1
|
Anupam S, Goel S, Bhatti K, Mehta DK, Das R. Serum Gamma Glutamyl Transferase: Understanding its Contribution as a Potential Predictor of the Occurrence of Type 2 Diabetes. Curr Diabetes Rev 2024; 21:e240124226080. [PMID: 38275034 DOI: 10.2174/0115733998260996231122054907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION The liver and kidneys are the primary locations of the glutathione metabolism enzyme gamma-glutamyl transferase (GGT). The two main factors contributing to an increase are hepatic illnesses and excessive alcohol use. This study set out to test a theory on the predictive importance of the association between GGT and Type 2 diabetes mellitus. (T2DM). METHODS In order to do this, we combed through PubMed, Google Scholar, Medline, and Science Direct for a wide range of information from previous studies. Attributes were established at the outset and compared to GGT concentration. RESULT GGT, present in most cells, absorbs glutathione for intracellular antioxidant defences. This study links GGT to hepatic enzymes including HDL, LDL, and triglyceride. LDL, triglycerides, AST, and ALT increased with GGT concentration, but LDL decreased. Because of obesity, GGT production rises with BMI. We found that greater GGT levels were associated with more T2DM after analysing data from multiple sources. CONCLUSION This literature review concludes that GGT is related to other factors such as BMI, HDL, AST, and triglycerides in the development of diabetes mellitus. Serum GGT was found to be a potential predictor of metabolic syndrome and T2DM.
Collapse
Affiliation(s)
- Sristi Anupam
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Simran Goel
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Karun Bhatti
- Department of Medicine, M.M. Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Rina Das
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| |
Collapse
|
2
|
Cooper ID, Kyriakidou Y, Edwards K, Petagine L, Seyfried TN, Duraj T, Soto-Mota A, Scarborough A, Jacome SL, Brookler K, Borgognoni V, Novaes V, Al-Faour R, Elliott BT. Ketosis Suppression and Ageing (KetoSAge): The Effects of Suppressing Ketosis in Long Term Keto-Adapted Non-Athletic Females. Int J Mol Sci 2023; 24:15621. [PMID: 37958602 PMCID: PMC10650498 DOI: 10.3390/ijms242115621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Most studies on ketosis have focused on short-term effects, male athletes, or weight loss. Hereby, we studied the effects of short-term ketosis suppression in healthy women on long-standing ketosis. Ten lean (BMI 20.5 ± 1.4), metabolically healthy, pre-menopausal women (age 32.3 ± 8.9) maintaining nutritional ketosis (NK) for > 1 year (3.9 years ± 2.3) underwent three 21-day phases: nutritional ketosis (NK; P1), suppressed ketosis (SuK; P2), and returned to NK (P3). Adherence to each phase was confirmed with daily capillary D-beta-hydroxybutyrate (BHB) tests (P1 = 1.9 ± 0.7; P2 = 0.1 ± 0.1; and P3 = 1.9 ± 0.6 pmol/L). Ageing biomarkers and anthropometrics were evaluated at the end of each phase. Ketosis suppression significantly increased: insulin, 1.78-fold from 33.60 (± 8.63) to 59.80 (± 14.69) pmol/L (p = 0.0002); IGF1, 1.83-fold from 149.30 (± 32.96) to 273.40 (± 85.66) µg/L (p = 0.0045); glucose, 1.17-fold from 78.6 (± 9.5) to 92.2 (± 10.6) mg/dL (p = 0.0088); respiratory quotient (RQ), 1.09-fold 0.66 (± 0.05) to 0.72 (± 0.06; p = 0.0427); and PAI-1, 13.34 (± 6.85) to 16.69 (± 6.26) ng/mL (p = 0.0428). VEGF, EGF, and monocyte chemotactic protein also significantly increased, indicating a pro-inflammatory shift. Sustained ketosis showed no adverse health effects, and may mitigate hyperinsulinemia without impairing metabolic flexibility in metabolically healthy women.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Yvoni Kyriakidou
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Kurtis Edwards
- Cancer Biomarkers and Mechanisms Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Lucy Petagine
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Thomas N. Seyfried
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA; (T.N.S.); (T.D.)
| | - Tomas Duraj
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA; (T.N.S.); (T.D.)
