1
|
Ríos C, Salgado-Ceballos H, Grijalva I, Morales-Guadarrama A, Diaz-Ruiz A, Olayo R, Morales-Corona J, Olayo MG, Cruz GJ, Mondragón-Lozano R, Alvarez-Mejia L, Orozco-Barrios C, Sánchez-Torres S, Fabela-Sánchez O, Coyoy-Salgado A, Hernández-Godínez B, Ibáñez-Contreras A, Mendez-Armenta M. Demonstration of therapeutic effect of plasma-synthesized polypyrrole/iodine biopolymer in rhesus monkey with complete spinal cord section. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:21. [PMID: 39961937 PMCID: PMC11832569 DOI: 10.1007/s10856-025-06862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Spinal cord injury (SCI) can cause paralysis, and although multiple therapeutic proposals have been developed in murine models, results have hardly been replicated in humans. As non-human primates (NHP) are more similar to humans than rodents, the current study investigated whether it was possible to reproduce in a NHP, the previously obtained beneficial results by using a plasma-synthesized polypyrrole/iodine (PPy/I) biopolymer, which reduce glial scar formation and inflammatory response and promotes nerve tissue preservation, regenerative processes and functional recovery in rats. In NHPs (Rhesus monkey) with SCI by complete transection (SCT) and with plasma-synthesized PPy/I application (experimental) or without (control), the expression of pro-inflammatory cytokines in blood, preservation of nervous tissue through magnetic resonance imaging and histological and morphometric techniques, regeneration through immunohistochemistry study and functional recovery through clinical examination, were evaluated. Control NHP showed a markedly increased of pro-inflammatory cytokines vs. experimental NHP, which preserved more nerve tissue. At the end of the follow-up, a thinner glial scar in the injured spinal cord was observed in the experimental NHP as well as regenerative nerve processes (NeuN and β-III tubulin expression), while control NHP had a marked glial scar, large cysts and less nerve tissue at the injured zone. Plasma-synthesized PPy/I also reduced the loss of pelvic limb muscle mass and allowed the experimental NHP recovered knee-jerk, withdrawal and plantar reflexes as well as movement in the hind limbs. Since most of the beneficial effects of plasma-synthesized PPy/I previously reported in rats were also observed in the NHP, these preliminary findings make their replication in humans with SCI more likely.
Collapse
Affiliation(s)
- Camilo Ríos
- Research Direction, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, México City, México
| | - Hermelinda Salgado-Ceballos
- Medical Research Unit in Neurological Diseases, Instituto Mexicano del Seguro Social, Mexico City, México.
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico.
| | - Israel Grijalva
- Medical Research Unit in Neurological Diseases, Instituto Mexicano del Seguro Social, Mexico City, México
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
| | - Axayacatl Morales-Guadarrama
- National Center for Research in Imaging and Medical Instrumentation, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
- Division of Basic Sciences and Engineering, Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Araceli Diaz-Ruiz
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Roberto Olayo
- Division of Basic Sciences and Engineering, Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Juan Morales-Corona
- Division of Basic Sciences and Engineering, Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - María G Olayo
- Department of Physics, Instituto Nacional de Investigaciones Nucleares, Estado de México, Mexico
| | - Guillermo J Cruz
- Department of Physics, Instituto Nacional de Investigaciones Nucleares, Estado de México, Mexico
| | - Rodrigo Mondragón-Lozano
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
- CONAHCyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - Laura Alvarez-Mejia
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
- Division of Basic Sciences and Engineering, Department of Physics, CONAHCyT-Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Carlos Orozco-Barrios
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
- CONAHCyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - Stephanie Sánchez-Torres
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
- CONAHCyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - Omar Fabela-Sánchez
- Department of Chemistry Macromolecules and Nanomaterials, CONAHCyT-Centro de Investigación en Química Aplicada, Saltillo, Coahuila, Mexico
| | - Angélica Coyoy-Salgado
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
- CONAHCyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | | | | | - Marisela Mendez-Armenta
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| |
Collapse
|
2
|
Hu Y, Sun Y, Yuan H, Liu J, Chen L, Liu D, Xu Y, Zhou X, Ding L, Zhang Z, Xiong L, Xue L, Wang T. Vof16-miR-185-5p-GAP43 network improves the outcomes following spinal cord injury via enhancing self-repair and promoting axonal growth. CNS Neurosci Ther 2024; 30:e14535. [PMID: 38168094 PMCID: PMC11017428 DOI: 10.1111/cns.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION Self-repair of spinal cord injury (SCI) has been found in humans and experimental animals with partial recovery of neurological functions. However, the regulatory mechanisms underlying the spontaneous locomotion recovery after SCI are elusive. AIMS This study was aimed at evaluating the pathological changes in injured spinal cord and exploring the possible mechanism related to the spontaneous recovery. RESULTS Immunofluorescence staining was performed to detect GAP43 expression in lesion site after spinal cord transection (SCT) in rats. Then RNA sequencing and gene ontology (GO) analysis were employed to predict lncRNA that correlates with GAP43. LncRNA smart-silencing was applied to verify the function of lncRNA vof16 in vitro, and knockout rats were used to evaluate its role in neurobehavioral functions after SCT. MicroRNA sequencing, target scan, and RNA22 prediction were performed to further explore the underlying regulatory mechanisms, and miR-185-5p stands out. A miR-185-5p site-regulated relationship with GAP43 and vof16 was determined by luciferase activity analysis. GAP43-silencing, miR-185-5p-mimic/inhibitor, and miR-185-5p knockout rats were also applied to elucidate their effects on spinal cord neurite growth and neurobehavioral function after SCT. We found that a time-dependent increase of GAP43 corresponded with the limited neurological recovery in rats with SCT. CRNA chip and GO analysis revealed lncRNA vof16 was the most functional in targeting GAP43 in SCT rats. Additionally, silencing vof16 suppressed neurite growth and attenuated the motor dysfunction in SCT rats. Luciferase reporter assay showed that miR-185-5p competitively bound the same regulatory region of vof16 and GAP43. CONCLUSIONS Our data indicated miR-185-5p could be a detrimental factor in SCT, and vof16 may function as a ceRNA by competitively binding miR-185-5p to modulate GAP43 in the process of self-recovery after SCT. Our study revealed a novel vof16-miR-185-5p-GAP43 regulatory network in neurological self-repair after SCT and may underlie the potential treatment target for SCI.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu DistrictWest China Airport Hospital of Sichuan UniversityChengduChina
