1
|
Williams HC, Carlson SW, Saatman KE. A role for insulin-like growth factor-1 in hippocampal plasticity following traumatic brain injury. VITAMINS AND HORMONES 2022; 118:423-455. [PMID: 35180936 DOI: 10.1016/bs.vh.2021.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Traumatic brain injury (TBI) initiates a constellation of secondary injury cascades, leading to neuronal damage and dysfunction that is often beyond the scope of endogenous repair mechanisms. Cognitive deficits are among the most persistent morbidities resulting from TBI, necessitating a greater understanding of mechanisms of posttraumatic hippocampal damage and neuroplasticity and identification of therapies that improve recovery by enhancing repair pathways. Focusing here on hippocampal neuropathology associated with contusion-type TBIs, the impact of brain trauma on synaptic structure and function and the process of adult neurogenesis is discussed, reviewing initial patterns of damage as well as evidence for spontaneous recovery. A case is made that insulin-like growth factor-1 (IGF-1), a growth-promoting peptide synthesized in both the brain and the periphery, is well suited to augment neuroplasticity in the injured brain. Essential during brain development, multiple lines of evidence delineate roles in the adult brain for IGF-1 in the maintenance of synapses, regulation of neurotransmission, and modulation of forms of synaptic plasticity such as long-term potentiation. Further, IGF-1 enhances adult hippocampal neurogenesis though effects on proliferation and neuronal differentiation of neural progenitor cells and on dendritic growth of newly born neurons. Post-injury administration of IGF-1 has been effective in rodent models of TBI in improving learning and memory, attenuating death of mature hippocampal neurons and promoting neurogenesis, providing critical proof-of-concept data. More studies are needed to explore the effects of IGF-1-based therapies on synaptogenesis and synaptic plasticity following TBI and to optimize strategies in order to stimulate only appropriate, functional neuroplasticity.
Collapse
Affiliation(s)
- Hannah C Williams
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Shaun W Carlson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kathryn E Saatman
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
2
|
Traumatic Brain Injury Causes Chronic Cortical Inflammation and Neuronal Dysfunction Mediated by Microglia. J Neurosci 2021; 41:1597-1616. [PMID: 33452227 DOI: 10.1523/jneurosci.2469-20.2020] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023] Open
Abstract
Traumatic brain injury (TBI) can lead to significant neuropsychiatric problems and neurodegenerative pathologies, which develop and persist years after injury. Neuroinflammatory processes evolve over this same period. Therefore, we aimed to determine the contribution of microglia to neuropathology at acute [1 d postinjury (dpi)], subacute (7 dpi), and chronic (30 dpi) time points. Microglia were depleted with PLX5622, a CSF1R antagonist, before midline fluid percussion injury (FPI) in male mice and cortical neuropathology/inflammation was assessed using a neuropathology mRNA panel. Gene expression associated with inflammation and neuropathology were robustly increased acutely after injury (1 dpi) and the majority of this expression was microglia independent. At 7 and 30 dpi, however, microglial depletion reversed TBI-related expression of genes associated with inflammation, interferon signaling, and neuropathology. Myriad suppressed genes at subacute and chronic endpoints were attributed to neurons. To understand the relationship between microglia, neurons, and other glia, single-cell RNA sequencing was completed 7 dpi, a critical time point in the evolution from acute to chronic pathogenesis. Cortical microglia exhibited distinct TBI-associated clustering with increased type-1 interferon and neurodegenerative/damage-related genes. In cortical neurons, genes associated with dopamine signaling, long-term potentiation, calcium signaling, and synaptogenesis were suppressed. Microglial depletion reversed the majority of these neuronal alterations. Furthermore, there was reduced cortical dendritic complexity 7 dpi, reduced neuronal connectively 30 dpi, and cognitive impairment 30 dpi. All of these TBI-associated functional and behavioral impairments were prevented by microglial depletion. Collectively, these studies indicate that microglia promote persistent neuropathology and long-term functional impairments in neuronal homeostasis after TBI.SIGNIFICANCE STATEMENT Millions of traumatic brain injuries (TBIs) occur in the United States alone each year. Survivors face elevated rates of cognitive and psychiatric complications long after the inciting injury. Recent studies of human brain injury link chronic neuroinflammation to adverse neurologic outcomes, suggesting that evolving inflammatory processes may be an opportunity for intervention. Here, we eliminate microglia to compare the effects of diffuse TBI on neurons in the presence and absence of microglia and microglia-mediated inflammation. In the absence of microglia, neurons do not undergo TBI-induced changes in gene transcription or structure. Microglial elimination prevented TBI-induced cognitive changes 30 d postinjury (dpi). Therefore, microglia have a critical role in disrupting neuronal homeostasis after TBI, particularly at subacute and chronic timepoints.
