI: 10.1007/s00784-023-05481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVES The aim of this systematic review and meta-analysis is to assess the diagnostic potential of salivary metabolomics in the detection of oral potentially malignant disorders (OPMDs) and oral cancer (OC). MATERIALS AND METHODS A systematic review was performed in accordance with the 3rd edition of the Centre for Reviews and Dissemination (CRD) and Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Electronic searches for articles were carried out in the PubMed, Web of Science, and Scopus databases. The quality assessment of the included studies was evaluated using the Newcastle-Ottawa Quality Assessment Scale (NOS) and the new version of the QUADOMICS tool. Meta-analysis was conducted whenever possible. The effect size was presented using the Forest plot, whereas the presence of publication bias was examined through Begg's funnel plot. RESULTS A total of nine studies were included in the systematic review. The metabolite profiling was heterogeneous across all the studies. The expression of several salivary metabolites was found to be significantly altered in OPMDs and OCs as compared to healthy controls. Meta-analysis was able to be conducted only for N-acetylglucosamine. There was no significant difference (SMD = 0.15; 95% CI - 0.25-0.56) in the level of N-acetylglucosamine between OPMDs, OC, and the control group. CONCLUSION Evidence for N-acetylglucosamine as a salivary biomarker for oral cancer is lacking. Although several salivary metabolites show changes between healthy, OPMDs, and OC, their diagnostic potential cannot be assessed in this review due to a lack of data. Therefore, further high-quality studies with detailed analysis and reporting are required to establish the diagnostic potential of the salivary metabolites in OPMDs and OC. CLINICAL RELEVANCE While some salivary metabolites exhibit significant changes in oral potentially malignant disorders (OPMDs) and oral cancer (OC) compared to healthy controls, the current evidence, especially for N-acetylglucosamine, is inadequate to confirm their reliability as diagnostic biomarkers. Additional high-quality studies are needed for a more conclusive assessment of salivary metabolites in oral disease diagnosis.
Collapse
Affiliation(s)
- Nur Syahirah Binti Mohd Nazar
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Oral and Maxillofacial Surgery, Medicine and Pathology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Anand Ramanathan
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia.
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Wan Maria Nabillah Ghani
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Faezah Binti Rokhani
- Department of Oral and Maxillofacial Surgery, Medicine and Pathology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Pulikkotil Shaju Jacob
- Division of Clinical Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Nurul Elma Binti Sabri
- Department of Agrotechnology and Bioscience, Malaysian Nuclear Agency, Bangi, Selangor, Malaysia
| | - Mohd Sukri Hassan
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Kathreena Kadir
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
3
|
Cai X, Xue Z, Zeng FF, Tang J, Yue L, Wang B, Ge W, Xie Y, Miao Z, Gou W, Fu Y, Li S, Gao J, Shuai M, Zhang K, Xu F, Tian Y, Xiang N, Zhou Y, Shan PF, Zhu Y, Chen YM, Zheng JS, Guo T. Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome. Cell Rep Med 2023; 4:101172. [PMID: 37652016 PMCID: PMC10518601 DOI: 10.1016/j.xcrm.2023.101172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Metabolic syndrome (MetS) is a complex metabolic disorder with a global prevalence of 20%-25%. Early identification and intervention would help minimize the global burden on healthcare systems. Here, we measured over 400 proteins from ∼20,000 proteomes using data-independent acquisition mass spectrometry for 7,890 serum samples from a longitudinal cohort of 3,840 participants with two follow-up time points over 10 years. We then built a machine-learning model for predicting the risk of developing MetS within 10 years. Our model, composed of 11 proteins and the age of the individuals, achieved an area under the curve of 0.774 in the validation cohort (n = 242). Using linear mixed models, we found that apolipoproteins, immune-related proteins, and coagulation-related proteins best correlated with MetS development. This population-scale proteomics study broadens our understanding of MetS and may guide the development of prevention and targeted therapies for MetS.