| | - Yi‐Fei Sun
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Hao Yuan
- Laboratory Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Jia Liu
- Laboratory Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Li Chen
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Dong‐Hui Liu
- Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Yang Xu
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Xin‐Fu Zhou
- Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Li Ding
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Ze‐Tao Zhang
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Liu‐Lin Xiong
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Lu‐Lu Xue
- State Key Laboratory of BiotherapySichuan UniversityChengduSichuanChina
| | - Ting‐Hua Wang
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
- Laboratory Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
- State Key Laboratory of BiotherapySichuan UniversityChengduSichuanChina
| |
Collapse
|
3
|
Fisher KM, Garner JP, Darian-Smith C. Chronic Adaptations in the Dorsal Horn Following a Cervical Spinal Cord Injury in Primates. J Neurosci 2024; 44:e0877232023. [PMID: 38233220 PMCID: PMC10860610 DOI: 10.1523/jneurosci.0877-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
Spinal cord injury (SCI) is devastating, with limited treatment options and variable outcomes. Most in vivo SCI research has focused on the acute and early post-injury periods, and the promotion of axonal growth, so little is understood about the clinically stable chronic state, axonal growth over time, and what plasticity endures. Here, we followed animals into the chronic phase following SCI, to address this gap. Male macaques received targeted deafferentation, affecting three digits of one hand, and were divided into short (4-6 months) or long-term (11-12 months) groups, based on post-injury survival times. Monkeys were assessed behaviorally, where possible, and all exhibited an initial post-injury deficit in manual dexterity, with gradual functional recovery over 2 months. We previously reported extensive sprouting of somatosensory corticospinal (S1 CST) fibers in the dorsal horn in the first five post-injury months. Here, we show that by 1 year, the S1 CST sprouting is pruned, with the terminal territory resembling control animals. This was reflected in the number of putatively "functional" synapses observed, which increased over the first 4-5 months, and then returned to baseline by 1 year. Microglia density also increased in the affected dorsal horn at 4-6 months and then decreased, but did not return to baseline by 1 year, suggesting refinement continues beyond this time. Overall, there is a long period of reorganization and consolidation of adaptive circuitry in the dorsal horn, extending well beyond the initial behavioral recovery. This provides a potential window to target therapeutic opportunities during the chronic phase.
Collapse
Affiliation(s)
- Karen M Fisher
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford 94305-5342, California
| | - Joseph P Garner
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford 94305-5342, California
| | - Corinna Darian-Smith
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford 94305-5342, California
| |
Collapse
|
4
|
Mahmoud W, Hultborn H, Zuluaga J, Zrenner C, Zrenner B, Ziemann U, Ramos-Murguialday A. Testing spasticity mechanisms in chronic stroke before and after intervention with contralesional motor cortex 1 Hz rTMS and physiotherapy. J Neuroeng Rehabil 2023; 20:150. [PMID: 37941036 PMCID: PMC10631065 DOI: 10.1186/s12984-023-01275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Previous studies showed that repetitive transcranial magnetic stimulation (rTMS) reduces spasticity after stroke. However, clinical assessments like the modified Ashworth scale, cannot discriminate stretch reflex-mediated stiffness (spasticity) from passive stiffness components of resistance to muscle stretch. The mechanisms through which rTMS might influence spasticity are also not understood. METHODS We measured the effects of contralesional motor cortex 1 Hz rTMS (1200 pulses + 50 min physiotherapy: 3×/week, for 4-6 weeks) on spasticity of the wrist flexor muscles in 54 chronic stroke patients using a hand-held dynamometer for objective quantification of the stretch reflex response. In addition, we measured the excitability of three spinal mechanisms thought to be related to post-stroke spasticity: post-activation depression, presynaptic inhibition and reciprocal inhibition before and after the intervention. Effects on motor impairment and function were also assessed using standardized stroke-specific clinical scales. RESULTS The stretch reflex-mediated torque in the wrist flexors was significantly reduced after the intervention, while no change was detected in the passive stiffness. Additionally, there was a significant improvement in the clinical tests of motor impairment and function. There were no significant changes in the excitability of any of the measured spinal mechanisms. CONCLUSIONS We demonstrated that contralesional motor cortex 1 Hz rTMS and physiotherapy can reduce the stretch reflex-mediated component of resistance to muscle stretch without affecting passive stiffness in chronic stroke. The specific physiological mechanisms driving this spasticity reduction remain unresolved, as no changes were observed in the excitability of the investigated spinal mechanisms.
Collapse
Affiliation(s)
- Wala Mahmoud
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Hans Hultborn
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Jagoba Zuluaga
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Brigitte Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| | - Ander Ramos-Murguialday
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
- Tecnalia, Basque Research and Technology Alliance, San Sebastián, Spain
- Athenea Neuroclinics, San Sebastián, Spain
| |
Collapse
|
5
|
Franz S, Eck U, Schuld C, Heutehaus L, Wolf M, Wilder-Smith E, Schulte-Mattler W, Weber MA, