1
|
Pinna G, Ponomareva O, Stalcup GL, Rasmusson AM. Neuroactive steroids and the pathophysiology of PTSD: Biomarkers for treatment targeting. Neurosci Biobehav Rev 2025; 172:106085. [PMID: 40024353 DOI: 10.1016/j.neubiorev.2025.106085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Posttraumatic stress disorder (PTSD) is a disabling psychiatric disorder that arises after acute or chronic exposure to threatened death, serious injury, or sexual violence. The pathophysiology of PTSD is complex and involves dysregulation of multiple interacting brain regions and neurobiological systems including the sympathetic nervous system, the hypothalamic-pituitary-adrenal (HPA) axis, and the immune system. Deficient biosynthesis of neurosteroids that positively modulate GABAA receptor function, including allopregnanolone (Allo) and its equipotent stereoisomer pregnanolone (PA), also affects a subpopulation of individuals with PTSD and is associated with increased PTSD risk, severity, chronicity and treatment resistance. The synthesis of these neuroactive steroids by the brain, adrenal glands, and gonads may be influenced by stress, drugs, social isolation and other factors with impact on the balance of inhibitory versus excitatory (I/E) neurotransmission in brain. These neuroactive steroids are thus considered a potential target for new PTSD therapeutics. In this review, we first present studies in humans and rodents performed over the past 20 years that have shaped our current understanding of the role of Allo and PA in the pathophysiology of PTSD. We will also discuss the means by which rigorous measurement of neurosteroids can be used to identify individually-variable dysfunctional patterns of neurosteroidogenesis that could be targeted to prevent or treat PTSD. This broadened precision medicine approach to diagnosis of neuroendocrinopathies associated with PTSD may aid in reducing PTSD risk and facilitating the effective prescribing of PTSD therapeutics. We hope that such an approach will also forestall development of individually variable but common psychiatric, substance abuse, and medical PTSD-comorbidities.
Collapse
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL, USA; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL, USA; Center for Alcohol Research in Epigenetics (CARE), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL, USA.
| | - Olga Ponomareva
- McLean Hospital and Department of Psychiatry, Harvard Medical School
| | - George L Stalcup
- OAA Psychiatry/Neuroscience Research Fellow in the Neuropsychiatry Translational Research Fellowship (NeTReF) Program, VA Boston Healthcare System, USA
| | - Ann M Rasmusson
- VA National Center for PTSD, Women's Health Science Division, VA Boston Healthcare System, Boston, MA 02130, USA; Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
2
|
Pavy CL, Shaw JC, Palliser HK, Moloney RA, Hirst JJ. Neurosteroid replacement therapy using tiagabine and zuranolone restores cerebellar neurodevelopment and reduces hyperactive behaviour following preterm birth. J Dev Orig Health Dis 2025; 16:e2. [PMID: 39773606 DOI: 10.1017/s2040174424000394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Preterm birth exposes the neonate to hypoxic-ischaemic and excitotoxic insults that impair neurodevelopment and are magnified by the premature loss of placentally supplied, inhibitory neurosteroids. The cerebellum is a neuronally dense brain region, which undergoes critical periods of development during late gestation, when preterm births frequently occur. We propose that neurosteroid replacement therapy using tiagabine and zuranolone will protect the cerebellum against preterm-associated insults. Guinea pig dams received c-section surgery preterm (gestational age (GA) 64) or at term (GA70) with preterm pups administered tiagabine (2.5 mg/kg/day), zuranolone (1 mg/kg/day) or vehicle (15% β-cyclodextrin) until term equivalent age (GA70). Behavioural testing was performed at corrected postnatal day 8 (PND8) and PND41 with tissue collection occurring at PND42. Neurodevelopmental markers (MBP, OLIG2 and NeuN) were assessed within the cerebellum by immunohistochemistry, whilst GABAergic and glutamatergic pathway expression was quantified using high throughput RT-PCR. Zuranolone and, to a lesser extent, tiagabine were able to protect against hyperactive behaviour at PND8 in males, whilst in females, a less marked hyperactive phenotype was present with neither treatment impacting behaviour further. Both treatments improved MBP staining, whilst tiagabine was found to restore oligodendrocyte maturation in females only. GABAergic and glutamatergic pathway expression was found to be restored by both treatments in females. Overall, this study demonstrates the neuroprotective attributes of neurosteroid replacement therapy using tiagabine and zuranolone, thereby demonstrating their potential to mitigate long-term neurodevelopmental impairments. Furthermore, the sexually dimorphic effects observed suggest future investigations may show increased benefit by using sex-specific treatment regimes.
Collapse
Affiliation(s)
- Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Roisin A Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
3
|
Bencker C, Gschwandtner L, Nayman S, Grikšienė R, Nguyen B, Nater UM, Guennoun R, Sundström-Poromaa I, Pletzer B, Bixo M, Comasco E. Progestagens and progesterone receptor modulation: Effects on the brain, mood, stress, and cognition in females. Front Neuroendocrinol 2025; 76:101160. [PMID: 39515587 DOI: 10.1016/j.yfrne.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Progesterone is a highly lipophilic gonadal hormone that can influence behavior and mental health through its receptors in the brain. Fluctuations in progesterone levels across critical periods of a females life are associated with increased susceptibility to mental conditions. This review highlights the effects of progestagens, including progesterone and synthetic progestins, on the brain, mood, stress, and cognition in females. The primary focus is on experimental pharmacological research that teases out the distinct effects of progestagens from those of estrogens. Additionally, the key literature on puberty, the menstrual cycle, pregnancy, perimenopause, hormonal contraceptives, and menopausal hormone therapy is reviewed, although conclusions are limited by the nested effects of progestagens and estrogens. Single study-findings suggest an influence of progesterone on amygdala reactivity related to processing of emotional stimuli and memory. In patients with premenstrual dysphoric disorder, progesterone receptor modulation improves premenstrual mood symptoms and potentially enhances fronto-cingulate control over emotion processing. The interaction between progestagens and the systems involved in the regulation of stress seems to influence subjective experiences of mood and stress. Sparse studies investigating the effects of progestin-only contraceptives suggest effects of progestagens on the brain, mood, and stress. Progesterone and progestins used for contraception can influence neural processes as myelination and neuroprotection, exerting protective effects against stroke. Concerning menopausal hormonal therapy, the effects of progestins are largely unknown. Levels of progesterone as well as type, administration route, timing, dose regimen, metabolism, and intracellular activity of progestins in hormonal contraceptives and menopausal hormonal therapy are factors whose effects remain to be elucidated. Altogether, current knowledge highlights the potential role of progestagens in females health but also calls for well-designed pharmaco-behavioral studies disentangling the effects of progestagens from those of estrogens.
Collapse
Affiliation(s)
- Celine Bencker
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Laura Gschwandtner
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Sibel Nayman
- Research Group Longitudinal and Intervention Research, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Ramunė Grikšienė
- Department of Neurobiology and Biophysics, Life Science Center, Vilnius University, Lithuania
| | | | - Urs M Nater
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | | | | | - Belinda Pletzer
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Austria
| | - Marie Bixo
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden.
| |
Collapse
|
4
|
Moloney RA, Palliser HK, Pavy CL, Shaw JC, Hirst JJ. Zuranolone therapy protects frontal cortex neurodevelopment and improves behavioral outcomes after preterm birth. Brain Behav 2024; 14:e70009. [PMID: 39236116 PMCID: PMC11376442 DOI: 10.1002/brb3.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Preterm birth is associated with brain injury and long-term behavioral abnormalities, for which there are limited prevention options. When born preterm, infants prematurely lose placental neurosteroid (allopregnanolone) support. This increases the risk of excitotoxic damage to the brain, which increases the risk of injury, causing long-term deficits in behavior, myelination, and alterations to neurotransmitter pathways. We propose that postnatal restoration of neurosteroid action through zuranolone therapy will reduce neurological impairments following preterm birth. METHODS Guinea pig dams underwent survival cesarean section surgery to deliver pups prematurely (GA64) or at term (GA69). Between birth and term equivalence age, preterm pups received vehicle (15% β-cyclodextrin) or the allopregnanolone analogue zuranolone (1 mg/kg/day). Behavioral analysis was performed at postnatal day (PND) 7 and 40, before tissue collection at PND 42. Immunostaining for myelin basic protein (MBP), as well as real-time polymerase chain reaction to characterize oligodendrocyte lineage and neurotransmitter pathways, was performed in frontal cortex tissues. RESULTS Zuranolone treatment prevented the hyperactive phenotype in preterm-born offspring, most markedly in males. Additionally, preterm-related reductions in MBP were ameliorated. Several preterm-related alterations in mRNA expression of dopaminergic, glutamatergic, and GABAergic pathways were also restored back to that of a term control level. CONCLUSION This is the first study to assess zuranolone treatment as a neuroprotective therapy following preterm birth. Zuranolone treatment improved behavioral outcomes and structural changes in the preterm offspring, which continued long term until at least a late childhood timepoint. Clinical studies are warranted for further exploring the neuroprotective possibilities of this treatment following preterm birth.
Collapse
Affiliation(s)
- Roisin A Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| |
Collapse
|
5
|
Kaleta M, Oklestkova J, Klíčová K, Kvasnica M, Koníčková D, Menšíková K, Strnad M, Novák O. Simultaneous Determination of Selected Steroids with Neuroactive Effects in Human Serum by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. ACS Chem Neurosci 2024; 15:1990-2005. [PMID: 38655788 PMCID: PMC11099924 DOI: 10.1021/acschemneuro.3c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Neuroactive steroids are a group of steroid molecules that are involved in the regulation of functions of the nervous system. The nervous system is not only the site of their action, but their biosynthesis can also occur there. Neuroactive steroid levels depend not only on the physiological state of an individual (person's sex, age, diurnal variation, etc.), but they are also affected by various pathological processes in the nervous system (some neurological and psychiatric diseases or injuries), and new knowledge can be gained by monitoring these processes. The aim of our research was to develop and validate a comprehensive method for the simultaneous determination of selected steroids with neuroactive effects in human serum. The developed method enables high throughput and a sensitive quantitative analysis of nine neuroactive steroid substances (pregnenolone, progesterone, 5α-dihydroprogesterone, allopregnanolone, testosterone, 5α-dihydrotestosterone, androstenedione, dehydroepiandrosterone, and epiandrosterone) in 150 μL of human serum by ultrahigh-performance liquid chromatography with tandem mass spectrometry. The correlation coefficients above 0.999 indicated that the developed analytical procedure was linear in the range of 0.90 nmol/L to 28.46 μmol/L in human serum. The accuracy and precision of the method for all analytes ranged from 83 to 118% and from 0.9 to 14.1%, respectively. This described method could contribute to a deeper understanding of the pathophysiology of various diseases. Similarly, it can also be helpful in the search for new biomarkers and diagnostic options or therapeutic approaches.