Collapse
Affiliation(s)
- Xue Cai
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Zhangzhi Xue
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Fang-Fang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China
| | - Jun Tang
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Liang Yue
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Bo Wang
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., No. 1 Yunmeng Road, Cloud Town, Xihu District, Hangzhou, Zhejiang 310024, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., No. 1 Yunmeng Road, Cloud Town, Xihu District, Hangzhou, Zhejiang 310024, China
| | - Yuting Xie
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Zelei Miao
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Wanglong Gou
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuanqing Fu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Sainan Li
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Jinlong Gao
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Menglei Shuai
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Ke Zhang
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Fengzhe Xu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yunyi Tian
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Nan Xiang
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., No. 1 Yunmeng Road, Cloud Town, Xihu District, Hangzhou, Zhejiang 310024, China
| | - Yan Zhou
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Peng-Fei Shan
- Department of Endocrinology, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Yi Zhu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ju-Sheng Zheng
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| | - Tiannan Guo
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
4
|
Mota MC, Silva CM, Balieiro LCT, Fahmy WM, Marqueze EC, Moreno CRDC, Crispim CA. Social Jetlag Is Associated With Impaired Metabolic Control During a 1-Year Follow-Up. Front Physiol 2021; 12:702769. [PMID: 34539431 PMCID: PMC8445111 DOI: 10.3389/fphys.2021.702769] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies have identified social jetlag (SJL) as a risk factor for non-communicable chronic diseases (NCCDs), but its association with metabolic control over time is unclear in the literature. Therefore, we examined the influence of SJL on metabolic parameters and blood pressure (BP) in patients with NCCDs over a 1-year follow-up. This retrospective, longitudinal study included 625 individuals (age: 56.0 +12.0 years; 76% female) with NCCDs [type 2 diabetes mellitus (TD2), systemic arterial hypertension (SHA), obesity, or dyslipidemia]. SJL was calculated based on the absolute difference between mid-sleep time on weekends and weekdays. Current metabolic parameters and BP of the patients were compared with data from a year prior. Generalized estimating equations (GEE) and multiple linear regression analyses were used to examine the association among SJL, metabolic parameters, and BP. Multiple linear regression analyses adjusted for confounders showed that SJL was positively associated with the delta difference of fasting glucose (β = 0.11, p = 0.02) and triglyceride levels (β = 0.09, p = 0.04) among all subjects with NCCDs, and with fasting glucose (β = 0.30, p = 0.0001) and triglyceride levels (β = 0.22, p = 0.01) in the TD2 group. GEE analysis demonstrated an isolated effect of SJL on diastolic BP. High SJL impaired clinical and metabolic control in individuals with NCCDs, leading to a worse profile after a 1-year follow-up, particularly among type II diabetics.
Collapse
Affiliation(s)
- Maria Carliana Mota
- Faculty of Medicine of the Federal University of Uberlândia, Uberlândia, Brazil
| | | | | | | | - Elaine Cristina Marqueze
- Public Health Graduate Program, Department of Epidemiology, Catholic University of Santos, Santos, Brazil.,Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Claudia Roberta de Castro Moreno
- Department of Health, Life Cycles and Society, School of Public Health, University of São Paulo, São Paulo, Brazil.,Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
5
|
Pathology, Risk Factors, and Oxidative Damage Related to Type 2 Diabetes-Mediated Alzheimer's Disease and the Rescuing Effects of the Potent Antioxidant Anthocyanin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4051207. [PMID: 33728019 PMCID: PMC7936905 DOI: 10.1155/2021/4051207] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
The pathology and neurodegeneration in type 2 diabetes- (T2D-) mediated Alzheimer's disease (AD) have been reported in several studies. Despite the lack of information regarding the basic underlying mechanisms involved in the development of T2D-mediated AD, some common features of the two conditions have been reported, such as brain atrophy, reduced cerebral glucose metabolism, and insulin resistance. T2D phenotypes such as glucose dyshomeostasis, insulin resistance, impaired insulin signaling, and systemic inflammatory cytokines have been shown to be involved in the progression of AD pathology by increasing amyloid-beta accumulation, tau hyperphosphorylation, and overall neuroinflammation. Similarly, oxidative stress, mitochondrial dysfunction, and the generation of advanced glycation end products (AGEs) and their receptor (RAGE) as a result of chronic hyperglycemia may serve as critical links between diabetes and AD. The natural dietary polyflavonoid anthocyanin enhances insulin sensitivity, attenuates insulin resistance at the level of the target tissues, inhibits free fatty acid oxidation, and abrogates the release of peripheral inflammatory cytokines in obese (prediabetic) individuals, which are responsible for insulin resistance, systemic hyperglycemia, systemic inflammation, brain metabolism dyshomeostasis, amyloid-beta accumulation, and neuroinflammatory responses. In this review, we have shown that obesity may induce T2D-mediated AD and assessed the recent therapeutic advances, especially the use of anthocyanin, against T2D-mediated AD pathology. Taken together, the findings of current studies may help elucidate a new approach for the prevention and treatment of T2D-mediated AD by using the polyflavonoid anthocyanin.
Collapse
|
6
|
Girkar U. Aggression as a Mediating Behavior in the Association Between Video Game Use and Body Mass Index. JAMA Pediatr 2020; 174:1219. [PMID: 33136124 DOI: 10.1001/jamapediatrics.2020.2928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Uma Girkar
- Massachusetts Institute of Technology, Cambridge
| |
Collapse
|
7
|
Hills AP, Misra A, Gill JMR, Byrne NM, Soares MJ, Ramachandran A, Palaniappan L, Street SJ, Jayawardena R, Khunti K, Arena R. Public health and health systems: implications for the prevention and management of type 2 diabetes in south Asia. Lancet Diabetes Endocrinol 2018; 6:992-1002. [PMID: 30287104 DOI: 10.1016/s2213-8587(18)30203-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Many non-communicable chronic diseases, including type 2 diabetes, are highly prevalent, costly, and largely preventable. The prevention and management of type 2 diabetes in south Asia requires a combination of lifestyle changes and long-term health-care management. However, public health and health-care systems in south Asian countries face serious challenges, including the need to provide services to many people with inadequate resources, and substantial between-population and within-population inequalities. In this Series paper, we explore the importance and particular challenges of public health and health systems in south Asian countries (Bangladesh, Bhutan, India, Nepal, Pakistan, and Sri Lanka) with respect to the provision of culturally appropriate lifestyle modification to prevent and manage diabetes, especially in resource-poor settings. Effective primary prevention strategies are urgently needed to counter risk factors and behaviours preconception, in utero, in infancy, and during childhood and adolescence. A concerted focus on education, training, and capacity building at the community level would ensure the more widespread use of non-physician care, including community health workers. Major investment from governments and other sources will be essential to achieve substantial improvements in the prevention and management of type 2 diabetes in the region.
Collapse
Affiliation(s)
- Andrew P Hills
- College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia.
| | - Anoop Misra
- Fortis C-DOC Centre of Excellence for Diabetes, Metabolic Diseases, and Endocrinology, New Delhi, India; National Diabetes, Obesity, and Cholesterol Foundation, New Delhi, India; Diabetes Foundation (India), New Delhi, India
| | - Jason M R Gill
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Nuala M Byrne
- College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Mario J Soares
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Ambady Ramachandran
- India Diabetes Research Foundation & Dr A Ramachandran's Diabetes Hospitals, Guindy, Chennai, India
| | | | - Steven J Street
- College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Ranil Jayawardena
- Department of Physiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
| | - Ross Arena
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
An automated positioning system for monitoring chickens’ location: Effects of wearing a backpack on behaviour, leg health and production. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2017.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Feng X, Wilson A. Neighbourhood socioeconomic inequality and gender differences in body mass index: The role of unhealthy behaviours. Prev Med 2017; 101:171-177. [PMID: 28603005 DOI: 10.1016/j.ypmed.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/28/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
Reported differences in the severity of the social gradient in body mass index (BMI) by gender may be attributable to differences in behaviour. Self-reported height, weight, socioeconomic and behavioural data were obtained for a sample of 10,281 Australians aged ≥15years in 2009. Multilevel regressions were fitted with BMI as the outcome variable. Two-way interactions between gender and neighbourhood disadvantage were fitted, adjusted for confounders. Models were then adjusted for four behavioural factors ("chips, snacks and confectionary", "smoking, little fruit or veg", "time poor and less physically active" and "alcohol consumption"). Additional models were fitted on a subset with accurate perceptions of weight status (determined by World Health Organization criteria) to control for potential social desirability bias. Although higher BMI was observed for men in most disadvantaged compared with most affluent neighbourhoods (coefficient 0.87, 95% CI 0.35 to 1.40), this pattern was stronger among women (1.80, 95% CI 1.17 to 2.42). Adjusting for differences in behaviours attenuated, but did not fully explain the differences in social gradients observed for men (0.73, 95% CI 0.21 to 1.26) and women (1.73, 1.10 to 2.36). Differences in behaviour did not explain contrasting socioeconomic gradients in adult BMI by gender. Further research on differences in BMI, health and behaviour over time aligned with how heavy a person may perceive themselves to be is warranted.