Collapse
|
3
|
Witcher KG, Bray CE, Dziabis JE, McKim DB, Benner BN, Rowe RK, Kokiko-Cochran ON, Popovich PG, Lifshitz J, Eiferman DS, Godbout JP. Traumatic brain injury-induced neuronal damage in the somatosensory cortex causes formation of rod-shaped microglia that promote astrogliosis and persistent neuroinflammation. Glia 2018; 66:2719-2736. [PMID: 30378170 DOI: 10.1002/glia.23523] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
Abstract
Microglia undergo dynamic structural and transcriptional changes during the immune response to traumatic brain injury (TBI). For example, TBI causes microglia to form rod-shaped trains in the cerebral cortex, but their contribution to inflammation and pathophysiology is unclear. The purpose of this study was to determine the origin and alignment of rod microglia and to determine the role of microglia in propagating persistent cortical inflammation. Here, diffuse TBI in mice was modeled by midline fluid percussion injury (FPI). Bone marrow chimerism and BrdU pulse-chase experiments revealed that rod microglia derived from resident microglia with limited proliferation. Novel data also show that TBI-induced rod microglia were proximal to axotomized neurons, spatially overlapped with dense astrogliosis, and aligned with apical pyramidal dendrites. Furthermore, rod microglia formed adjacent to hypertrophied microglia, which clustered among layer V pyramidal neurons. To better understand the contribution of microglia to cortical inflammation and injury, microglia were eliminated prior to TBI by CSF1R antagonism (PLX5622). Microglial elimination did not affect cortical neuron axotomy induced by TBI, but attenuated rod microglial formation and astrogliosis. Analysis of 262 immune genes revealed that TBI caused profound cortical inflammation acutely (8 hr) that progressed in nature and complexity by 7 dpi. For instance, gene expression related to complement, phagocytosis, toll-like receptor signaling, and interferon response were increased 7 dpi. Critically, these acute and chronic inflammatory responses were prevented by microglial elimination. Taken together, TBI-induced neuronal injury causes microglia to structurally associate with neurons, augment astrogliosis, and propagate diverse and persistent inflammatory/immune signaling pathways.
Collapse
Affiliation(s)
| | - Chelsea E Bray
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Julia E Dziabis
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Daniel B McKim
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Brooke N Benner
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, The Ohio State University, Columbus, Ohio.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, Ohio.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona
| | | | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, Columbus, Ohio.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| |
Collapse
|
4
|
Implantation of Neuronal Stem Cells Enhances Object Recognition without Increasing Neurogenesis after Lateral Fluid Percussion Injury in Mice. Stem Cells Int 2018. [PMID: 29531536 PMCID: PMC5818962 DOI: 10.1155/2018/4209821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cognitive deficits after traumatic brain injury (TBI) are debilitating and contribute to the morbidity and loss of productivity of over 10 million people worldwide. Cell transplantation has been linked to enhanced cognitive function after experimental traumatic brain injury, yet the mechanism of recovery is poorly understood. Since the hippocampus is a critical structure for learning and memory, supports adult neurogenesis, and is particularly vulnerable after TBI, we hypothesized that stem cell transplantation after TBI enhances cognitive recovery by modulation of endogenous hippocampal neurogenesis. We performed lateral fluid percussion injury (LFPI) in adult mice and transplanted embryonic stem cell-derived neural progenitor cells (NPC). Our data confirm an injury-induced cognitive deficit in novel object recognition, a hippocampal-dependent learning task, which is reversed one week after NPC transplantation. While LFPI alone promotes hippocampal neurogenesis, as revealed by doublecortin immunolabeling of immature neurons, subsequent NPC transplantation prevents increased neurogenesis and is not associated with morphological maturation of endogenous injury-induced immature neurons. Thus, NPC transplantation enhances cognitive recovery early after LFPI without a concomitant increase in neuron numbers or maturation.
Collapse
|
5
|
Lyeth BG. Historical Review of the Fluid-Percussion TBI Model. Front Neurol 2016; 7:217. [PMID: 27994570 PMCID: PMC5133434 DOI: 10.3389/fneur.2016.00217] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/21/2016] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health concern worldwide. Laboratory studies utilizing animal models of TBI are essential for addressing pathological mechanisms of brain injury and development of innovative treatments. Over the past 75 years, pioneering head injury researchers have devised and tested a number of fluid percussive methods to reproduce the concussive clinical syndrome in animals. The fluid-percussion brain injury technique has evolved from early investigations that applied a generalized loading of the brain to more recent computer-controlled systems. Of the many preclinical TBI models, the fluid-percussion technique is one of the most extensively characterized and widely used models. Some of the most important advances involved the development of the Stalhammer device to produce concussion in cats and the later characterization of this device for application in rodents. The goal of this historical review is to provide readers with an appreciation for the time and effort expended by the pioneering researchers who have led to today's state of the art fluid-percussion animal models of TBI.
Collapse
Affiliation(s)
- Bruce G. Lyeth
- Department of Neurological Surgery, University of California Davis, Davis, CA, USA
| |
Collapse
|
6
|
Muccigrosso MM, Ford J, Benner B, Moussa D, Burnsides C, Fenn AM, Popovich PG, Lifshitz J, Walker FR, Eiferman DS, Godbout JP. Cognitive deficits develop 1month after diffuse brain injury and are exaggerated by microglia-associated reactivity to peripheral immune challenge. Brain Behav Immun 2016; 54:95-109. [PMID: 26774527 PMCID: PMC4828283 DOI: 10.1016/j.bbi.2016.01.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Traumatic brain injury (TBI) elicits immediate neuroinflammatory events that contribute to acute cognitive, motor, and affective disturbance. Despite resolution of these acute complications, significant neuropsychiatric and cognitive issues can develop and progress after TBI. We and others have provided novel evidence that these complications are potentiated by repeated injuries, immune challenges and stressors. A key component to this may be increased sensitization or priming of glia after TBI. Therefore, our objectives were to determine the degree to which cognitive deterioration occurred after diffuse TBI (moderate midline fluid percussion injury) and ascertain if glial reactivity induced by an acute immune challenge potentiated cognitive decline 30 days post injury (dpi). In post-recovery assessments, hippocampal-dependent learning and memory recall were normal 7 dpi, but anterograde learning was impaired by 30 dpi. Examination of mRNA and morphological profiles of glia 30 dpi indicated a low but persistent level of inflammation with elevated expression of GFAP and IL-1β in astrocytes and MHCII and IL-1β in microglia. Moreover, an acute immune challenge 30 dpi robustly interrupted memory consolidation specifically in TBI mice. These deficits were associated with exaggerated microglia-mediated inflammation with amplified (IL-1β, CCL2, TNFα) and prolonged (TNFα) cytokine/chemokine expression, and a marked reactive morphological profile of microglia in the CA3 of the hippocampus. Collectively, these data indicate that microglia remain sensitized 30 dpi after moderate TBI and a secondary inflammatory challenge elicits robust microglial reactivity that augments cognitive decline. STATEMENT OF SIGNIFICANCE Traumatic brain injury (TBI) is a major risk factor in development of neuropsychiatric problems long after injury, negatively affecting quality of life. Mounting evidence indicates that inflammatory processes worsen with time after a brain injury and are likely mediated by glia. Here, we show that primed microglia and astrocytes developed in mice 1 month following moderate diffuse TBI, coinciding with cognitive deficits that were not initially evident after injury. Additionally, TBI-induced glial priming may adversely affect the ability of glia to appropriately respond to immune challenges, which occur regularly across the lifespan. Indeed, we show that an acute immune challenge augmented microglial reactivity and cognitive deficits. This idea may provide new avenues of clinical assessments and treatments following TBI.
Collapse
Affiliation(s)
- Megan M. Muccigrosso
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH
| | - Joni Ford
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH
| | - Brooke Benner
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH
| | - Daniel Moussa
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH
| | - Christopher Burnsides
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH
| | - Ashley M. Fenn
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH
| | - Phillip G. Popovich
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH,Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Ave, Columbus, OH,Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr., Columbus, OH
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children’s Hospital, Department of Child Health, University of Arizona, College of Medicine-Phoenix, Phoenix, AZ
| | - Fredrick Rohan Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, South Wales, Australia
| | - Daniel S. Eiferman
- Department of Surgery, The Ohio State University, 395 W. 12th Avenue, Columbus, OH
| | - Jonathan P. Godbout
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH,Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Ave, Columbus, OH,Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr., Columbus, OH,To whom correspondence should be addressed: J.P. Godbout, 259 IBMR Bldg., 460 Medical Center Dr., The Ohio State University, Columbus, OH 43210, USA. Tel: (614) 293-3456 Fax: (614) 366-2097,
| |
Collapse
|
7
|
Fenn AM, Skendelas JP, Moussa DN, Muccigrosso MM, Popovich PG, Lifshitz J, Eiferman DS, Godbout JP. Methylene blue attenuates traumatic brain injury-associated neuroinflammation and acute depressive-like behavior in mice. J Neurotrauma 2014; 32:127-38. [PMID: 25070744 DOI: 10.1089/neu.2014.3514] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with cerebral edema, blood brain barrier breakdown, and neuroinflammation that contribute to the degree of injury severity and functional recovery. Unfortunately, there are no effective proactive treatments for limiting immediate or long-term consequences of TBI. Therefore, the objective of this study was to determine the efficacy of methylene blue (MB), an antioxidant agent, in reducing inflammation and behavioral complications associated with a diffuse brain injury. Here we show that immediate MB infusion (intravenous; 15-30 minutes after TBI) reduced cerebral edema, attenuated microglial activation and reduced neuroinflammation, and improved behavioral recovery after midline fluid percussion injury in mice. Specifically, TBI-associated edema and inflammatory gene expression in the hippocampus were significantly reduced by MB at 1 d post injury. Moreover, MB intervention attenuated TBI-induced inflammatory gene expression (interleukin [IL]-1β, tumor necrosis factor α) in enriched microglia/macrophages 1 d post injury. Cell culture experiments with lipopolysaccharide-activated BV2 microglia confirmed that MB treatment directly reduced IL-1β and increased IL-10 messenger ribonucleic acid in microglia. Last, functional recovery and depressive-like behavior were assessed up to one week after TBI. MB intervention did not prevent TBI-induced reductions in body weight or motor coordination 1-7 d post injury. Nonetheless, MB attenuated the development of acute depressive-like behavior at 7 d post injury. Taken together, immediate intervention with MB was effective in reducing neuroinflammation and improving behavioral recovery after diffuse brain injury. Thus, MB intervention may reduce life-threatening complications of TBI, including edema and neuroinflammation, and protect against the development of neuropsychiatric complications.
Collapse
Affiliation(s)
- Ashley M Fenn
- 1 Department of Neuroscience, Ohio State University , Columbus, Ohio
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Fenn AM, Gensel JC, Huang Y, Popovich PG, Lifshitz J, Godbout JP. Immune activation promotes depression 1 month after diffuse brain injury: a role for primed microglia. Biol Psychiatry 2014; 76:575-84. [PMID: 24289885 PMCID: PMC4000292 DOI: 10.1016/j.biopsych.2013.10.014] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is associated with a higher incidence of depression. The majority of individuals who suffer a TBI are juveniles and young adults, and thus, the risk of a lifetime of depressive complications is a significant concern. The etiology of increased TBI-associated depression is unclear but may be inflammatory-related with increased brain sensitivity to secondary inflammatory challenges (e.g., stressors, infection, and injury). METHODS Adult male BALB/c mice received a sham (n = 52) or midline fluid percussion injury (TBI; n = 57). Neuroinflammation, motor coordination (rotarod), and depressive behaviors (social withdrawal, immobility in the tail suspension test, and anhedonia) were assessed 4 hours, 24 hours, 72 hours, 7 days, or 30 days later. Moreover, 30 days after surgery, sham and TBI mice received a peripheral injection of saline or lipopolysaccharide (LPS) and microglia activation and behavior were determined. RESULTS Diffuse TBI caused inflammation, peripheral cell recruitment, and microglia activation immediately after injury coinciding with motor coordination deficits. These transient events resolved within 7 days. Nonetheless, 30 days post-TBI a population of deramified and major histocompatibility complex II(+) (primed) microglia were detected. After a peripheral LPS challenge, the inflammatory cytokine response in primed microglia of TBI mice was exaggerated compared with microglia of controls. Furthermore, this LPS-induced microglia reactivity 30 days after TBI was associated with the onset of depressive-like behavior. CONCLUSIONS These results implicate a primed and immune-reactive microglial population as a possible triggering mechanism for the development of depressive complications after TBI.
Collapse
Affiliation(s)
- Ashley M. Fenn
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH, 43210
| | - John C. Gensel
- Spinal Cord and Brain Injury Research Center, the University of Kentucky, Lexington, KY, 40536
| | - Yan Huang
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH, 43210
| | - Phillip G. Popovich
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH, 43210,Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Ave, Columbus, OH, 43210,Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr., Columbus, OH, 43210
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children’s Hospital, Department of Child Health, University of Arizona, College of Medicine-Phoenix, Phoenix, AZ
| | - Jonathan P. Godbout
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH, 43210,Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Ave, Columbus, OH, 43210,Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr., Columbus, OH, 43210,To whom correspondence should be addressed: J.P. Godbout, 259 IBMR Bld, 460 Medical Center Dr., The Ohio State University, Columbus, OH 43210, USA. Tel: (614) 293-3456 Fax: (614) 366-2097,
| |
Collapse
|
9
|
Li J, Gu L, Feng DF, Ding F, Zhu G, Rong J. Exploring temporospatial changes in glucose metabolic disorder, learning, and memory dysfunction in a rat model of diffuse axonal injury. J Neurotrauma 2013; 29:2635-46. [PMID: 22880625 DOI: 10.1089/neu.2012.2411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diffuse axonal injury (DAI) is the predominant effect of severe traumatic brain injury and contributes significantly to cognitive deficits. The mechanisms underlying these cognitive deficits are often associated with complex metabolic alterations. However, the relationships between temporospatial alterations in cerebral glucose metabolism and the pathophysiology of DAI-related learning and memory dysfunction are not yet completely understood. We used a small animal positron emission tomography (PET) scanner with 2-[F-18]-fluoro-2-deoxy-D-glucose (¹⁸F-FDG) as a molecular probe to evaluate temporospatial glucose metabolism in vulnerable areas of rats with DAI. The Morris water maze (MWM) was used to evaluate the development and progression of learning and memory dysfunction. Compared to the sham-treated group, PET-MRI fusion images showed that glucose metabolism was reduced in animals with DAI. In addition, the standardized uptake value (SUV) of ¹⁸F-FDG was significantly decreased in the sensorimotor cortex, hippocampus, corpus callosum, caudate putamen, brain stem, and cerebellum at days 1, 3, and 7 after injury. SUV returned to baseline levels by 30 days after injury. The escape latency of the injured group was significantly increased, and the percentages of distance travelled and time spent in the target quadrant were significantly decreased 1 month after injury. These effects persisted for 3 months. SUVs in the hippocampus at the acute stage were significantly correlated with MWM performance during the recovery stage of DAI. These results demonstrate that microstructural injury-induced hypometabolism in the hippocampus at the acute stage are all significantly correlated with learning and memory dysfunctions during the recovery stage of DAI.
Collapse
Affiliation(s)
- Jia Li
- Department of Neurosurgery, No. 3 People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | |
Collapse
|
10
|
Fu Y, Rusznák Z, Herculano-Houzel S, Watson C, Paxinos G. Cellular composition characterizing postnatal development and maturation of the mouse brain and spinal cord. Brain Struct Funct 2012; 218:1337-54. [PMID: 23052551 DOI: 10.1007/s00429-012-0462-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 09/24/2012] [Indexed: 12/18/2022]
Abstract
The process of development, maturation, and regression in the central nervous system (CNS) are genetically programmed and influenced by environment. Hitherto, most research efforts have focused on either the early development of the CNS or the late changes associated with aging, whereas an important period corresponding to adolescence has been overlooked. In this study, we searched for age-dependent changes in the number of cells that compose the CNS (divided into isocortex, hippocampus, olfactory bulb, cerebellum, 'rest of the brain', and spinal cord) and the pituitary gland in 4-40-week-old C57BL6 mice, using the isotropic fractionator method in combination with neuronal nuclear protein as a marker for neuronal cells. We found that all CNS structures, except for the isocortex, increased in mass in the period of 4-15 weeks. Over the same period, the absolute number of neurons significantly increased in the olfactory bulb and cerebellum while non-neuronal cell numbers increased in the 'rest of the brain' and isocortex. Along with the gain in body length and weight, the pituitary gland also increased in mass and cell number, the latter correlating well with changes of the brain and spinal cord mass. The majority of the age-dependent alterations (e.g., somatic parameters, relative brain mass, number of pituitary cells, and cellular composition of the cerebellum, isocortex, rest of the brain, and spinal cord) occur rapidly between the 4th and 11th postnatal weeks. This period includes murine adolescence, underscoring the significance of this stage in the postnatal development of the mouse CNS.
Collapse
Affiliation(s)
- YuHong Fu
- Neuroscience Research Australia, Sydney, NSW 2031, Australia
| | | | | | | | | |
Collapse
|
11
|
Moderate traumatic brain injury triggers rapid necrotic death of immature neurons in the hippocampus. J Neuropathol Exp Neurol 2012; 71:348-59. [PMID: 22437344 DOI: 10.1097/nen.0b013e31824ea078] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Traumatic brain injury (TBI) causes cell death predominantly in the cerebral cortex, but there is additional secondary cell death in the hippocampus. We previously found that most of the dying cells in the mouse hippocampus are newborn immature granular neurons in a mouse model of lateral controlled cortical impact (CCI) injury with a moderate level of impact. It is not known how long this selective cell death in the hippocampal dentate gyrus lasts, and how it is induced. Using Fluoro-Jade B and immunohistochemistry, we show that most of the neuron death in the hippocampus occurs within 24 hours after TBI and that cell death continues at low level for at least another 2 weeks in this lateral CCI model. Most of the dying immature granular neurons did not exhibit morphologic characteristics of apoptosis, and only a small subpopulation of the dying cells was positive for apoptotic markers. In contrast, most of the dying cells coexpressed the receptor-interacting protein 1, a marker of necrosis, suggesting that immature neurons mainly died of necrosis. These results indicate that moderate TBI mainly triggers rapid necrotic death of immature neurons in the hippocampus in a mouse CCI model.