Collapse
Affiliation(s)
- Michal Kaleta
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
| | - Jana Oklestkova
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Kateřina Klíčová
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Miroslav Kvasnica
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Dorota Koníčková
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Kateřina Menšíková
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Miroslav Strnad
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Ondřej Novák
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
6
|
Balan I, Boero G, Chéry SL, McFarland MH, Lopez AG, Morrow AL. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life (Basel) 2024; 14:582. [PMID: 38792602 PMCID: PMC11122352 DOI: 10.3390/life14050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minna H. McFarland
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alejandro G. Lopez
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Morrow AL, Boero G, Balan I. Emerging evidence for endogenous neurosteroid modulation of pro-inflammatory and anti-inflammatory pathways that impact neuropsychiatric disease. Neurosci Biobehav Rev 2024; 158:105558. [PMID: 38244954 DOI: 10.1016/j.neubiorev.2024.105558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
This mini-review presents emerging evidence that endogenous neurosteroids modulate both pro- and anti-inflammatory signaling by immune cells and brain cells that contribute to depression, alcohol use disorders, and other inflammatory conditions. We first review the literature on pregnenolone and allopregnanolone inhibition of proinflammatory neuroimmune pathways in the periphery and the brain - effects that are independent of GABAergic mechanisms. We follow with evidence for neurosteroid enhancement of anti-inflammatory and protective pathways in brain and immune cells. These studies draw clinical relevance from a large body of evidence that pro-inflammatory immune signaling is dysregulated in many brain disorders and the fact that neurosteroids inhibit the same inflammatory pathways that are activated in depression, alcohol use disorders and other inflammatory conditions. Thus, we describe evidence that neurosteroid levels are decreased and neurosteroid supplementation has therapeutic efficacy in these neuropsychiatric conditions. We conclude with a perspective that endogenous regulation of immune balance between pro- and anti-inflammatory pathways by neurosteroid signaling is essential to prevent the onset of disease. Deficits in neurosteroids may unleash excessive pro-inflammatory activation which progresses in a feed-forward manner to disrupt brain networks that regulate stress, emotion and motivation. Neurosteroids can block various inflammatory pathways in mouse and human macrophages, rat brain and human blood and therefore provide new hope for treatment of intractable conditions that involve excessive inflammatory signaling.
Collapse
Affiliation(s)
- A Leslie Morrow
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Giorgia Boero
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Irina Balan
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Pradhyumnan H, Perez GG, Patel SH, Blaya MO, Bramlett HM, Raval AP. A Perspective on Hormonal Contraception Usage in Central Nervous System Injury. J Neurotrauma 2024; 41:541-551. [PMID: 37975282 DOI: 10.1089/neu.2023.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Naturally occurring life stages in women are associated with changes in the milieu of endogenous ovarian hormones. Women of childbearing age may be exposed to exogenous ovarian hormone(s) because of their use of varying combinations of estrogen and progesterone hormones-containing oral contraceptives (OC; also known as "the pill"). If women have central nervous system (CNS) injury such as spinal cord injury (SCI) and traumatic brain injury (TBI) during their childbearing age, they are likely to retain their reproductive capabilities and may use OC. Many deleterious side effects of long-term OC use have been reported, such as aberrant blood clotting and endothelial dysfunction that consequently increase the risk of myocardial infarction, venous thromboembolism, and ischemic brain injury. Although controversial, studies have suggested that OC use is associated with neuropsychiatric ramifications, including uncontrollable mood swings and poorer cognitive performance. Our understanding about how the combination of endogenous hormones and OC-conferred exogenous hormones affect outcomes after CNS injuries remains limited. Therefore, understanding the impact of OC use on CNS injury outcomes needs further investigation to reveal underlying mechanisms, promote reporting in clinical or epidemiological studies, and raise awareness of possible compounded consequences. The goal of the current review is to discuss the impacts of CNS injury on endogenous ovarian hormones and vice-versa, as well as the putative consequences of exogenous ovarian hormones (OC) on the CNS to identify potential gaps in our knowledge to consider for future laboratory, epidemiological, and clinical studies.
Collapse
Affiliation(s)
- Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Gina G Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Meghan O Blaya
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| |
Collapse
|
9
|
Bourque M, Morissette M, Di Paolo T. Neuroactive steroids and Parkinson's disease: Review of human and animal studies. Neurosci Biobehav Rev 2024; 156:105479. [PMID: 38007170 DOI: 10.1016/j.neubiorev.2023.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The greater prevalence and incidence of Parkinson's disease (PD) in men suggest a beneficial effect of sex hormones. Neuroactive steroids have neuroprotective activities thus offering interesting option for disease-modifying therapy for PD. Neuroactive steroids are also neuromodulators of neurotransmitter systems and may thus help to control PD symptoms and side effect of dopamine medication. Here, we review the effect on sex hormones (estrogen, androgen, progesterone and its metabolites) as well as androstenediol, pregnenolone and dehydroepiandrosterone) in human studies and in animal models of PD. The effect of neuroactive steroids is reviewed by considering sex and hormonal status to help identify specifically for women and men with PD what might be a preventive approach or a symptomatic treatment. PD is a complex disease and the pathogenesis likely involves multiple cellular processes. Thus it might be useful to target different cellular mechanisms that contribute to neuronal loss and neuroactive steroids provide therapeutics options as they have multiple mechanisms of action.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Marc Morissette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada; Faculté de pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec G1V 0A6, Canada.
| |
Collapse
|
10
|
Dwyer MKR, Amelinez-Robles N, Polsfuss I, Herbert K, Kim C, Varghese N, Parry TJ, Buller B, Verdoorn TA, Billing CB, Morrison B. NTS-105 decreased cell death and preserved long-term potentiation in an in vitro model of moderate traumatic brain injury. Exp Neurol 2024; 371:114608. [PMID: 37949202 DOI: 10.1016/j.expneurol.2023.114608] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of hospitalization and death. To mitigate these human costs, the search for effective drugs to treat TBI continues. In the current study, we evaluated the efficacy of the novel neurosteroid, NTS-105, to reduce post-traumatic pathobiology in an in vitro model of moderate TBI that utilizes an organotypic hippocampal slice culture. NTS-105 inhibited activation of the androgen receptor and the mineralocorticoid receptor, partially activated the progesterone B receptor and was not active at the glucocorticoid receptor. Treatment with NTS-105 starting one hour after injury decreased post-traumatic cell death in a dose-dependent manner, with 10 nM NTS-105 being most effective. Post-traumatic administration of 10 nM NTS-105 also prevented deficits in long-term potentiation (LTP) without adversely affecting neuronal activity in naïve cultures. We propose that the high potency pleiotropic action of NTS-105 beneficial effects at multiple receptors (e.g. androgen, mineralocorticoid and progesterone) provides significant mechanistic advantages over native neurosteroids such as progesterone, which lacked clinical success for the treatment of TBI. Our results suggest that this pleiotropic pharmacology may be a promising strategy for the effective treatment of TBI, and future studies should test its efficacy in pre-clinical animal models of TBI.
Collapse
Affiliation(s)
- Mary Kate R Dwyer
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Nicolas Amelinez-Robles
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Isabella Polsfuss
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Keondre Herbert
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Carolyn Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Nevin Varghese
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Tom J Parry
- NeuroTrauma Sciences, LLC, Alpharetta, GA 30009, United States of America
| | - Benjamin Buller
- NeuroTrauma Sciences, LLC, Alpharetta, GA 30009, United States of America
| | - Todd A Verdoorn
- NeuroTrauma Sciences, LLC, Alpharetta, GA 30009, United States of America
| | - Clare B Billing
- BioPharmaWorks, LLC, Groton, CT 06340, United States of America
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America.
| |
Collapse
|
11
|
Szczygielski J, Hubertus V, Kruchten E, Müller A, Albrecht LF, Schwerdtfeger K, Oertel J. Prolonged course of brain edema and neurological recovery in a translational model of decompressive craniectomy after closed head injury in mice. Front Neurol 2023; 14:1308683. [PMID: 38053795 PMCID: PMC10694459 DOI: 10.3389/fneur.2023.1308683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Background The use of decompressive craniectomy in traumatic brain injury (TBI) remains a matter of debate. According to the DECRA trial, craniectomy may have a negative impact on functional outcome, while the RescueICP trial revealed a positive effect of surgical decompression, which is evolving over time. This ambivalence of craniectomy has not been studied extensively in controlled laboratory experiments. Objective The goal of the current study was to investigate the prolonged effects of decompressive craniectomy (both positive and negative) in an animal model. Methods Male mice were assigned to the following groups: sham, decompressive craniectomy, TBI and TBI followed by craniectomy. The analysis of functional outcome was performed at time points 3d, 7d, 14d and 28d post trauma according to the Neurological Severity Score and Beam Balance Score. At the same time points, magnetic resonance imaging was performed, and brain edema was analyzed. Results Animals subjected to both trauma and craniectomy presented the exacerbation of the neurological impairment that was apparent mostly in the early course (up to 7d) after injury. Decompressive craniectomy also caused a significant increase in brain edema volume (initially cytotoxic with a secondary shift to vasogenic edema and gliosis). Notably, delayed edema plus gliosis appeared also after decompression even without preceding trauma. Conclusion In prolonged outcomes, craniectomy applied after closed head injury in mice aggravates posttraumatic brain edema, leading to additional functional impairment. This effect is, however, transient. Treatment options that reduce brain swelling after decompression may accelerate neurological recovery and should be explored in future experiments.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Instutute of Neuropathology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Institute of Medical Sciences, University of Rzeszów, Rzeszow, Poland
| | - Vanessa Hubertus
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Department of Neurosurgery, Charité University Medicine, Berlin, Germany
- Berlin Institute of Health at Charité, Berlin, Germany
| | - Eduard Kruchten
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Institute of Interventional and Diagnostic Radiology, Karlsruhe, Germany
| | - Andreas Müller
- Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Lisa Franziska Albrecht
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| |
Collapse
|
12
|
Szychowski KA, Skóra B. Disruption of neurosteroid synthesis and release by tris(2,3-dibromopropyl)isocyanurate in primary mouse cortical astrocytes in vitro. J Appl Toxicol 2023; 43:1604-1612. [PMID: 37254606 DOI: 10.1002/jat.4498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Neurosteroidogenesis in astrocytes is crucial for the proper development and functioning of the brain. During this process, key neurohormones such as progesterone (P4 ), testosterone (T), and estradiol (E2 ) are produced. Proper production and release of neurosteroids can be affected by substances referred to as endocrine-disrupting compounds (EDCs). Tris-(2,3-dibromopropyl)isocyanurate (TBC) is a representative of novel brominated flame retardants used to stop ignition or reduce fire-related property damage to plastics, polyolefin, polyphenyl alkene, unsaturated polyester, synthetic rubber, and fibers. Interestingly, previous studies have shown that TBC can enhance the proliferation of estradiol-sensitive breast cancers in vitro, which suggests that TBC has EDC properties. Therefore, given the suspected endocrine-disrupting properties of TBC, the aim of the present study was to determine the impact of TBC on the neurosteroid (P4 , T, and E2 ) production and secretion as well as the mRNA expression of key enzymes involved in its production in mouse astrocytes in vitro. Our paper shows that TBC increases P4 production with a strong decrease in T production, which is accompanied by a decrease in Cyp17a1 mRNA expression, that is, the main enzyme metabolizing P4 to T. Moreover, TBC in both studied concentrations increases P4 secretion in the culture medium. Finally, our studies have demonstrated an increase in the expression of Cyp19a1 mRNA, an enzyme metabolizing T to E2 , with a simultaneous increase in the amount of E2 in cells. Our data clearly show that TBC in an in vitro environment acts as EDCs, which may lead to serious consequences for the proper development and functioning of the brain.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
13
|
Verdoorn TA, Parry TJ, Pinna G, Lifshitz J. Neurosteroid Receptor Modulators for Treating Traumatic Brain Injury. Neurotherapeutics 2023; 20:1603-1615. [PMID: 37653253 PMCID: PMC10684848 DOI: 10.1007/s13311-023-01428-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Traumatic brain injury (TBI) triggers wide-ranging pathology that impacts multiple biochemical and physiological systems, both inside and outside the brain. Functional recovery in patients is impeded by early onset brain edema, acute and chronic inflammation, delayed cell death, and neurovascular disruption. Drug treatments that target these deficits are under active development, but it seems likely that fully effective therapy may require interruption of the multiplicity of TBI-induced pathological processes either by a cocktail of drug treatments or a single pleiotropic drug. The complex and highly interconnected biochemical network embodied by the neurosteroid system offers multiple options for the research and development of pleiotropic drug treatments that may provide benefit for those who have suffered a TBI. This narrative review examines the neurosteroids and their signaling systems and proposes directions for their utility in the next stage of TBI drug research and development.
Collapse
Affiliation(s)
- Todd A Verdoorn
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA.
| | - Tom J Parry
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA
| | - Graziano Pinna
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago College of Medicine, 1601 W. Taylor Street, Chicago, IL 60612, USA
| | - Jonathan Lifshitz
- Department of Psychiatry, University of Arizona College of Medicine - Phoenix, 475 N. 5th Street, Phoenix, AZ 85004, USA
| |
Collapse
|
14
|
Muller CR, Courelli V, Walser C, Cuddington CT, Wolfe SR, Palmer AF, Cabrales P. Polymerized human hemoglobin with low and high oxygen affinity in trauma models. Transl Res 2023; 260:83-92. [PMID: 37268039 DOI: 10.1016/j.trsl.2023.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
The present study aimed to compare the ability of tense (T) and relaxed (R) quaternary state polymerized human hemoglobin (PolyhHb) to restore hemodynamics after severe trauma in a rat model, and to assess their relative toxicity in a guinea pigs (GPs). To assess the efficacy of these PolyhHbs in restoring hemodynamics, Wistar rats were subjected to traumatic brain injury (TBI) followed by hemorrhagic shock (HS). Animals were separated into 3 groups based on the resuscitation solution: Whole blood, T-state or R-state PolyhHb, and followed for 2 hours after resuscitation. For toxicity evaluation, GPs were subjected to HS and the hypovolemic state was maintained for 50 minutes. Then, the GPs were divided randomly into 2 groups, and reperfused with T- or R-state PolyhHb. Rats resuscitated with blood and T-state PolyhHb had a higher recovery of MAP at 30 min after resuscitation when compared to R-state PolyhHb, demonstrating the greater ability of T-state PolyhHb to restore hemodynamics compared to R-state PolyhHb. Resuscitation with R-state PolyhHb in GPs increased markers of liver damage and inflammation, kidney injury and systemic inflammation compared to the T-state PolyhHb group. Finally, increased levels of cardiac damage markers, such as troponin were observed, indicating greater cardiac injury in GPs resuscitated with R-state PolyhHb. Therefore, our results showed that T-state PolyhHb exhibited superior efficacy in a model of TBI followed by HS in rats, and presented reduced vital organ toxicity in GPs, when compared to R-state PolyhHb.
Collapse
Affiliation(s)
- Cynthia R Muller
- Department of Bioengineering, University of California San Diego, San Diego, CA.
| | - Vasiliki Courelli
- Department of Bioengineering, University of California San Diego, San Diego, CA
| | - Cynthia Walser
- Department of Bioengineering, University of California San Diego, San Diego, CA
| | - Clayton T Cuddington
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH
| | - Savannah R Wolfe
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH
| | - Andre F Palmer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, San Diego, CA
| |
Collapse
|
15
|
Barreto GE, Gonzalez J, Ramírez D. Network pharmacology and topological analysis on tibolone metabolites and their molecular mechanisms in traumatic brain injury. Biomed Pharmacother 2023; 165:115089. [PMID: 37418975 DOI: 10.1016/j.biopha.2023.115089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
Traumatic brain injury (TBI) is a pathology of great social impact, affecting millions of people worldwide. Despite the scientific advances to improve the management of TBI in recent years, we still do not have a specific treatment that controls the inflammatory process after mechanical trauma. The discovery and implementation of new treatments is a long and expensive process, making the repurpose of approved drugs for other pathologies a clinical interest. Tibolone is a drug in use for the treatment of symptoms associated with menopause and has been shown to have a broad spectrum of actions by regulating estrogen, androgen and progesterone receptors, whose activation exerts potent anti-inflammatory and antioxidant effects. In the present study, we aimed to investigate the therapeutic potential of the tibolone metabolites 3α-Hydroxytibolone, 3β-Hydroxytibolone, and Δ4-Tibolone as a possible therapy in TBI using network pharmacology and network topology analysis. Our results demonstrate that the estrogenic component mediated by the α and β metabolites can regulate synaptic transmission and cell metabolism, while the Δ metabolite may be involved in modulating the post-TBI inflammatory process. We identified several molecular targets, including KDR, ESR2, AR, NR3C1, PPARD, and PPARA, which are known to play critical roles in the pathogenesis of TBI. Tibolone metabolites were predicted to regulate the expression of key genes involved in oxidative stress, inflammation, and apoptosis. Overall, the repurposing of tibolone as a neuroprotective treatment for TBI holds promise for future clinical trials. However, further studies are needed to confirm its efficacy and safety in TBI patients.
Collapse
Affiliation(s)
- George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Janneth Gonzalez
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
16
|
Esopenko C, Sollmann N, Bonke EM, Wiegand TLT, Heinen F, de Souza NL, Breedlove KM, Shenton ME, Lin AP, Koerte IK. Current and Emerging Techniques in Neuroimaging of Sport-Related Concussion. J Clin Neurophysiol 2023; 40:398-407. [PMID: 36930218 PMCID: PMC10329721 DOI: 10.1097/wnp.0000000000000864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
SUMMARY Sport-related concussion (SRC) affects an estimated 1.6 to 3.8 million Americans each year. Sport-related concussion results from biomechanical forces to the head or neck that lead to a broad range of neurologic symptoms and impaired cognitive function. Although most individuals recover within weeks, some develop chronic symptoms. The heterogeneity of both the clinical presentation and the underlying brain injury profile make SRC a challenging condition. Adding to this challenge, there is also a lack of objective and reliable biomarkers to support diagnosis, to inform clinical decision making, and to monitor recovery after SRC. In this review, the authors provide an overview of advanced neuroimaging techniques that provide the sensitivity needed to capture subtle changes in brain structure, metabolism, function, and perfusion after SRC. This is followed by a discussion of emerging neuroimaging techniques, as well as current efforts of international research consortia committed to the study of SRC. Finally, the authors emphasize the need for advanced multimodal neuroimaging to develop objective biomarkers that will inform targeted treatment strategies after SRC.
Collapse
Affiliation(s)
- Carrie Esopenko
- Department of Rehabilitation and Movement Sciences, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Nico Sollmann
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elena M. Bonke
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Tim L. T. Wiegand
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Felicitas Heinen
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nicola L. de Souza
- School of Graduate Studies, Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Katherine M. Breedlove
- Center for Clinical Spectroscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Alexander P. Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Clinical Spectroscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K. Koerte
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Luchetti S, Liere P, Pianos A, Verwer RWH, Sluiter A, Huitinga I, Schumacher M, Swaab DF, Mason MRJ. Disease stage-dependent changes in brain levels and neuroprotective effects of neuroactive steroids in Parkinson's disease. Neurobiol Dis 2023:106169. [PMID: 37257664 DOI: 10.1016/j.nbd.2023.106169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Neuroactive steroids are known neuroprotective agents and neurotransmitter regulators. We previously found that expression of the enzymes synthesizing 5α-dihydroprogesterone (5α-DHP), allopregnanolone (ALLO), and dehydroepiandrosterone sulfate (DHEAS) were reduced in the substantia nigra (SN) of Parkinson's Disease (PD) brain. Here, concentrations of a comprehensive panel of steroids were measured in human post-mortem brains of PD patients and controls. Gas chromatography-mass spectrometry (GC/MS) was used to measure steroid levels in SN (involved in early symptoms) and prefrontal cortex (PFC) (involved later in the disease) of five control (CTR) and nine PD donors, divided into two groups: PD4 (PD-Braak stages 1-4) and PD6 (PD-Braak stages 5-6). In SN, ALLO was increased in PD4 compared to CTR and 5α-DHP and ALLO levels were diminished in PD6 compared to PD4. The ALLO metabolite 3α5α20α-hexahydroprogesterone (3α5α20α-HHP) was higher in PD4 compared to CTR. In PFC, 3α5α20α-HHP was higher in PD4 compared to both CTR and PD6. The effects of 5α-DHP, ALLO and DHEAS were tested on human post-mortem brain slices of patients and controls in culture. RNA expression of genes involved in neuroprotection, neuroinflammation and neurotransmission was analysed after 5 days of incubation with each steroid. In PD6 slices, both 5α-DHP and ALLO induced an increase of the glutamate reuptake effector GLAST1, while 5α-DHP also increased gene expression of the neuroprotective TGFB. In CTR slices, ALLO caused reduced expression of IGF1 and GLS, while DHEAS reduced the expression of p75 and the anti-apoptotic molecule APAF1. Together these data suggest that a potentially protective upregulation of ALLO occurs at early stages of PD, followed by a downregulation of progesterone metabolites at later stages that may exacerbate the pathological changes, especially in SN. Neuroprotective effects of neurosteroids are thus dependent on the neuropathological stage of the disease.
Collapse
Affiliation(s)
- Sabina Luchetti
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands; Neuroimmunology Research Group, NIN, Amsterdam, the Netherlands
| | - Philippe Liere
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Antoine Pianos
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Ronald W H Verwer
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | - Arja Sluiter
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, NIN, Amsterdam, the Netherlands
| | - Michael Schumacher
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Dick F Swaab
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | | |
Collapse
|
18
|
Obenaus A, Rodriguez-Grande B, Lee JB, Dubois CJ, Fournier ML, Cador M, Caille S, Badaut J. A single mild juvenile TBI in male mice leads to regional brain tissue abnormalities at 12 months of age that correlate with cognitive impairment at the middle age. Acta Neuropathol Commun 2023; 11:32. [PMID: 36859364 PMCID: PMC9976423 DOI: 10.1186/s40478-023-01515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/12/2023] [Indexed: 03/03/2023] Open
Abstract
Traumatic brain injury (TBI) has the highest incidence amongst the pediatric population and its mild severity represents the most frequent cases. Moderate and severe injuries as well as repetitive mild TBI result in lasting morbidity. However, whether a single mild TBI sustained during childhood can produce long-lasting modifications within the brain is still debated. We aimed to assess the consequences of a single juvenile mild TBI (jmTBI) at 12 months post-injury in a mouse model. Non-invasive diffusion tensor imaging (DTI) revealed significant microstructural alterations in the hippocampus and the in the substantia innominata/nucleus basalis (SI/NB), structures known to be involved in spatial learning and memory. DTI changes paralled neuronal loss, increased astrocytic AQP4 and microglial activation in the hippocampus. In contrast, decreased astrocytic AQP4 expression and microglia activation were observed in SI/NB. Spatial learning and memory were impaired and correlated with alterations in DTI-derived derived fractional ansiotropy (FA) and axial diffusivity (AD). This study found that a single juvenile mild TBI leads to significant region-specific DTI microstructural alterations, distant from the site of impact, that correlated with cognitive discriminative novel object testing and spatial memory impairments at 12 months after a single concussive injury. Our findings suggest that exposure to jmTBI leads to a chronic abnormality, which confirms the need for continued monitoring of symptoms and the development of long-term treatment strategies to intervene in children with concussions.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | - Jeong Bin Lee
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Christophe J Dubois
- CNRS UMR 5536 RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | | | - Martine Cador
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France
| | - Stéphanie Caille
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France
| | - Jerome Badaut
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France.
- CNRS UMR 5536 RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
19
|
Pletzer B, Winkler-Crepaz K, Hillerer K. Progesterone and contraceptive progestin actions on the brain: A systematic review of animal studies and comparison to human neuroimaging studies. Front Neuroendocrinol 2023; 69:101060. [PMID: 36758768 DOI: 10.1016/j.yfrne.2023.101060] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
In this review we systematically summarize the effects of progesterone and synthetic progestins on neurogenesis, synaptogenesis, myelination and six neurotransmitter systems. Several parallels between progesterone and older generation progestin actions emerged, suggesting actions via progesterone receptors. However, existing results suggest a general lack of knowledge regarding the effects of currently used progestins in hormonal contraception regarding these cellular and molecular brain parameters. Human neuroimaging studies were reviewed with a focus on randomized placebo-controlled trials and cross-sectional studies controlling for progestin type. The prefrontal cortex, amygdala, salience network and hippocampus were identified as regions of interest for future preclinical studies. This review proposes a series of experiments to elucidate the cellular and molecular actions of contraceptive progestins in these areas and link these actions to behavioral markers of emotional and cognitive functioning. Emotional effects of contraceptive progestins appear to be related to 1) alterations in the serotonergic system, 2) direct/indirect modulations of inhibitory GABA-ergic signalling via effects on the allopregnanolone content of the brain, which differ between androgenic and anti-androgenic progestins. Cognitive effects of combined oral contraceptives appear to depend on the ethinylestradiol dose.
Collapse
Affiliation(s)
- Belinda Pletzer
- Department of Psychology & Centre for Cognitive Neuroscience, Paris-Lodron-University Salzburg, Salzburg Austria.
| | | | - Katharina Hillerer
- Department of Gynaecology & Obstetrics, Private Medical University, Salzburg, Austria
| |
Collapse
|
20
|
Niu P, Li L, Zhang Y, Su Z, Wang B, Liu H, Zhang S, Qiu S, Li Y. Immune regulation based on sex differences in ischemic stroke pathology. Front Immunol 2023; 14:1087815. [PMID: 36793730 PMCID: PMC9923235 DOI: 10.3389/fimmu.2023.1087815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 01/31/2023] Open
Abstract
Ischemic stroke is one of the world's leading causes of death and disability. It has been established that gender differences in stroke outcomes prevail, and the immune response after stroke is an important factor affecting patient outcomes. However, gender disparities lead to different immune metabolic tendencies closely related to immune regulation after stroke. The present review provides a comprehensive overview of the role and mechanism of immune regulation based on sex differences in ischemic stroke pathology.
Collapse
Affiliation(s)
- Pingping Niu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Liqin Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yonggang Zhang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Zhongzhou Su
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Binghao Wang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - He Liu
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Shehong Zhang
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| |
Collapse
|
21
|
Piavchenko G, Soldatov V, Venediktov A, Kartashkina N, Novikova N, Gorbunova M, Boronikhina T, Yatskovskiy A, Meglinski I, Kuznetsov S. A combined use of silver pretreatment and impregnation with consequent Nissl staining for cortex and striatum architectonics study. Front Neuroanat 2022; 16:940993. [PMID: 36312299 PMCID: PMC9615244 DOI: 10.3389/fnana.2022.940993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Despite a rapid growth in the application of modern techniques for visualization studies in life sciences, the classical methods of histological examination are yet to be outdated. Herein, we introduce a new approach that involves combining silver nitrate pretreatment and impregnation with consequent Nissl (cresyl violet) staining for cortex and striatum architectonics study on the same microscopy slide. The developed approach of hybrid staining provides a high-quality visualization of cellular and subcellular structures, including impregnated neurons (about 10%), Nissl-stained neurons (all the remaining ones), and astrocytes, as well as chromatophilic substances, nucleoli, and neuropil in paraffin sections. We provide a comparative study of the neuronal architectonics in both the motor cortex and striatum based on the differences in their tinctorial properties. In addition to a comparative study of the neuronal architectonics in both the motor cortex and striatum, the traditional methods to stain the cortex (motor and piriform) and the striatum are considered. The proposed staining approach compiles the routine conventional methods for thin sections, expanding avenues for more advanced examination of neurons, blood-brain barrier components, and fibers both under normal and pathological conditions. One of the main hallmarks of our method is the ability to detect changes in the number of glial cells. The results of astrocyte visualization in the motor cortex obtained by the developed technique agree well with the alternative studies by glial fibrillary acidic protein (GFAP) immunohistochemical reaction. The presented approach of combined staining has great potential in current histological practice, in particular for the evaluation of several neurological disorders in clinical, pre-clinical, or neurobiological animal studies.
Collapse
Affiliation(s)
- Gennadii Piavchenko
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia Kartashkina
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia Novikova
- Laboratory of Pathophysiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Marina Gorbunova
- Department of Histology, Cytology, and Embryology, Orel State University named after I.S. Turgenev, Orel, Russia
| | - Tatiana Boronikhina
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander Yatskovskiy
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Igor Meglinski
- Opto-Electronics and Measurement Techniques, Faculty of Information and Electrical Engineering, University of Oulu, Oulu, Finland
- College of Engineering and Applied Science, Aston University, Birmingham, United Kingdom
| | - Sergey Kuznetsov
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
22
|
Nasre-Nasser RG, Severo MMR, Pires GN, Hort MA, Arbo BD. Effects of Progesterone on Preclinical Animal Models of Traumatic Brain Injury: Systematic Review and Meta-analysis. Mol Neurobiol 2022; 59:6341-6362. [PMID: 35922729 DOI: 10.1007/s12035-022-02970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/21/2022] [Indexed: 12/09/2022]
Abstract
Since the publication of two phase III clinical trials not supporting the use of progesterone in patients with traumatic brain injury (TBI), several possible explanations have been postulated, including limitations in the analysis of results from preclinical evidence. Therefore, to address this question, a systematic review and meta-analysis was performed to evaluate the effects of progesterone as a neuroprotective agent in preclinical animal models of TBI. A total of 48 studies were included for review: 29 evaluated brain edema, 21 evaluated lesion size, and 0 studies reported the survival rate. In the meta-analysis, it was found that progesterone reduced brain edema (effect size - 1.73 [- 2.02, - 1.44], p < 0.0001) and lesion volume (effect size - 0.40 [- 0.65, - 0.14], p = 0.002). Lack of details in the studies hindered the assessment of risk of bias (through the SYRCLE tool). A funnel plot asymmetry was detected, suggesting a possible publication bias. In conclusion, preclinical studies show that progesterone has an anti-edema effect in animal models of TBI, decreasing lesion volume or increasing remaining tissue. However, more studies are needed using assessing methods with lower risk of histological artifacts.
Collapse
Affiliation(s)
- Raif Gregorio Nasre-Nasser
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande (FURG), Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Manoela Rezende Severo
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos 2600, Building UFRGS 21116, Room 430, Zip code, Porto Alegre - RS, 90035-003, Brazil
| | - Gabriel Natan Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA), Rio de Janeiro, Brazil
| | - Mariana Appel Hort
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande (FURG), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno Dutra Arbo
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande (FURG), Porto Alegre, Rio Grande do Sul, Brazil.
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos 2600, Building UFRGS 21116, Room 430, Zip code, Porto Alegre - RS, 90035-003, Brazil.
| |
Collapse
|
23
|
Wilson A, Stevens WD, Sergio L, Wojtowicz M. Altered Brain Functional Connectivity in Female Athletes Over the Course of a Season of Collision or Contact Sports. Neurotrauma Rep 2022; 3:377-387. [PMID: 36204391 PMCID: PMC9531888 DOI: 10.1089/neur.2022.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
University athletes are exposed to numerous impacts to the body and head, though the potential cumulative effects of such hits remain elusive. This study examined resting-state functional connectivity (rsFC) of brain networks in female varsity athletes over the course of a season. Nineteen female university athletes involved in collision (N = 12) and contact (N = 7) sports underwent functional magnetic resonance imaging scans at both pre- and post-season. A group-level independent component analysis (ICA) was used to investigate differences in rsFC over the course of a season and differences between contact and collision sport athletes. Decreased rsFC was observed over the course of the season between the default mode network (DMN) and regions in the frontal, parietal, and occipital lobe (p false discovery rate, ≤0.05) driven by differences in the contact group. There was also a main effect of group in the dorsal attention network (DAN) driven by differences between contact and collision groups at pre-season. Differences identified over the course of a season of play indicate largely decreased rsFC within the DMN, and level of contact was associated with differences in rsFC of the DAN. The association between exposure to repetitive head impacts (RHIs) and observed changes in network rsFC supplements the growing literature suggesting that even non-concussed athletes may be at risk for changes in brain functioning. However, the complexity of examining the direct effects of RHIs highlights the need to consider multiple factors, including mental health and sport-specific training and expertise, that may potentially be associated with neural changes.
Collapse
Affiliation(s)
- Alyssia Wilson
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - W. Dale Stevens
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Lauren Sergio
- School of Kinesiology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
24
|
Rasmusson AM, Novikov O, Brown KD, Pinna G, Pineles SL. Pleiotropic endophenotypic and phenotype effects of GABAergic neurosteroid synthesis deficiency in posttraumatic stress disorder. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 25:100359. [PMID: 36909842 PMCID: PMC10004350 DOI: 10.1016/j.coemr.2022.100359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PTSD is associated with deficits in synthesis of progesterone metabolites such as allopregnanolone and pregnanolone that potently facilitate gamma-amino-butyric acid (GABA) effects at GABAA receptors. These neurosteroids modulate neuronal firing rate, regional brain connectivity, and activation of amygdala-mediated autonomic nervous system, hypothalamic-pituitary-adrenal axis, and behavioral reactions to unconditioned and conditioned threat. They also play critical roles in learning and memory processes such as extinction and extinction retention and inhibit toll-like receptor activation of intracellular pro-inflammatory pathways. Deficient synthesis of these neurosteroids thus may contribute to individually variable PTSD clinical phenotypes encompassing symptom severity, capacity for PTSD recovery, and vulnerability to common PTSD-comorbidities such as major depression, chronic pain, alcohol and nicotine dependence, cardiovascular disease, metabolic syndrome, reproductive disorders, and autoimmune conditions.
Collapse
Affiliation(s)
- Ann M Rasmusson
- VA National Center for PTSD, Women's Health Science Division, VA Boston Healthcare System, Boston, MA 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Olga Novikov
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA.,Boston University School of Medicine, Psychiatry Residency Program, Boston, MA 02118, USA
| | - Kayla D Brown
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA.,Behavioral Neurosciences Ph.D. Program, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Suzanne L Pineles
- VA National Center for PTSD, Women's Health Science Division, VA Boston Healthcare System, Boston, MA 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
25
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
26
|
Chao MW, Liao CW, Lin CH, Tseng CY. Immunomodulatory protein from ganoderma microsporum protects against oxidative damages and cognitive impairments after traumatic brain injury. Mol Cell Neurosci 2022; 120:103735. [PMID: 35562037 DOI: 10.1016/j.mcn.2022.103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022] Open
Abstract
A traumatic brain injury (TBI) causes abnormal proliferation of neuroglial cells, and over-release of glutamate induces oxidative stress and inflammation and leads to neuronal death, memory deficits, and even death if the condition is severe. There is currently no effective treatment for TBI. Recent interests have focused on the benefits of supplements or natural products like Ganoderma. Studies have indicated that immunomodulatory protein from Ganoderma microsporum (GMI) inhibits oxidative stress in lung cancer cells A549 and induces cancer cell death by causing intracellular autophagy. However, no evidence has shown the application of GMI on TBI. Thus, this study addressed whether GMI could be used to prevent or treat TBI through its anti-inflammation and antioxidative effects. We used glutamate-induced excitotoxicity as in vitro model and penetrating brain injury as in vivo model of TBI. We found that GMI inhibits the generation of intracellular reactive oxygen species and reduces neuronal death in cortical neurons against glutamate excitotoxicity. In neurite injury assay, GMI promotes neurite regeneration, the length of the regenerated neurite was even longer than that of the control group. The animal data show that GMI alleviates TBI-induced spatial memory deficits, expedites the restoration of the injured areas, induces the secretion of brain-derived neurotrophic factors, increases the superoxide dismutase 1 (SOD-1) and lowers the astroglial proliferation. It is the first paper to apply GMI to brain-injured diseases and confirms that GMI reduces oxidative stress caused by TBI and improves neurocognitive function. Moreover, the effects show that prevention is better than treatment. Thus, this study provides a potential treatment in naturopathy against TBI.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, 200 Chung Pei Road, Zhongli District, Taoyuan City 32023, Taiwan.
| | - Chia-Wei Liao
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Zhongli District, Taoyuan City 32023, Taiwan
| | - Chin-Hung Lin
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Zhongli District, Taoyuan City 32023, Taiwan.