Collapse
Affiliation(s)
- Xiaoqi Feng
- Population Wellbeing and Environment Research Lab (PowerLab), Faculty of Social Sciences, University of Wollongong, Wollongong, New South Wales, Australia; Early Start Research Institute, University of Wollongong, Wollongong, New South Wales, Australia; Menzies Centre for Health Policy, University of Sydney, Sydney, New South Wales, Australia.
| | - Andrew Wilson
- Menzies Centre for Health Policy, University of Sydney, Sydney, New South Wales, Australia; The Australian Prevention Partnership Centre, the Sax Institute, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Langgartner D, Foertsch S, Füchsl AM, Reber SO. Light and water are not simple conditions: fine tuning of animal housing in male C57BL/6 mice. Stress 2017; 20:10-18. [PMID: 27788633 DOI: 10.1080/10253890.2016.1254186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
While animal housing conditions are highly controlled and standardized between different laboratories, there are still many subtle differences that unavoidably influence the host organisms and, consequently, interlaboratory reproducibility. Here, we investigated the physiological and immunological consequences between two light/dark cycle (LDC) lengths (14-h/10-h vs. 12-h/12-h LDC) and two commonly used forms of drinking water (acidified drinking water (AW) versus normal tap water (NW)) in single-housed (SH) mice. Our results indicate that SH mice bred under a 12-h/12-h LDC and NW at the supplier's facility showed increased basal morning plasma corticosterone (CORT) levels even 4 weeks after arrival at our animal facility employing a 14-h/10-h LDC and AW. This effect was even more pronounced two weeks after arrival and had abated after 8 weeks. In agreement, increased plasma adrenocorticotropic hormone (ACTH), adrenal in vitro ACTH sensitivity, as well as relative and absolute adrenal weight normalized during this 8-week exposure to the novel and unfamiliar 14-h/10-h LDC and AW. Employment of a 12-h/12-h LDC in our facility completely abrogated the CORT-elevating effects of the 14-h/10-h LDC, despite these animals drinking AW. When both the water and light conditions were matched to those at the supplier's facility, we observed a further reduction in adrenal weight, increased thymus weight, and decreased pro-inflammatory cytokine secretion of isolated and anti-CD3/28-stimulated mesenteric lymph node cells. In summary, our results indicate that prolonged alteration of both the light phase and drinking water represent severe and long-lasting stressors for laboratory rodents. These findings are of general interest for all scientists obtaining their experimental animals from conventional suppliers.
Collapse
Affiliation(s)
- Dominik Langgartner
- a Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy , University Ulm , Ulm , Germany
| | - Sandra Foertsch
- a Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy , University Ulm , Ulm , Germany
| | - Andrea M Füchsl
- a Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy , University Ulm , Ulm , Germany
| | - Stefan O Reber
- a Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy , University Ulm , Ulm , Germany
| |
Collapse
|
11
|
Pomares J, Mora-García G, Palomino R, De León Y, Gómez-Alegría C, Gómez-Camargo D. Metabolic Syndrome and Perioperative Complications during Scheduled Surgeries with Spinal Anesthesia. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojanes.2014.47024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Hristova MG. Metabolic syndrome--from the neurotrophic hypothesis to a theory. Med Hypotheses 2013; 81:627-34. [PMID: 23899630 DOI: 10.1016/j.mehy.2013.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MetS) is a complex and heterogeneous disease characterized by central obesity, impaired glucose metabolism, dyslipidemia, arterial hypertension, insulin resistance and high-sensitivity C-reactive protein. In 2006, a neurotrophic hypothesis of the etiopathogenesis of MetS was launched. This hypothesis considered the neurotrophins a key factor in MetS development. Chronic inflammatory and/or psychoemotional distress provoke a series of neuroimmunoendocrine interactions such as increased tissue and plasma levels of proinflammatory cytokines and neurotrophins, vegetodystonia, disbalance of neurotransmitters, hormones and immunity markers, activation of the hypothalamo-pituitary-adrenal axis, insulin resistance, and atherosclerosis. An early and a late clinical stage in the course of MetS are defined. Meanwhile, evidence of supporting results from the world literature accumulates. This enables the transformation of the definition of the neurotrophic hypothesis into a neurotrophic theory of MetS. The important role of two neurotrophic factors, i.e. the nerve growth factor and brain-derived neurotrophic factor as well as of the proinflammatory cytokines, neurotransmitters, adipokines and, especially, of leptin for the development of MetS, obesity and type 2 diabetes mellitus is illustrated. There are reliable scientific arguments that the metabotrophic deficit due to reduced neurotrophins could be implicated in the pathogenesis of MetS, type 2 diabetes mellitus, and atherosclerosis as well. A special attention is paid to the activity of the hypothalamo-pituitary-adrenal axis after stress. The application of the neurotrophic theory of MetS could contribute to the etiological diagnosis and individualized management of MetS by eliminating the chronic distress, hyponeurotrophinemia and consequent pathology. It helps estimating the risk, defining the prognosis and implementing the effective prevention of this socially significant disease as evidenced by the dramatic recent growth of the world publication output on this interdisciplinary topic.