Collapse
|
12
|
Reid WM, Rolfe A, Register D, Levasseur JE, Churn SB, Sun D. Strain-related differences after experimental traumatic brain injury in rats. J Neurotrauma 2011; 27:1243-53. [PMID: 20392137 DOI: 10.1089/neu.2010.1270] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The present study directly compares the effects of experimental brain injury in two commonly used rat strains: Fisher 344 and Sprague-Dawley. We previously found that Fisher rats have a higher mortality rate and more frequent seizure attacks at the same injury level than Sprague-Dawley rats. Although strain differences in rats are commonly accepted as contributing to variability among studies, there is a paucity of literature addressing strain influence in experimental neurotrauma. Therefore this study compares outcome measures in two rat strains following lateral fluid percussion injury. Fisher 344 and Sprague-Dawley rats were monitored for changes in physiological measurements, intracranial pressure, and electroencephalographic activity. We further analyzed neuronal degeneration and cell death in the injured brain using Fluoro-Jade-B (FJB) histochemistry and caspase-3 immunostaining. Behavioral studies using the beam walk and Morris water maze were conducted to characterize strain differences in both motor and cognitive functional recovery following injury. We found that Fisher rats had significantly higher intracranial pressure, prolonged seizure activity, increased FJB-positive staining in the injured cortex and thalamus, and increased caspase-3 expression than Sprague-Dawley rats. On average, Fisher rats displayed a greater amount of total recording time in seizure activity and had longer ictal durations. The Fisher rats also had increased motor deficits, correlating with the above results. In spite of these results, Fisher rats performed better on cognitive tests following injury. The results demonstrate that different rat strains respond to injury differently, and thus in preclinical neurotrauma studies strain influence is an important consideration when evaluating outcomes.
Collapse
Affiliation(s)
- Wendy Murdock Reid
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia 23298-0631, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Pitkänen A, Bolkvadze T, Immonen R. Anti-epileptogenesis in rodent post-traumatic epilepsy models. Neurosci Lett 2011; 497:163-71. [PMID: 21402123 DOI: 10.1016/j.neulet.2011.02.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/25/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
Post-traumatic epilepsy (PTE) accounts for 10-20% of symptomatic epilepsies. The urgency to understand the process of post-traumatic epileptogenesis and search for antiepileptogenic treatments is emphasized by a recent increase in traumatic brain injury (TBI) related to military combat or accidents in the aging population. Recent developments in modeling of PTE in rodents have provided tools for identification of novel drug targets for antiepileptogenesis and biomarkers for predicting the risk of epileptogenesis and treatment efficacy after TBI. Here we review the available data on endophenotypes of humans and rodents with TBI associated with epilepsy. Also, current understanding of the mechanisms and biomarkers for PTE as well as factors associated with preclinical study designs are discussed. Finally, we summarize the attempts to prevent PTE in experimental models.
Collapse
Affiliation(s)
- Asla Pitkänen
- Department of Neurobiology, Epilepsy Research Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | |
Collapse
|
14
|
|
15
|
Genetic regulation of microglia activation, complement expression, and neurodegeneration in a rat model of traumatic brain injury. Exp Brain Res 2010; 205:103-14. [PMID: 20602094 DOI: 10.1007/s00221-010-2342-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
Abstract
Secondary brain damage following traumatic brain injury in part depends on neuroinflammation, a process where genetic factors may play an important role. We examined the response to a standardized cortical contusion in two different inbred rat strains, Dark Agouti (DA) and Piebald Virol Glaxo (PVG). Both are well characterized in models of autoimmune neuroinflammation, where DA is susceptible and PVG resistant. We found that infiltration of polymorphonuclear granulocytes (PMN) at 3-day postinjury was more pronounced in PVG. DA was more infiltrated by T cells at 3-day postinjury, showed an enhanced glial activation at 7-day postinjury and higher expression of C3 complement at 7-day postinjury. Neurodegeneration, assessed by Fluoro-Jade, was also more pronounced in the DA strain at 30-day postinjury. These results demonstrate differences in the response to cortical contusion injury attributable to genetic influences and suggest a link between injury-induced inflammation and neurodegeneration. Genetic factors that regulate inflammation elicited by brain trauma may be important for the development of secondary brain damage.