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Zhongli District, Taoyuan City 32023, Taiwan.
| |
Collapse
|
27
|
Sheibani V, Rajizadeh MA, Bejeshk MA, Haghparast E, Nozari M, Esmaeili-Mahani S, Nezhadi A. The effects of neurosteroid allopregnanolone on synaptic dysfunction in the hippocampus in experimental parkinsonism rats: An electrophysiological and molecular study. Neuropeptides 2022; 92:102229. [PMID: 35158223 DOI: 10.1016/j.npep.2022.102229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023]
Abstract
The dopaminergic system is a powerful candidate targeted for changes of synaptic plasticity in the hippocampus. Higher incidence of Parkinson's disease (PD) in men than women indicates the influence of sex hormones on the PD development. Previous studies have shown that neurodegenerative diseases such as PD are related to the decline of Allopregnanolon (Allo), a metabolite of progesterone; it is also well known that learning and memory are influenced by oscillations in steroidal hormones. Although abnormalities in hippocampal plasticity have been observed in the toxic models of PD, effects of Allo on hippocampal LTP and hippocampal synaptic protein levels, which play an important role in maintaining the integrity of neural connections, have never been analyzed thus far. Experimental groups subjected to the long-term potentiation (LTP) were studied in the CA1 area of the hippocampus. In addition, the levels of hippocampal postsynaptic density protein 95 (PSD-95), neurexin-1 (Nrxn1) and neuroligin (Nlgn) as synaptic molecular components were determined by immunoblotting. Although dopamine denervation did not alter basal synaptic transmission and pair-pulse facilitation of field excitatory postsynaptic potentials (fEPSPs), the induction and maintenance of LTP were impaired in the CA1 region. In addition, the levels of PSD-95, Nrxn1 and Nlgn were significantly decreased in the hippocampus of 6-OHDA-treated animals. Such abnormalities in synaptic electrophysiological aspects and protein levels were abolished by the treatment with Allo. These findings showed that partial dopamine depletion led to unusual synaptic plasticity in the CA1 as well as the decrease in synaptic proteins in the hippocampus. Our results demonstrated that Allo ameliorated these deficits and preserved pre- and post-synaptic proteins. Therefore, Allo may be an effective factor in maintaining synaptic integrity in the mesolimbic pathway.
Collapse
Affiliation(s)
- Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Haghparast
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoumeh Nozari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Akram Nezhadi
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Tang T, Hu L, Liu Y, Fu X, Li J, Yan F, Cao S, Chen G. Sex-Associated Differences in Neurovascular Dysfunction During Ischemic Stroke. Front Mol Neurosci 2022; 15:860959. [PMID: 35431804 PMCID: PMC9012443 DOI: 10.3389/fnmol.2022.860959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 12/28/2022] Open
Abstract
Neurovascular units (NVUs) are basic functional units in the central nervous system and include neurons, astrocytes and vascular compartments. Ischemic stroke triggers not only neuronal damage, but also dissonance of intercellular crosstalk within the NVU. Stroke is sexually dimorphic, but the sex-associated differences involved in stroke-induced neurovascular dysfunction are studied in a limited extend. Preclinical studies have found that in rodent models of stroke, females have less neuronal loss, stronger repairing potential of astrocytes and more stable vascular conjunction; these properties are highly related to the cerebroprotective effects of female hormones. However, in humans, these research findings may be applicable only to premenopausal stroke patients. Women who have had a stroke usually have poorer outcomes compared to men, and because stoke is age-related, hormone replacement therapy for postmenopausal women may exacerbate stroke symptoms, which contradicts the findings of most preclinical studies. This stark contrast between clinical and laboratory findings suggests that understanding of neurovascular differences between the sexes is limited. Actually, apart from gonadal hormones, differences in neuroinflammation as well as genetics and epigenetics promote the sexual dimorphism of NVU functions. In this review, we summarize the confirmed sex-associated differences in NVUs during ischemic stroke and the possible contributing mechanisms. We also describe the gap between clinical and preclinical studies in terms of sexual dimorphism.
Collapse
Affiliation(s)
- Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Libin Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Liu
- Department of Ultrasonography, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Shenglong Cao,
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Gao Chen,
| |
Collapse
|
29
|
Liu C, Gao W, Zhao L, Cao Y. Progesterone attenuates neurological deficits and exerts a protective effect on damaged axons via the PI3K/AKT/mTOR-dependent pathway in a mouse model of intracerebral hemorrhage. Aging (Albany NY) 2022; 14:2574-2589. [PMID: 35305084 PMCID: PMC9004566 DOI: 10.18632/aging.203954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023]
Abstract
Intracerebral hemorrhage (ICH) is a devastating event with high disability and fatality rates. However, there is a lack of effective treatments for this condition. We aimed to investigate the neuroprotective and axonal regenerative effects of progesterone after ICH. For this purpose, an ICH model was established in adult mice by injecting type VII collagenase into the striatum; the mice were then treated with progesterone (8 mg/kg). Hematoma absorption, neurological scores, and brain water content were evaluated on days one, three, and seven after the ICH. The effect of progesterone on inflammation and axonal regeneration was examined on day three after the ICH using western blotting, immunohistochemistry, immunofluorescence, as well as hematoxylin-eosin, Nissl, and Luxol fast blue staining. In addition, we combined progesterone with the phosphoinositide 3-kinase/serine/threonine-specific protein kinase (PI3K/AKT) inhibitor, LY294002, to explore its potential neuroprotective mechanisms. Administration of progesterone attenuated the neurological deficits and expression of inflammatory cytokines and promoted axonal regeneration after ICH, this effect was blocked by LY294002. Collectively, these results suggest that progesterone could reduce axonal damage and produced partial neuroprotective effects after ICH through the PI3K/AKT/mTOR pathway, providing a new therapeutic target and basis for the treatment of ICH.
Collapse
Affiliation(s)
- Chang Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, P.R. China
| | - Weina Gao
- Department of Intensive Care Unit, The Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu 610041, Sichuan Province, P.R. China
| | - Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637002, Sichuan Province, P.R. China
| | - Yi Cao
- Department of Neurosurgery, Chengdu Second People's Hospital, Chengdu 610021, Sichuan Province, P.R. China
| |
Collapse
|
30
|
Bortolato M, Coffey BJ, Gabbay V, Scheggi S. Allopregnanolone: The missing link to explain the effects of stress on tic exacerbation? J Neuroendocrinol 2022; 34:e13022. [PMID: 34423500 PMCID: PMC8800948 DOI: 10.1111/jne.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
The neurosteroid allopregnanolone (3α-hydroxy-5α-pregnan-20-one; AP) elicits pleiotropic effects in the central nervous system, ranging from neuroprotective and anti-inflammatory functions to the regulation of mood and emotional responses. Several lines of research show that the brain rapidly produces AP in response to acute stress to reduce the allostatic load and enhance coping. These effects not only are likely mediated by GABAA receptor activation but also result from the contributions of other mechanisms, such as the stimulation of membrane progesterone receptors. In keeping with this evidence, AP has been shown to exert rapid, potent antidepressant properties and has been recently approved for the therapy of moderate-to-severe postpartum depression. In addition to depression, emerging evidence points to the potential of AP as a therapy for other neuropsychiatric disorders, including anxiety, seizures, post-traumatic stress disorder and cognitive problems. Although this evidence has spurred interest in further therapeutic applications of AP, some investigations suggest that this neurosteroid may also be associated with adverse events in specific disorders. For example, our group has recently documented that AP increases tic-like manifestations in several animal models of tic disorders; furthermore, our results indicate that inhibiting AP synthesis and signalling reduces the exacerbation of tic severity associated with acute stress. Although the specific mechanisms of these effects remain partially elusive, our findings point to the possibility that the GABAergic activation by AP may also lead to disinhibitory effects, which could interfere with the ability of patients to suppress their tics. Future studies will be necessary to verify whether these mechanisms may apply to other externalising manifestations, such as impulse-control problems and manic symptoms.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and ToxicologyCollege of PharmacyUniversity of UtahSalt Lake CityUTUSA
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
| | - Barbara J. Coffey
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
- Department of Psychiatry and Behavioral ScienceMiller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Vilma Gabbay
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
- Department of Psychiatry and Behavioral SciencesAlbert Einstein College of MedicineBronxNYUSA
| | - Simona Scheggi
- Department of Molecular and Developmental MedicineSchool of MedicineUniversity of SienaSienaItaly
| |
Collapse
|
31
|
Diviccaro S, Cioffi L, Falvo E, Giatti S, Melcangi RC. Allopregnanolone: An overview on its synthesis and effects. J Neuroendocrinol 2022; 34:e12996. [PMID: 34189791 PMCID: PMC9285581 DOI: 10.1111/jne.12996] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022]
Abstract
Allopregnanolone, a 3α,5α-progesterone metabolite, acts as a potent allosteric modulator of the γ-aminobutyric acid type A receptor. In the present review, the synthesis of this neuroactive steroid occurring in the nervous system is discussed with respect to physiological and pathological conditions. In addition, its physiological and neuroprotective effects are also reported. Interestingly, the levels of this neuroactive steroid, as well as its effects, are sex-dimorphic, suggesting a possible gender medicine based on this neuroactive steroid for neurological disorders. However, allopregnanolone presents low bioavailability and extensive hepatic metabolism, limiting its use as a drug. Therefore, synthetic analogues or a different therapeutic strategy able to increase allopregnanolone levels have been proposed to overcome any pharmacokinetic issues.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| |
Collapse
|
32
|
Khaksari M, Hajializadeh Z, Mahani SE, Soltani Z, Asadikaram G. Estrogen receptor agonists induce anti‑edema effects by altering α and β estrogen receptor gene expression. Acta Neurobiol Exp (Wars) 2021; 81:286-294. [PMID: 34672299 DOI: 10.21307/ane-2021-027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study aimed to examine whether the attenuation of estrogen receptor expression is prevented by propyl pyrazole triol (PPT), an agonist for estrogen receptor α (ERα) or and diarypropiolnitrile (DPN), an agonist for estrogen receptor β (ERβ) after traumatic brain injury (TBI). The tests performed on ovariectomized female Wistar rats included sham group, vehicle group, and treated groups: PPT, DPN, and PPT+DPN 30 minutes after TBI. Blood‑brain barrier (BBB) disruption and brain water content were estimated. RT‑PCR and\r\nwestern blotting were utilized to evaluate ESR1 and ESR2 gene and protein expression. The data indicated that PPT, DPN, and PPT+DPN attenuated TBI‑induced brain edema. Also, BBB disruption after TBI was prevented in PPT, DPN, and PPT+DPN‑treated TBI animals. Estrogen agonist‑treated animals showed a significant elevation in Esr1 mRNA and protein expression levels in the brain tissue of TBI rats. In addition, the data indicated a significant elevation of Esr2 mRNA and protein expression levels in the brain tissue of estrogen agonist‑treated TBI rats. The data shows that both ESR1 and ESR2 agonists can enhance ER mRNA and protein levels in TBI animals' brain. It appears that this effect contributes to the neuroprotective function of ER agonists.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran;
| | - Zahra Hajializadeh
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
33
|
Dennis EL, Caeyenberghs K, Asarnow RF, Babikian T, Bartnik-Olson B, Bigler ED, Figaji A, Giza CC, Goodrich-Hunsaker NJ, Hodges CB, Hoskinson KR, Königs M, Levin HS, Lindsey HM, Livny A, Max JE, Merkley TL, Newsome MR, Olsen A, Ryan NP, Spruiell MS, Suskauer SJ, Thomopoulos SI, Ware AL, Watson CG, Wheeler AL, Yeates KO, Zielinski BA, Thompson PM, Tate DF, Wilde EA. Challenges and opportunities for neuroimaging in young patients with traumatic brain injury: a coordinated effort towards advancing discovery from the ENIGMA pediatric moderate/severe TBI group. Brain Imaging Behav 2021; 15:555-575. [PMID: 32734437 PMCID: PMC7855317 DOI: 10.1007/s11682-020-00363-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in children in both developed and developing nations. Children and adolescents suffer from TBI at a higher rate than the general population, and specific developmental issues require a unique context since findings from adult research do not necessarily directly translate to children. Findings in pediatric cohorts tend to lag behind those in adult samples. This may be due, in part, both to the smaller number of investigators engaged in research with this population and may also be related to changes in safety laws and clinical practice that have altered length of hospital stays, treatment, and access to this population. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric Moderate/Severe TBI (msTBI) group aims to advance research in this area through global collaborative meta-analysis of neuroimaging data. In this paper, we discuss important challenges in pediatric TBI research and opportunities that we believe the ENIGMA Pediatric msTBI group can provide to address them. With the paucity of research studies examining neuroimaging biomarkers in pediatric patients with TBI and the challenges of recruiting large numbers of participants, collaborating to improve statistical power and to address technical challenges like lesions will significantly advance the field. We conclude with recommendations for future research in this field of study.