Collapse
Affiliation(s)
- M G Hristova
- Division of Endocrinology, Medical Centre of Varna, Varna, Bulgaria.
| |
Collapse
|
13
|
Wang L, Liu H, Chen X, Zhang M, Xie K, Ma Q. Immune sculpting of norepinephrine on MHC-I, B7-1, IDO and B7-H1 expression and regulation of proliferation and invasion in pancreatic carcinoma cells. PLoS One 2012; 7:e45491. [PMID: 23029049 PMCID: PMC3446877 DOI: 10.1371/journal.pone.0045491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/23/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The sympathetic neurotransmitter Norepinephrine (NE) contributes to tumorigenesis and cancer progression. This study aims to investigate the role of NE in modulating the immune phenotype and allowing pancreatic carcinoma (PC) cells to escape the immune response. METHODS Varied concentrations of NE and interferon-gamma (IFN-γ) were administrated to MIA PaCa-2 and BxPC-3 cell lines for 48 hours. Proliferation and invasion were then investigated using an MTT assay and a membrane invasion culture system respectively. MHC-I, B7-1, IDO and B7-H1 expression were measured using real-time quantitative RT-PCR, western blotting and immunocytochemistry. The synergistic and time-dependent effects of NE/IFN-γ were also investigated. Adrenergic antagonists were used to identify the relevant target receptor of NE. RESULTS The results showed that NE had dose-dependent and time-dependent effects on cell biological processes as well as on the expression of MHC-I, B7-1, IDO and B7-H1. These effects occurred mainly via the β(2)-adrenergic receptor. Long-term NE treatment was able to antagonize some of the effects of IFN-γ (after 2 weeks of treatment), but NE and IFN-γ had significant synergistic stimulatory effects on IDO and B7-H1 expression. The residual effects on biological activities lasted for 2 weeks, while the immunophenotypic changes decreased at early time points after treatment. CONCLUSIONS NE plays important roles in modulating PC cell biological activities and affecting MHC-I, B7-1, IDO and B7-H1 expression in vitro, mainly via the β2-adrenergic receptor (β2-AR) in a time- and dose-dependent fashion. Only at extended treatment durations could NE affect PC cell progression and immune evasion.
Collapse
Affiliation(s)
- Liancai Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Henan Province People’s Hospital, Zhengzhou, Henan Province, China
| | - Han Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xiangli Chen
- Henan Province People’s Hospital, Zhengzhou, Henan Province, China
| | - Min Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Keping Xie
- Department of Gastrointestinal Medical Oncology, the University of Texas, MD Anderson Cancer Centre, Houston, Texas
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
14
|
Elayan H, Milic M, Sun P, Gharaibeh M, Ziegler MG. Chronic β2 adrenergic agonist, but not exercise, improves glucose handling in older type 2 diabetic mice. Cell Mol Neurobiol 2012; 32:871-7. [PMID: 22422105 PMCID: PMC11498512 DOI: 10.1007/s10571-012-9819-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/14/2012] [Indexed: 12/19/2022]
Abstract
Insulin resistant type 2 diabetes mellitus in the obese elderly has become a worldwide epidemic. While exercise can prevent the onset of diabetes in young subjects its role in older diabetic people is less clear. Exercise stimulates the release of the β(2)-agonist epinephrine more in the young. Although epinephrine and β(2)-agonist drugs cause acute insulin resistance, their chronic effect on insulin sensitivity is unclear. We fed C57BL/6 mice a high fat diet to induce diabetes. These overweight animals became very insulin resistant. Exhaustive treadmill exercise 5 days a week for 8 weeks had no effect on their diabetes, nor did the β(2)-blocking drug ICI 118551. In contrast, exercise combined with the β(2)-agonist salbutamol (albuterol) had a beneficial effect on both glucose tolerance and insulin sensitivity after 4 and 8 weeks of exercise. The effect was durable and persisted 5 weeks after exercise and β(2)-agonist had stopped. To test whether β(2)-agonist alone was effective, the animals that had received β(2)-blockade were then given β(2)-agonist. Their response to a glucose challenge improved but their response to insulin was not significantly altered. The β(2)-agonists are commonly used to treat asthma and asthmatics have an increased incidence of obesity and type 2 diabetes. Although β(2)-agonists cause acute hyperglycemia, chronic treatment improves insulin sensitivity, probably by improving muscle glucose uptake.