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City 14080, Mexico;
- Tecnologico de Monterrey, School of Medicine, Mexico City 14380, Mexico
| | - Andrew Scarborough
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Sandra L. Jacome
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Kenneth Brookler
- Retired former Research Collaborator, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Valentina Borgognoni
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Vanusa Novaes
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Rima Al-Faour
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Bradley T. Elliott
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| |
Collapse
|
3
|
Rafaqat S, Sattar A, Khalid A, Rafaqat S. Role of liver parameters in diabetes mellitus - a narrative review. Endocr Regul 2023; 57:200-220. [PMID: 37715985 DOI: 10.2478/enr-2023-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Diabetes mellitus is characterized by hyperglycemia and abnormalities in insulin secretion and function. This review article focuses on various liver parameters, including albumin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), alpha fetoprotein (AFP), alpha 1 antitrypsin (AAT), ammonia, bilirubin, bile acid, gamma-glutamyl transferase (GGT), immunoglobulin, lactate dehydrogenase (LDH), and total protein. These parameters play significant roles in the development of different types of diabetes such as type 1 diabetes (T1DM), type 2 diabetes (T2DM) and gestational diabetes (GDM). The article highlights that low albumin levels may indicate inflammation, while increased ALT and AST levels are associated with liver inflammation or injury, particularly in non-alcoholic fatty liver disease (NAFLD). Elevated ALP levels can be influenced by liver inflammation, biliary dysfunction, or bone metabolism changes. High bilirubin levels are independently linked to albuminuria in T1DM and an increased risk of T2DM. Elevated GGT levels are proposed as markers of oxidative stress and liver dysfunction in T2DM. In GDM, decreased serum AFP levels may indicate impaired embryo growth. Decreased AFP levels in T2DM can hinder the detection of hepatocellular carcinoma. Hyperammonemia can cause encephalopathy in diabetic ketoacidosis, and children with T1DM and attention deficit hyperactivity disorder often exhibit higher ammonia levels. T2DM disrupts the regulation of nitrogen-related metabolites, leading to increased blood ammonia levels. Bile acids affect glucose regulation by activating receptors on cell surfaces and nuclei, and changes in bile acid metabolism are observed in T2DM. Increased LDH activity reflects metabolic disturbances in glucose utilization and lactate production, contributing to diabetic complications. Poor glycemic management may be associated with elevated levels of IgA and IgG serum antibodies, and increased immunoglobulin levels are also associated with T2DM.
Collapse
Affiliation(s)
- Sana Rafaqat
- 1Department of Biotechnology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Aqsa Sattar
- 2Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Amber Khalid
- 3Department of Zoology, University of Narowal, Punjab, Pakistan
| | - Saira Rafaqat
- 2Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
| |
Collapse
|
4
|
Teng F, Ye Y, Wang L, Qin R, Liu X, Geng H, Xu W, Lai P, Liang J. Association between serum gamma glutamyl transferase and fasting blood glucose in Chinese people: A 6-year follow-up study. J Diabetes Investig 2022; 14:339-343. [PMID: 36412546 PMCID: PMC9889614 DOI: 10.1111/jdi.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS/INTRODUCTION In this study, we aimed to investigate the relationships between gamma-glutamyl transferase (GGT) and fasting blood glucose (FBG) during a 6-year follow-up study of participants, and to determine whether GGT is a risk factor for FBG. MATERIALS AND METHODS A total of 1,369 individuals from the health examination survey in the urban area of Xuzhou, central China, were followed up for 6 years. The patients were divided into four groups based on their baseline GGT levels (in quartiles). The one-way analysis of variance (anova) method was used to compare the differences between the variables and baseline. The relationship between GGT and FBG levels was investigated using repeated measurements anova. RESULTS The grouping of baseline GGT levels affected the changes in blood glucose during the 6-year follow-up study. In the GGT quartile subgroups, the annual mean increase in FBG levels showed a positive relationship with baseline GGT levels. This trend was even more aggregated in the highest baseline GGT group. Interactions among time course, baseline FBG and GGT groups in different participants together affected the change of FBG levels during the follow-up period. The repeated measures anova suggested that different baseline GGT groups were still significantly associated with increased FBG levels. GGT is a risk factor that affects FBG levels(P < 0.001). CONCLUSIONS The annual mean increase in FBG levels showed a positive relationship with baseline GGT levels. Higher baseline GGT levels resulted in a faster annual mean increase in FBG. Thus, GGT can be used for the early detection of FBG-related disorders of glucose metabolism for clinical application.