Collapse
Affiliation(s)
- Emily L Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA.
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA.
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- Brain Research Institute, UCLA, Los Angeles, CA, USA
- Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Erin D Bigler
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Anthony Figaji
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Christopher C Giza
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Naomi J Goodrich-Hunsaker
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Cooper B Hodges
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Marsh Königs
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Emma Neuroscience Group, Amsterdam, The Netherlands
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Hannah M Lindsey
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan, Tel-Hashomer, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Tel-Hashomer, Israel
| | - Jeffrey E Max
- Department of Psychiatry, University of California, La Jolla, San Diego, CA, USA
- Department of Psychiatry, Rady Children's Hospital, San Diego, CA, USA
| | - Tricia L Merkley
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Mary R Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Nicholas P Ryan
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- Department of Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Matthew S Spruiell
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Stacy J Suskauer
- Kennedy Krieger Institute, Baltimore, MD, USA
- Departments of Physical Medicine & Rehabilitation and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Christopher G Watson
- Department of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anne L Wheeler
- Hospital for Sick Children, Neuroscience and Mental Health Program, Toronto, Canada
- Physiology Department, University of Toronto, Toronto, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Brandon A Zielinski
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - David F Tate
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
- Missouri Institute of Mental Health and University of Missouri, St Louis, MO, USA
| | - Elisabeth A Wilde
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
34
|
Lerouet D, Marchand-Leroux C, Besson VC. Neuropharmacology in traumatic brain injury: from preclinical to clinical neuroprotection? Fundam Clin Pharmacol 2021; 35:524-538. [PMID: 33527472 PMCID: PMC9290810 DOI: 10.1111/fcp.12656] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) constitutes a major health problem worldwide and is a leading cause of death and disability in individuals, contributing to devastating socioeconomic consequences. Despite numerous promising pharmacological strategies reported as neuroprotective in preclinical studies, the translation to clinical trials always failed, albeit the great diversity of therapeutic targets evaluated. In this review, first, we described epidemiologic features, causes, and primary and secondary injuries of TBI. Second, we outlined the current literature on animal models of TBI, and we described their goals, their advantages and disadvantages according to the species used, the type of injury induced, and their clinical relevance. Third, we defined the concept of neuroprotection and discussed its evolution. We also identified the reasons that might explain the failure of clinical translation. Then, we reviewed post‐TBI neuroprotective treatments with a focus on the following pleiotropic drugs, considered “low hanging fruit” with high probability of success: glitazones, glibenclamide, statins, erythropoietin, and progesterone, that were largely tested and demonstrated efficient in preclinical models of TBI. Finally, our review stresses the need to establish a close cooperation between basic researchers and clinicians to ensure the best clinical translation for neuroprotective strategies for TBI.
Collapse
Affiliation(s)
- Dominique Lerouet
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Catherine Marchand-Leroux
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Valérie C Besson
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| |
Collapse
|
35
|
Amirkhosravi L, Khaksari M, Sheibani V, Shahrokhi N, Ebrahimi MN, Amiresmaili S, Salmani N. Improved spatial memory, neurobehavioral outcomes, and neuroprotective effect after progesterone administration in ovariectomized rats with traumatic brain injury: Role of RU486 progesterone receptor antagonist. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:349-359. [PMID: 33995946 PMCID: PMC8087858 DOI: 10.22038/ijbms.2021.50973.11591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The contribution of classic progesterone receptors (PR) in interceding the neuroprotective efficacy of progesterone (P4) on the prevention of brain edema and long-time behavioral disturbances was assessed in traumatic brain injury (TBI). MATERIALS AND METHODS Female Wistar rats were ovariectomized and apportioned into 6 groups: sham, TBI, oil, P4, vehicle, and RU486. P4 or oil was injected following TBI. The antagonist of PR (RU486) or DMSO was administered before TBI. The brain edema and destruction of the blood-brain barrier (BBB) were determined. Intracranial pressure (ICP), cerebral perfusion pressure (CPP), and beam walk (BW) task were evaluated previously and at various times post-trauma. Long-time locomotor and cognitive consequences were measured one day before and on days 3, 7, 14, and 21 after the trauma. RESULTS RU486 eliminated the inhibitory effects of P4 on brain edema and BBB leakage (P<0.05, P<0.001, respectively). RU486 inhibited the decremental effect of P4 on ICP as well as the increasing effect of P4 on CPP (P<0.001) after TBI. Also, RU486 inhibited the effect of P4 on the increase in traversal time and reduction in vestibulomotor score in the BW task (P<0.001). TBI induced motor, cognitive, and anxiety-like disorders, which lasted for 3 weeks after TBI; but, P4 prevented these cognitive and behavioral abnormalities (P<0.05), and RU486 opposed this P4 effect (P<0.001). CONCLUSION The classic progesterone receptors have neuroprotective effects and prevent long-time behavioral and memory deficiency after brain trauma.
Collapse
Affiliation(s)
- Ladan Amirkhosravi
- Neuroscience Research and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Physiology Research Centers, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Navid Ebrahimi
- Neuroscience Research and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Neda Salmani
- Department of Psychology, Genetic Institute, Islamic Azad University- Zarand Branch, Kerman, Iran
| |
Collapse
|
36
|
Yalin N, Kempton MJ, Mazibuko N, Mehta MA, Young AH, Stokes PR. Mifepristone enhances the neural efficiency of human visuospatial memory encoding and recall. Psychoneuroendocrinology 2021; 125:105116. [PMID: 33418240 DOI: 10.1016/j.psyneuen.2020.105116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/02/2023]
Abstract
Glucocorticoid receptor (GR) antagonism is a promising new treatment for cognitive dysfunction in psychiatric disorders but the effects of GR antagonism on cognition related brain activity is poorly understood. This study examines the effects of the GR and progesterone receptor antagonist mifepristone on the neural correlates of visuospatial learning and working memory in healthy male participants. The study used a pharmacological functional magnetic resonance imaging (fMRI) design to determine mifepristone effects on visuospatial paired associates learning (vPAL) and n-back working memory (WM) fMRI task related brain activations. 20 right-handed healthy male participants received 600 mg mifepristone or placebo on two separate imaging days and each participant performed fMRI tasks four hours later. The effect of mifepristone on task related brain activations was determined using Region of Interest (ROI) fMRI analyses and an exploratory whole brain voxel-wise fMRI task analyses was also conducted. The vPAL task ROI analysis found that mifepristone administration was significantly associated with decreased fusiform cortex activations in first and second encoding blocks (p = 0.007, p = 0.04) and decreased angular and precuneal cortices activations in the first recall block (p = 0.01, p = 0.02). There were no significant differences in fMRI brain activations associated with mifepristone administration in the n-back task ROI's (all p > 0.05). Mifepristone administration did not significantly affect fMRI brain activations in the whole brain voxel-wise analyses for both tasks. N-back and vPAL task reaction times and accuracy were similar in both mifepristone and placebo conditions (all p > 0.05). Our finding of decreased fusiform, angular and precuneal vPAL task related brain activity associated with mifepristone administration for the same behavioural performance as found in the placebo condition may represent improved efficiency of visuospatial memory encoding and recall. These findings provide evidence that mifepristone may enhance the efficiency of human visuospatial memory and calls for further studies in patient populations using an fMRI approach to provide proof of concept for new treatments.
Collapse
Affiliation(s)
- Nefize Yalin
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry & Psychology and Neuroscience, King's College of London, London, UK.
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| | - Ndaba Mazibuko
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry & Psychology and Neuroscience, King's College of London, London, UK.
| | - Paul Ra Stokes
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry & Psychology and Neuroscience, King's College of London, London, UK.
| |
Collapse
|
37
|
Almeida FB, Barros HMT, Pinna G. Neurosteroids and Neurotrophic Factors: What Is Their Promise as Biomarkers for Major Depression and PTSD? Int J Mol Sci 2021; 22:ijms22041758. [PMID: 33578758 PMCID: PMC7916492 DOI: 10.3390/ijms22041758] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Even though major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) are among the most prevalent and incapacitating mental illnesses in the world, their diagnosis still relies solely on the characterization of subjective symptoms (many of which are shared by multiple disorders) self-reported by patients. Thus, the need for objective measures that aid in the detection of and differentiation between psychiatric disorders becomes urgent. In this paper, we explore the potential of neurosteroids and neurotrophic proteins as biomarkers for MDD and PTSD. Circulating levels of the GABAergic neuroactive steroid, allopregnanolone, are diminished in MDD and PTSD patients, which corroborates the finding of depleted neurosteroid levels observed in animal models of these disorders. The neurotrophic protein, brain-derived neurotropic factor (BDNF), is also reduced in the periphery and in the brain of MDD patients and depressed-like animals that express lower neurosteroid levels. Although the role of BDNF in PTSD psychopathology seems less clear and merits more research, we propose a causal link between allopregnanolone levels and BDNF expression that could function as a biomarker axis for the diagnosis of both MDD and PTSD.