Collapse
|
16
|
Tsuru-Aoyagi K, Potts MB, Trivedi A, Pfankuch T, Raber J, Wendland M, Claus CP, Koh SE, Ferriero D, Noble-Haeusslein LJ. Glutathione peroxidase activity modulates recovery in the injured immature brain. Ann Neurol 2009; 65:540-9. [PMID: 19475669 DOI: 10.1002/ana.21600] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Mice subjected to traumatic brain injury at postnatal day 21 show emerging cognitive deficits that coincide with hippocampal neuronal loss. Here we consider glutathione peroxidase (GPx) activity as a determinant of recovery in the injured immature brain. METHODS Wild-type and transgenic (GPxTg) mice overexpressing GPx were subjected to traumatic brain injury or sham surgery at postnatal day 21. Animals were killed acutely (3 or 24 hours after injury) to assess oxidative stress and cell injury in the hippocampus or 4 months after injury after behavioral assessments. RESULTS In the acutely injured brains, a reduction in oxidative stress markers including nitrotyrosine was seen in the injured GPxTg group relative to wild-type control mice. In contrast, cell injury, with marked vulnerability in the dentate gyrus, was apparent despite no differences between genotypes. Magnetic resonance imaging demonstrated an emerging cortical lesion during brain maturation that was also indistinguishable between injured genotypes. Stereological analyses of cortical volumes likewise confirmed no genotypic differences between injured groups. However, behavioral tests beginning 3 months after injury demonstrated improved spatial memory learning in the GPxTg group. Moreover, stereological analysis within hippocampal subregions demonstrated a significantly greater number of neurons within the dentate of the GPx group. INTERPRETATION Our results implicate GPx in recovery of spatial memory after traumatic brain injury. This recovery may be attributed, in part, to a reduction in early oxidative stress and selective, long-term sparing of neurons in the dentate.
Collapse
Affiliation(s)
- Kyoko Tsuru-Aoyagi
- Department of Neurological Surgery, University of California-San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav 2009; 14 Suppl 1:16-25. [PMID: 18835369 DOI: 10.1016/j.yebeh.2008.09.023] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/18/2008] [Accepted: 09/18/2008] [Indexed: 12/21/2022]
Abstract
Epileptogenesis refers to a process in which an initial brain-damaging insult triggers a cascade of molecular and cellular changes that eventually lead to the occurrence of spontaneous seizures. Cellular alterations include neurodegeneration, neurogenesis, axonal sprouting, axonal injury, dendritic remodeling, gliosis, invasion of inflammatory cells, angiogenesis, alterations in extracellular matrix, and acquired channelopathies. Large-scale molecular profiling of epileptogenic tissue has provided information about the molecular pathways that can initiate and maintain cellular alterations. Currently we are learning how these pathways contribute to postinjury epileptogenesis and recovery process and whether they could be used as treatment targets.
Collapse
|
18
|
Donat CK, Schuhmann MU, Voigt C, Nieber K, Deuther-Conrad W, Brust P. Time-dependent alterations of cholinergic markers after experimental traumatic brain injury. Brain Res 2008; 1246:167-77. [PMID: 18848922 DOI: 10.1016/j.brainres.2008.09.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/15/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability. Cognitive deficits are believed to be connected with impairments of the cholinergic system. The present study was conducted to evaluate the cholinergic system in a model of focal brain injury with special attention to the time course of posttraumatic events in critical brain regions. Three groups of male Sprague-Dawley rats (post-TBI survival time: 2 h, 24 h and 72 h) were subjected to sham-operation (control) or controlled cortical impact injury. Receptor densities were determined on frozen ipsilateral sagittal brain sections with [(3)H]epibatidine (nicotinic acetylcholine receptors) and [(3)H]QNB (muscarinic acetylcholine receptors). The density of the vesicular acetylcholine transporter (vAChT) was evaluated with (-)[(3)H]vesamicol. Compared to control, vAChT was lowered (up to 50%) at each time point after trauma, with reductions in olfactory tubercle, basal forebrain, motor cortex, putamen, thalamic and hypothalamic areas and the gigantocellular reticular nucleus. Time-dependent reductions of about 20% of nAChR-density in the thalamus, hypothalamus, olfactory tubercle, gigantocellular reticular nucleus and motor cortex were observed post-TBI at 24 and 72 h. The same brain regions showed reductions of mAChR at 24 and 72 h after trauma with additional decreases in the corpus callosum, basal forebrain and anterior olfactory nucleus. In conclusion, cholinergic markers showed significant time-dependent impairments after TBI. Considering the role of the cholinergic system for cognitive processes in the brain, it seems likely that these impairments contribute to clinically relevant cognitive deficits.
Collapse
Affiliation(s)
- Cornelius K Donat
- Institute of Interdisciplinary Isotope Research, Permoserstrasse 15, 04318 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Donat CK, Schuhmann MU, Voigt C, Nieber K, Schliebs R, Brust P. Alterations of acetylcholinesterase activity after traumatic brain injury in rats. Brain Inj 2008; 21:1031-7. [PMID: 17891565 DOI: 10.1080/02699050701630359] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The cholinergic system is highly vulnerable to traumatic brain injury (TBI). However, limited information is available to what extent the degrading enzyme acetylcholinesterase (AChE) is involved. The present study addresses this question. METHOD Thirty-six anaesthetized Sprague-Dawley rats were subjected to sham operation or to TBI using controlled cortical impact (CCI). The AChE activity was histochemically determined in frozen brain slices at 2, 24 and 72 hours after TBI. RESULTS High enzyme activity was observed in regions rich in cholinergic innervation such as the olfactory tubercle, basal forebrain, putamen and superior colliculi. Low activity was found in the cortex, cerebellum and particularly in the white matter. A decrease of AchE activity (20-35%) was found in the hippocampus and hypothalamus already at 2 hours after TBI. An increase of approximately 30% was found in the basal forebrain at 2 and 24 hours. No changes occurred at 72 hours. CONCLUSION The findings are consistent with impairment of the cholinergic neurotransmission after TBI and suggest the involvement of the AChE in short-term regulatory mechanisms.