Collapse
Affiliation(s)
- Hamzeh Elayan
- Department of Pharmacology, The University of Jordan, Amman, Jordan
| | - Milos Milic
- University of California, 200 W Arbor, San Diego, CA 92103-8341 USA
| | - Ping Sun
- University of California, 200 W Arbor, San Diego, CA 92103-8341 USA
| | - Munir Gharaibeh
- Department of Pharmacology, The University of Jordan, Amman, Jordan
| | | |
Collapse
|
15
|
Pomares J, Palomino R R, Gómez CJ, Gómez-Camargo D. Síndrome metabólico y complicaciones perioperatorias durante cirugías programadas con anestesia general. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/s0120-3347(12)70022-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Pomares J, Palomino RR, Gómez CJ, Gómez-Camargo D. Metabolic Syndrome and Perioperative Complications During Elective Surgery Using General Anesthesia. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2012. [DOI: 10.1016/s2256-2087(12)70022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
17
|
Metabolic Syndrome and Perioperative Complications During Elective Surgery Using General Anesthesia. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2012. [DOI: 10.1097/01819236-201240020-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Ziegler MG, Elayan H, Milic M, Sun P, Gharaibeh M. Epinephrine and the Metabolic Syndrome. Curr Hypertens Rep 2011; 14:1-7. [DOI: 10.1007/s11906-011-0243-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Characterization of Frequency-Dependent Responses of the Vascular System to Repetitive Vibration. J Occup Environ Med 2010; 52:584-94. [DOI: 10.1097/jom.0b013e3181e12b1f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Wijesuriya M, Williams R, Yajnik C. The Kathmandu Declaration: "Life Circle" approach to prevention and care of diabetes mellitus. Diabetes Res Clin Pract 2010; 87:20-6. [PMID: 20004037 DOI: 10.1016/j.diabres.2009.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To formulate strategies and action plans for the prevention and care of diabetes mellitus as part of the implementation of the International Diabetes Federation (IDF) United Nations Resolution (UNR) 61/225 through a unique concept of a "Life Circle" approach. METHOD Consensus following review of evidence available and presented at a meeting convened to achieve the objective co-chaired by the IDF President and President elect and diabetologists from several countries in the IDF regions. CONCLUSIONS The Kathmandu Declaration presents the concept of a "Life Circle" approach to prevention and care of diabetes--a continuum beginning from preconception, pregnancy, infancy and childhood to adult life in an integrated manner. Emphasis is on the benefits on entering the circle at any point and formulates guidelines that could be incorporated in any national diabetes prevention and care programme, indicating the interactive role of all known aetiological factors.
Collapse
Affiliation(s)
- Mahen Wijesuriya
- Diabetes Association of Sri Lanka, National Diabetes Centre, Rajagiriya, Sri Lanka.