Collapse
Affiliation(s)
- Felipe Borges Almeida
- Graduate Program in Health Science, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (F.B.A.); (H.M.T.B.)
| | - Helena Maria Tannhauser Barros
- Graduate Program in Health Science, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (F.B.A.); (H.M.T.B.)
| | - Graziano Pinna
- Department of Psychiatry, The Psychiatric Institute, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor Str., Chicago, IL 60612, USA
- Correspondence: or
| |
Collapse
|
38
|
Siahposht-Khachaki A, Bazgir R, Akbari E, Farzin D. A study of the therapeutic effects of progesterone in patients with traumatic brain injury: A systematic review and meta-analysis. ARCHIVES OF TRAUMA RESEARCH 2021. [DOI: 10.4103/atr.atr_106_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
39
|
Shakkour Z, Habashy KJ, Berro M, Takkoush S, Abdelhady S, Koleilat N, Eid AH, Zibara K, Obeid M, Shear D, Mondello S, Wang KK, Kobeissy F. Drug Repurposing in Neurological Disorders: Implications for Neurotherapy in Traumatic Brain Injury. Neuroscientist 2020; 27:620-649. [PMID: 33089741 DOI: 10.1177/1073858420961078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) remains a significant leading cause of death and disability among adults and children globally. To date, there are no Food and Drug Administration-approved drugs that can substantially attenuate the sequelae of TBI. The innumerable challenges faced by the conventional de novo discovery of new pharmacological agents led to the emergence of alternative paradigm, which is drug repurposing. Repurposing of existing drugs with well-characterized mechanisms of action and human safety profiles is believed to be a promising strategy for novel drug use. Compared to the conventional discovery pathways, drug repurposing is less costly, relatively rapid, and poses minimal risk of the adverse outcomes to study on participants. In recent years, drug repurposing has covered a wide range of neurodegenerative diseases and neurological disorders including brain injury. This review highlights the advances in drug repurposing and presents some of the promising candidate drugs for potential TBI treatment along with their possible mechanisms of neuroprotection. Edaravone, glyburide, ceftriaxone, levetiracetam, and progesterone have been selected due to their potential role as putative TBI neurotherapeutic agents. These drugs are Food and Drug Administration-approved for purposes other than brain injuries; however, preclinical and clinical studies have shown their efficacy in ameliorating the various detrimental outcomes of TBI.
Collapse
Affiliation(s)
- Zaynab Shakkour
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Moussa Berro
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samira Takkoush
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nadia Koleilat
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Makram Obeid
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Deborah Shear
- Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Sicilia, Italy
| | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
40
|
Evers AS. Anaesthetic-induced developmental neurotoxicity on (neuro)steroids. Br J Anaesth 2020; 126:34-37. [PMID: 32891411 DOI: 10.1016/j.bja.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
- Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
41
|
Guennoun R. Progesterone in the Brain: Hormone, Neurosteroid and Neuroprotectant. Int J Mol Sci 2020; 21:ijms21155271. [PMID: 32722286 PMCID: PMC7432434 DOI: 10.3390/ijms21155271] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Progesterone has a broad spectrum of actions in the brain. Among these, the neuroprotective effects are well documented. Progesterone neural effects are mediated by multiple signaling pathways involving binding to specific receptors (intracellular progesterone receptors (PR); membrane-associated progesterone receptor membrane component 1 (PGRMC1); and membrane progesterone receptors (mPRs)) and local bioconversion to 3α,5α-tetrahydroprogesterone (3α,5α-THPROG), which modulates GABAA receptors. This brief review aims to give an overview of the synthesis, metabolism, neuroprotective effects, and mechanism of action of progesterone in the rodent and human brain. First, we succinctly describe the biosynthetic pathways and the expression of enzymes and receptors of progesterone; as well as the changes observed after brain injuries and in neurological diseases. Then, we summarize current data on the differential fluctuations in brain levels of progesterone and its neuroactive metabolites according to sex, age, and neuropathological conditions. The third part is devoted to the neuroprotective effects of progesterone and 3α,5α-THPROG in different experimental models, with a focus on traumatic brain injury and stroke. Finally, we highlight the key role of the classical progesterone receptors (PR) in mediating the neuroprotective effects of progesterone after stroke.
Collapse
Affiliation(s)
- Rachida Guennoun
- U 1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| |
Collapse
|
42
|
Traish AM. Post-finasteride syndrome: a surmountable challenge for clinicians. Fertil Steril 2020; 113:21-50. [PMID: 32033719 DOI: 10.1016/j.fertnstert.2019.11.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/04/2019] [Accepted: 11/25/2019] [Indexed: 12/28/2022]
Abstract
Post-finasteride syndrome (PFS) is a constellation of serious adverse side effects manifested in clinical symptoms that develop and persist in patients during and/or after discontinuing finasteride treatment in men with pattern hair loss (androgenetic alopecia) or benign prostatic hyperplasia. These serious adverse side effects include persistent or irreversible sexual, neurological, physical and mental side effects. To date, there are no evidence-based effective treatments for PFS. Although increasing number of men report persistent side effects, the medical community has yet to recognize this syndrome nor are there any specific measures to address this serious and debilitating symptoms. Here we evaluate the scientific and clinical evidence in the contemporary medical literature to address the very fundamental question: Is PFS a real clinical condition caused by finasteride use or are the reported symptoms only incidentally associated with but not caused by finasteride use? One key indisputable clinical evidence noted in all reported studies with finasteride and dutasteride was that use of these drugs is associated with development of sexual dysfunction, which may persist in a subset of men, irrespective of age, drug dose or duration of study. Also, increased depression, anxiety and suicidal ideation in a subset of men treated with these drugs were commonly reported in a number of studies. It is important to note that many clinical studies suffer from incomplete or inadequate assessment of adverse events and often limited or inaccurate data reporting regarding harm. Based on the existing body of evidence in the contemporary clinical literature, the author believes that finasteride and dutasteride induce a constellation of persistent sexual, neurological and physical adverse side effects, in a subset of men. These constellations of symptoms constitute the basis for PFS in individuals predisposed to epigenetic susceptibility. Indeed, delineating the pathophysiological mechanisms underlying PFS will be of paramount importance to the understanding of this syndrome and to development of potential novel therapeutic modalities.
Collapse
Affiliation(s)
- Abdulmaged M Traish
- Department of Urology, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
43
|
Stanojlović M, Guševac Stojanović I, Zarić M, Martinović J, Mitrović N, Grković I, Drakulić D. Progesterone Protects Prefrontal Cortex in Rat Model of Permanent Bilateral Common Carotid Occlusion via Progesterone Receptors and Akt/Erk/eNOS. Cell Mol Neurobiol 2020; 40:829-843. [PMID: 31865501 PMCID: PMC11448933 DOI: 10.1007/s10571-019-00777-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 12/10/2019] [Indexed: 01/07/2023]
Abstract
Sustained activation of pro-apoptotic signaling due to a sudden and prolonged disturbance of cerebral blood circulation governs the neurodegenerative processes in prefrontal cortex (PFC) of rats whose common carotid arteries are permanently occluded. The adequate neuroprotective therapy should minimize the activation of toxicity pathways and increase the activity of endogenous protective mechanisms. Several neuroprotectants have been proposed, including progesterone (P4). However, the underlying mechanism of its action in PFC following permanent bilateral occlusion of common carotid arteries is not completely investigated. We, thus herein, tested the impact of post-ischemic P4 treatment (1.7 mg/kg for seven consecutive days) on previously reported aberrant neuronal morphology and amount of DNA fragmentation, as well as the expression of progesterone receptors along with the key elements of Akt/Erk/eNOS signal transduction pathway (Bax, Bcl-2, cytochrome C, caspase 3, PARP, and the level of nitric oxide). The obtained results indicate that potential amelioration of histological changes in PFC might be associated with the absence of activation of Bax/caspase 3 signaling cascade and the decline of DNA fragmentation. The study also provides the evidence that P4 treatment in repeated regiment of administration might be effective in neuronal protection against ischemic insult due to re-establishment of the compromised action of Akt/Erk/eNOS-mediated signaling pathway and the upregulation of progesterone receptors.
Collapse
Affiliation(s)
- Miloš Stanojlović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Ivana Guševac Stojanović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Marina Zarić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Jelena Martinović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade, 11001, Republic of Serbia.
| |
Collapse
|
44
|
Koerte IK, Schultz V, Sydnor VJ, Howell DR, Guenette JP, Dennis E, Kochsiek J, Kaufmann D, Sollmann N, Mondello S, Shenton ME, Lin AP. Sex-Related Differences in the Effects of Sports-Related Concussion: A Review. J Neuroimaging 2020; 30:387-409. [PMID: 32533752 PMCID: PMC8221087 DOI: 10.1111/jon.12726] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/30/2020] [Indexed: 01/11/2023] Open
Abstract
Sports-related concussion is a serious health challenge, and females are at higher risk of sustaining a sports-related concussion compared to males. Although there are many studies that investigate outcomes following concussion, females remain an understudied population, despite representing a large proportion of the organized sports community. In this review, we provide a summary of studies that investigate sex-related differences in outcome following sports-related concussion. Moreover, we provide an introduction to the methods used to study sex-related differences after sports-related concussion, including common clinical and cognitive measures, neuroimaging techniques, as well as biomarkers. A literature search inclusive of articles published to March 2020 was performed using PubMed. The studies were reviewed and discussed with regard to the methods used. Findings from these studies remain mixed with regard to the effect of sex on clinical symptoms, concussion-related alterations in brain structure and function, and recovery trajectories. Nonetheless, there is initial evidence to suggest that sex-related differences following concussion are important to consider in efforts to develop objective biomarkers for the diagnosis and prognosis of concussion. Additional studies on this topic are, however, clearly needed to improve our understanding of sex-related differences following concussion, as well as to understand their neurobiological underpinnings. Such studies will help pave the way toward more personalized clinical management and treatment of sports-related concussion.