Collapse
Affiliation(s)
- Cornelius Kurt Donat
- Institute of Interdisciplinary Isotope Research, Permoserstasse 15, 04318 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Lifshitz J, Witgen BM, Grady MS. Acute cognitive impairment after lateral fluid percussion brain injury recovers by 1 month: evaluation by conditioned fear response. Behav Brain Res 2006; 177:347-57. [PMID: 17169443 PMCID: PMC1851906 DOI: 10.1016/j.bbr.2006.11.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 10/03/2006] [Accepted: 11/13/2006] [Indexed: 11/24/2022]
Abstract
Conditioned fear associates a contextual environment and cue stimulus to a foot shock in a single training trial, where fear expressed to the trained context or cue indicates cognitive performance. Lesion, aspiration or inactivation of the hippocampus and amygdala impair conditioned fear to the trained context and cue, respectively. Moreover, only bilateral experimental manipulations, in contrast to unilateral, abolish cognitive performance. In a model of unilateral brain injury, we sought to test whether a single lateral fluid percussion brain injury impairs cognitive performance in conditioned fear. Brain-injured mice were evaluated for anterograde cognitive deficits, with the hypothesis that acute injury-induced impairments improve over time. Male C57BL/6J mice were brain-injured, trained at 5 or 27 days post-injury, and tested 48h later for recall of the association between the conditioned stimuli (trained context or cue) and the unconditioned stimulus (foot shock) by quantifying fear-associated freezing behavior. A significant anterograde hippocampal-dependent cognitive deficit was observed at 7 days in brain-injured compared to sham. Cued fear conditioning could not detect amygdala-dependent cognitive deficits after injury and stereological estimation of amygdala neuron number corroborated this finding. The absence of injury-related freezing in a novel context substantiated injury-induced hippocampal-dependent cognitive dysfunction, rather than generalized fear. Variations in the training and testing paradigms demonstrated a cognitive deficit in consolidation, rather than acquisition or recall. By 1-month post-injury, cognitive function recovered in brain-injured mice. Hence, the acute injury-induced cognitive impairment may persist while transient pathophysiological sequelae are underway, and improve as global dysfunction subsides.
Collapse
Affiliation(s)
- Jonathan Lifshitz
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States.
| | | | | |
Collapse
|
21
|
Tran LD, Lifshitz J, Witgen BM, Schwarzbach E, Cohen AS, Grady MS. Response of the contralateral hippocampus to lateral fluid percussion brain injury. J Neurotrauma 2006; 23:1330-42. [PMID: 16958585 DOI: 10.1089/neu.2006.23.1330] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury is a leading cause of death and disability in the United States. Pathological examinations of humans and animal models after brain injury demonstrate hippocampal neuronal damage, which may contribute to cognitive impairments. Data from our laboratories have shown that, at 1 week after brain injury, mice possess significantly fewer neurons in all ipsilateral hippocampal subregions and a cognitive impairment. Since cognitive function is distributed across both cerebral hemispheres, the present paper explores the morphological and physiological response of the contralateral hippocampus to lateral brain injury. We analyzed the contralateral hippocampus using design-based stereology, Fluoro-Jade (FJ) histochemistry, and extracellular field recordings in mice at 7 and 30 days after lateral fluid percussion injury (FPI). At 7 days, all contralateral hippocampal subregions possess significantly fewer healthy neurons compared to sham-injured animals and demonstrate FJ-positive neuronal damage, but not at 30 days. Both the ipsilateral and contralateral dentate gyri demonstrate significantly increased excitability at 7 days post-injury, but only ipsilateral dentate gyrus hyperexcitability persists at 30 days compared to sham. In the contralateral hippocampus, the transient decrease in the number of healthy neurons, concomitant with FJ damage, and electrophysiological alterations establish a stunned period of cellular and circuit dysfunction. The return of healthy neuron number, absence of FJ damage, and sham level of excitability in the contralateral hippocampus suggest recovery of structure and function by 30 days after injury. The cognitive recovery observed after human traumatic brain injury may stem from a differential injury exposure and time course of recovery between homologous regions of the two hemispheres.
Collapse
Affiliation(s)
- Lorriann D Tran
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|