Collapse
Affiliation(s)
- Fei Teng
- Present address:
Department of EndocrinologyXuzhou Central HospitalXuzhou, JiangsuChina,Xuzhou Institute of Medical SciencesXuzhou, JiangsuChina
| | - Yan Ye
- Present address:
Department of EndocrinologyXuzhou Central HospitalXuzhou, JiangsuChina,The Xuzhou Clinical College of Xuzhou Medical UniversityXuzhou, JiangsuChina
| | - Liying Wang
- Present address:
Department of EndocrinologyXuzhou Central HospitalXuzhou, JiangsuChina
| | - Ruihao Qin
- Present address:
Department of EndocrinologyXuzhou Central HospitalXuzhou, JiangsuChina,Department of General SurgeryXuzhou Central HospitalXuzhou, JiangsuChina
| | - Xuekui Liu
- Present address:
Department of EndocrinologyXuzhou Central HospitalXuzhou, JiangsuChina,Xuzhou Institute of Medical SciencesXuzhou, JiangsuChina
| | - Houfa Geng
- Present address:
Department of EndocrinologyXuzhou Central HospitalXuzhou, JiangsuChina
| | - Wei Xu
- Present address:
Department of EndocrinologyXuzhou Central HospitalXuzhou, JiangsuChina
| | - Peng Lai
- The Xuzhou Clinical College of Xuzhou Medical UniversityXuzhou, JiangsuChina
| | - Jun Liang
- The Xuzhou Clinical College of Xuzhou Medical UniversityXuzhou, JiangsuChina
| |
Collapse
|
5
|
Park JY, Han K, Kim HS, Cho JH, Yoon KH, Kim MK, Lee SH. Cumulative Exposure to High γ-Glutamyl Transferase Level and Risk of Diabetes: A Nationwide Population-Based Study. Endocrinol Metab (Seoul) 2022; 37:272-280. [PMID: 35413781 PMCID: PMC9081297 DOI: 10.3803/enm.2022.1416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Elevated γ-glutamyl transferase (γ-GTP) level is associated with metabolic syndrome, impaired glucose tolerance, and insulin resistance, which are risk factors for type 2 diabetes. We aimed to investigate the association of cumulative exposure to high γ-GTP level with risk of diabetes. METHODS Using nationally representative data from the Korean National Health Insurance system, 346,206 people who were free of diabetes and who underwent 5 consecutive health examinations from 2005 to 2009 were followed to the end of 2018. High γ-GTP level was defined as those in the highest quartile, and the number of exposures to high γ-GTP level ranged from 0 to 5. Hazard ratio (HR) and 95% confidence interval (CI) for diabetes were analyzed using the multivariable Cox proportional-hazards model. RESULTS The mean follow-up duration was 9.2±1.0 years, during which 15,183 (4.4%) patients developed diabetes. There was a linear increase in the incidence rate and the risk of diabetes with cumulative exposure to high γ-GTP level. After adjusting for possible confounders, the HR of diabetes in subjects with five consecutive high γ-GTP levels were 2.60 (95% CI, 2.47 to 2.73) in men and 3.05 (95% CI, 2.73 to 3.41) in women compared with those who never had a high γ-GTP level. Similar results were observed in various subgroup and sensitivity analyses. CONCLUSION There was a linear relationship between cumulative exposure to high γ-GTP level and risk of diabetes. Monitoring and lowering γ-GTP level should be considered for prevention of diabetes in the general population.
Collapse
Affiliation(s)
- Ji-Yeon Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Hun-Sung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae-Hyoung Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kun-Ho Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mee Kyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hwan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|