Collapse
Affiliation(s)
- Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Vivian Schultz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Valerie J Sydnor
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - David R Howell
- Sports Medicine Center, Children's Hospital Colorado, Aurora, CO.,Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO
| | - Jeffrey P Guenette
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Emily Dennis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Neurology, University of Utah, Salt Lake City, UT
| | - Janna Kochsiek
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - David Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.,Department of Radiology, Charité Universitätsmedizin, Berlin, Germany
| | - Nico Sollmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.,Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,VA Boston Healthcare System, Boston, MA
| | - Alexander P Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
45
|
Giatti S, Diviccaro S, Falvo E, Garcia-Segura LM, Melcangi RC. Physiopathological role of the enzymatic complex 5α-reductase and 3α/β-hydroxysteroid oxidoreductase in the generation of progesterone and testosterone neuroactive metabolites. Front Neuroendocrinol 2020; 57:100836. [PMID: 32217094 DOI: 10.1016/j.yfrne.2020.100836] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
The enzymatic complex 5α-reductase (5α-R) and 3α/3β-hydroxysteroid oxidoreductase (HSOR) is expressed in the nervous system, where it transforms progesterone (PROG) and testosterone (T) into neuroactive metabolites. These metabolites regulate myelination, brain maturation, neurotransmission, reproductive behavior and the stress response. The expression of 5α-R and 3α-HSOR and the levels of PROG and T reduced metabolites show regional and sex differences in the nervous system and are affected by changing physiological conditions as well as by neurodegenerative and psychiatric disorders. A decrease in their nervous tissue levels may negatively impact the course and outcome of some pathological events. However, in other pathological conditions their increased levels may have a negative impact. Thus, the use of synthetic analogues of these steroids or 5α-R modulation have been proposed as therapeutic approaches for several nervous system pathologies. However, further research is needed to fully understand the consequences of these manipulations, in particular with 5α-R inhibitors.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
46
|
Naylor JC, Kilts JD, Shampine LJ, Parke GJ, Wagner HR, Szabo ST, Smith KD, Allen TB, Telford-Marx EG, Dunn CE, Cuffe BT, O’Loughlin SH, Marx CE. Effect of Pregnenolone vs Placebo on Self-reported Chronic Low Back Pain Among US Military Veterans: A Randomized Clinical Trial. JAMA Netw Open 2020; 3:e200287. [PMID: 32119096 PMCID: PMC7052727 DOI: 10.1001/jamanetworkopen.2020.0287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
IMPORTANCE In response to the national opioid public health crisis, there is an urgent need to develop nonopioid solutions for effective pain management. Neurosteroids are endogenous molecules with pleotropic actions that show promise for safe and effective treatment of chronic low back pain. OBJECTIVE To determine whether adjunctive pregnenolone has therapeutic utility for the treatment of chronic low back pain in Iraq- and Afghanistan-era US military veterans. DESIGN, SETTING, AND PARTICIPANTS Randomized, double-blind, placebo-controlled clinical trial that enrolled for 42 months, from September 2013 to April 2017. Participants were Iraq- and Afghanistan-era veterans aged 18 to 65 years with chronic low back pain who received treatment in the Durham VA Health Care System in Durham, North Carolina, over 6 weeks. Data analysis began in 2018 and was finalized in March, 2019. INTERVENTIONS Following a 1-week placebo lead-in, participants were randomized to pregnenolone or placebo for 4 weeks. Pregnenolone and placebo were administered at fixed, escalating doses of 100 mg for 1 week, 300 mg for 1 week, and 500 mg for 2 weeks. MAIN OUTCOMES AND MEASURES The primary outcome measure was the change in mean pain intensity ratings from a daily pain diary (numerical rating scale, 0-10) between visit 3 (baseline) and visit 6. Secondary outcomes included pain interference scores (Brief Pain Inventory, Short Form). Preintervention and postintervention neurosteroid levels were quantified by gas chromatography with tandem mass spectrometry. Hypotheses tested were formulated prior to data collection. RESULTS A total of 94 participants (84 [89.4%] male; mean [SD] age, 37.5 [9.8] years; 53 [56.4%] of self-reported Caucasian race and 31 [33.0%] of self-reported African American race) were included. Forty-eight participants were randomized to pregnenolone and 52 to placebo, of whom 45 and 49, respectively, were included in baseline demographic characteristics secondary to noncompliance with medications as per protocol. Veterans randomized to pregnenolone reported significant reductions in low back pain relative to those randomized to placebo. Baseline unadjusted mean (SE) pain diary ratings were 4.83 (0.23) and 5.24 (0.22) for the placebo- and pregnenolone-treated groups, respectively (baseline unadjusted mean [SE] ratings for pain recall were 4.78 [0.24] and 5.15 [0.23], respectively). Unadjusted mean (SE) ratings following treatment (visit 6) were 4.74 (0.26) in the placebo group and 4.19 (0.30) in the pregnenolone-treated group. Unadjusted mean (SE) ratings for pain recall following treatment were 4.86 (0.27) for placebo and 4.18 (0.29) for pregnenolone. Least-square mean (LSM) analysis showed that pain scores significantly improved in the pregnenolone-treated group compared with placebo (LSM [SE] change in pain diary rating, -0.56 [0.25]; P = .02; LSM [SE] change in pain recall, -0.70 [0.27]; P = .01). Pain interference scores for work (LSM [SE] change, 0.71 [0.12]; P = .04) and activity (LSM [SE] change, 0.71 [0.11]; P = .03) were also improved in veterans randomized to pregnenolone compared with placebo. Pregnenolone was well tolerated. CONCLUSIONS AND RELEVANCE Participants receiving pregnenolone reported a clinically meaningful reduction in low back pain and 2 pain interference domains compared with those receiving placebo. Pregnenolone may represent a novel, safe, and potentially efficacious treatment for the alleviation of chronic low back pain in Iraq- and Afghanistan-era veterans. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01898013.
Collapse
Affiliation(s)
- Jennifer C. Naylor
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Jason D. Kilts
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Lawrence J. Shampine
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Gillian J. Parke
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - H. Ryan Wagner
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Steven T. Szabo
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Karen D. Smith
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Trina B. Allen
- Durham VA Health Care System, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | | | | | - Brian T. Cuffe
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Susan H. O’Loughlin
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Christine E. Marx
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| |
Collapse
|
47
|
Pregnane steroidogenesis is altered by HIV-1 Tat and morphine: Physiological allopregnanolone is protective against neurotoxic and psychomotor effects. Neurobiol Stress 2020; 12:100211. [PMID: 32258256 PMCID: PMC7109513 DOI: 10.1016/j.ynstr.2020.100211] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Pregnane steroids, particularly allopregnanolone (AlloP), are neuroprotective in response to central insult. While unexplored in vivo, AlloP may confer protection against the neurological dysfunction associated with human immunodeficiency virus type 1 (HIV-1). The HIV-1 regulatory protein, trans-activator of transcription (Tat), is neurotoxic and its expression in mice increases anxiety-like behavior; an effect that can be ameliorated by progesterone, but not when 5α-reduction is blocked. Given that Tat's neurotoxic effects involve mitochondrial dysfunction and can be worsened with opioid exposure, we hypothesized that Tat and/or combined morphine would perturb steroidogenesis in mice, promoting neuronal death, and that exogenous AlloP would rescue these effects. Like other models of neural injury, conditionally inducing HIV-1 Tat in transgenic mice significantly increased the central synthesis of pregnenolone and progesterone's 5α-reduced metabolites, including AlloP, while decreasing central deoxycorticosterone (independent of changes in plasma). Morphine significantly increased brain and plasma concentrations of several steroids (including progesterone, deoxycorticosterone, corticosterone, and their metabolites) likely via activation of the hypothalamic-pituitary-adrenal stress axis. Tat, but not morphine, caused glucocorticoid resistance in primary splenocytes. In neurons, Tat depolarized mitochondrial membrane potential and increased cell death. Physiological concentrations of AlloP (0.1, 1, or 10 nM) reversed these effects. High-concentration AlloP (100 nM) was neurotoxic in combination with morphine. Tat induction in transgenic mice potentiated the psychomotor effects of acute morphine, while exogenous AlloP (1.0 mg/kg, but not 0.5 mg/kg) was ameliorative. Data demonstrate that steroidogenesis is altered by HIV-1 Tat or morphine and that physiological AlloP attenuates resulting neurotoxic and psychomotor effects.
Collapse
|
48
|
Giatti S, Diviccaro S, Serafini MM, Caruso D, Garcia-Segura LM, Viviani B, Melcangi RC. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front Neuroendocrinol 2020; 56:100804. [PMID: 31689419 DOI: 10.1016/j.yfrne.2019.100804] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The nervous system, in addition to be a target for steroid hormones, is the source of a variety of neuroactive steroids, which are synthesized and metabolized by neurons and glial cells. Recent evidence indicates that the expression of neurosteroidogenic proteins and enzymes and the levels of neuroactive steroids are different in the nervous system of males and females. We here summarized the state of the art of neuroactive steroids, particularly taking in consideration sex differences occurring in the synthesis and levels of these molecules. In addition, we discuss the consequences of sex differences in neurosteroidogenesis for the function of the nervous system under healthy and pathological conditions and the implications of neuroactive steroids and neurosteroidogenesis for the development of sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
49
|
Miziak B, Chrościńska-Krawczyk M, Czuczwar SJ. Neurosteroids and Seizure Activity. Front Endocrinol (Lausanne) 2020; 11:541802. [PMID: 33117274 PMCID: PMC7561372 DOI: 10.3389/fendo.2020.541802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Still circa 25% to 30% of patients with epilepsy cannot be efficiently controlled with available antiepileptic drugs so newer pharmacological treatment options have been continuously searched for. In this context, a group of endogenous or exogenous neurosteroids allosterically positively modulating GABA-A receptors may offer a promising approach. Among endogenous neurosteroids synthesized in the brain, allopregnanolone or allotetrahydrodeoxycorticosterone have been documented to exert anticonvulsant activity in a number of experimental models of seizures-pentylenetetrazol-, bicuculline- pilocarpine-, or 6 Hz-induced convulsions in rodents. Neurosteroids can also inhibit fully kindled seizures and some of them have been reported to counteract maximal electroshock-induced convulsions. An exogenous neurosteroid, alphaxalone, significantly elevated the threshold for maximal electroconvulsions in mice but it did not potentiate the anticonvulsive action of a number of conventional antiepileptic drugs against maximal electroshock-induced seizures. Androsterone not only elevated the threshold but significantly enhanced the protective action of carbamazepine, gabapentin and phenobarbital against maximal electroshock in mice, as well. Ganaxolone (a 3beta-methylated analog of allopregnanolone) needs special consideration for two reasons. First, it performed better than conventional antiepileptic drugs, diazepam or valproate, in suppressing convulsive and lethal effects of pentylenetetrazol in pentylenetetrazol-kindled mice. Second, ganaxolone has been evaluated in the randomized, double-blind, placebo-controlled phase 2 trial in patients with intractable partial seizures, taking maximally 3 antiepileptic drugs. The initial results indicate that add-on therapy with ganaxolone resulted in reduced seizure frequency with adverse effect being mainly mild to moderate. Possibly, ganaxolone may be also considered against catamenial seizures. Some positive effects of ganaxolone as an adjuvant were also observed in children with refractory seizures and its use may also prove efficient for the management of neonatal seizures associated with hypoxic injury. Neurosteroids positively modulating GABA-A receptor complex exert anticonvulsive activity in many experimental models of seizures. Their interactions with antiepileptic drugs seem ambiguous in mice. Initial clinical data indicate that ganaxolone may provide a better seizure control in patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
- *Correspondence: Stanisław J. Czuczwar,
| |
Collapse
|
50
|
Jarras H, Bourque M, Poirier AA, Morissette M, Coulombe K, Di Paolo T, Soulet D. Neuroprotection and immunomodulation of progesterone in the gut of a mouse model of Parkinson's disease. J Neuroendocrinol 2020; 32:e12782. [PMID: 31430407 DOI: 10.1111/jne.12782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
Gastrointestinal symptoms appear in Parkinson's disease patients many years before motor symptoms, suggesting the implication of dopaminergic neurones of the gut myenteric plexus. Inflammation is also known to be increased in PD. We previously reported neuroprotection with progesterone in the brain of mice lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and hypothesised that it also has neuroprotective and immunomodulatory activities in the gut. To test this hypothesis, we investigated progesterone administered to adult male C57BL/6 mice for 10 days and treated with MPTP on day 5. In an additional experiment, progesterone was administered for 5 days following MPTP treatment. Ilea were collected on day 10 of treatment and microdissected to isolate the myenteric plexus. Dopaminergic neurones were reduced by approximately 60% and pro-inflammatory macrophages were increased by approximately 50% in MPTP mice compared to intact controls. These changes were completely prevented by progesterone administered before and after MPTP treatment and were normalised by 8 mg kg-1 progesterone administered after MPTP. In the brain of MPTP mice, brain-derived neurotrophic peptide (BDNF) and glial fibrillary acidic protein (GFAP) were associated with progesterone neuroprotection. In the myenteric plexus, increased BDNF levels compared to controls were measured in MPTP mice treated with 8 mg kg-1 progesterone started post MPTP, whereas GFAP levels remained unchanged. In conclusion, the results obtained in the present study show neuroprotective and anti-inflammatory effects of progesterone in the myenteric plexus of MPTP mice that are similar to our previous findings in the brain. Progesterone is non-feminising and could be used for both men and women in the pre-symptomatic stages of the disease.
Collapse
Affiliation(s)
- Hend Jarras
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Mélanie Bourque
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
| | - Andrée-Anne Poirier
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Marc Morissette
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
| | - Katherine Coulombe
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
| | - Thérèse Di Paolo
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Denis Soulet
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| |
Collapse
|