| | | | | |
Collapse
|
21
|
Martin FPJ, Rezzi S, Peré-Trepat E, Kamlage B, Collino S, Leibold E, Kastler J, Rein D, Fay LB, Kochhar S. Metabolic Effects of Dark Chocolate Consumption on Energy, Gut Microbiota, and Stress-Related Metabolism in Free-Living Subjects. J Proteome Res 2009; 8:5568-79. [DOI: 10.1021/pr900607v] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Francois-Pierre J. Martin
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Metanomics GmbH, Tegeler Weg 33, 10589 Berlin, Germany, BASF SE, 67056 Ludwigshafen, Germany, and Metanomics Health GmbH, Tegeler Weg 33, 10589 Berlin, Germany
| | - Serge Rezzi
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Metanomics GmbH, Tegeler Weg 33, 10589 Berlin, Germany, BASF SE, 67056 Ludwigshafen, Germany, and Metanomics Health GmbH, Tegeler Weg 33, 10589 Berlin, Germany
| | - Emma Peré-Trepat
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Metanomics GmbH, Tegeler Weg 33, 10589 Berlin, Germany, BASF SE, 67056 Ludwigshafen, Germany, and Metanomics Health GmbH, Tegeler Weg 33, 10589 Berlin, Germany
| | - Beate Kamlage
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Metanomics GmbH, Tegeler Weg 33, 10589 Berlin, Germany, BASF SE, 67056 Ludwigshafen, Germany, and Metanomics Health GmbH, Tegeler Weg 33, 10589 Berlin, Germany
| | - Sebastiano Collino
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Metanomics GmbH, Tegeler Weg 33, 10589 Berlin, Germany, BASF SE, 67056 Ludwigshafen, Germany, and Metanomics Health GmbH, Tegeler Weg 33, 10589 Berlin, Germany
| | - Edgar Leibold
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Metanomics GmbH, Tegeler Weg 33, 10589 Berlin, Germany, BASF SE, 67056 Ludwigshafen, Germany, and Metanomics Health GmbH, Tegeler Weg 33, 10589 Berlin, Germany
| | - Jürgen Kastler
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Metanomics GmbH, Tegeler Weg 33, 10589 Berlin, Germany, BASF SE, 67056 Ludwigshafen, Germany, and Metanomics Health GmbH, Tegeler Weg 33, 10589 Berlin, Germany
| | - Dietrich Rein
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Metanomics GmbH, Tegeler Weg 33, 10589 Berlin, Germany, BASF SE, 67056 Ludwigshafen, Germany, and Metanomics Health GmbH, Tegeler Weg 33, 10589 Berlin, Germany
| | - Laurent B. Fay
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Metanomics GmbH, Tegeler Weg 33, 10589 Berlin, Germany, BASF SE, 67056 Ludwigshafen, Germany, and Metanomics Health GmbH, Tegeler Weg 33, 10589 Berlin, Germany
| | - Sunil Kochhar
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland, Metanomics GmbH, Tegeler Weg 33, 10589 Berlin, Germany, BASF SE, 67056 Ludwigshafen, Germany, and Metanomics Health GmbH, Tegeler Weg 33, 10589 Berlin, Germany
| |
Collapse
|
22
|
Ist psychischer Stress ein Risikofaktor bei der Entstehung und Entwicklung von Tumoren? ONKOLOGE 2009. [DOI: 10.1007/s00761-009-1654-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Song Y. Analyses of Studies on Cardiac Rehabilitation for Patients with Cardiovascular Disease in Korea. J Korean Acad Nurs 2009; 39:311-20. [DOI: 10.4040/jkan.2009.39.3.311] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yeoungsuk Song
- Post Doctoral Fellow, School of Nursing, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
24
|
Abstract
Epidemiological studies indicate that children born small for gestational age (SGA) have an increased risk of metabolic and cardiovascular disorders as adults. This suggests that foetal undernutrition leads to permanent metabolic alterations, which predispose to metabolic abnormalities upon exposure to environmental factors such as low physical activity and/or high-energy intake in later life (thrifty phenotype hypothesis). However, this relationship is not restricted to foetal undernutrition or intrauterine growth retardation, but is also found for children born premature, or for high birth weight children. Furthermore, early post-natal nutrition, and more specifically catch-up growth, appear to modulate cardiovascular risk as well. Intrauterine growth retardation can be induced in animal models by energy/protein restriction, or ligation of uterine arteries. In such models, altered glucose homeostasis, including low beta-cell mass, low insulin secretion and insulin resistance is observed after a few weeks of age. In humans, several studies have confirmed that children born SGA have insulin resistance as adolescents and young adults. Alterations of glucose homeostasis and increased lipid oxidation can indeed be observed already in non-diabetic children born SGA at early pubertal stages. These children also have alterations of stature and changes in body composition (increased fat mass), which may contribute to the pathogenesis of insulin resistance. Permanent metabolic changes induced by foetal/early neonatal nutrition (metabolic inprinting) may involve modulation of gene expression through DNA methylation, or alterations of organ structure. It is also possible that events occurring during foetal/neonatal development lead to long-lasting alterations of the hypothalamo-pituitary-adrenal axis or the hypothalamo-pituitary-insulin-like growth factor-1 axis.
Collapse
Affiliation(s)
- L Tappy
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|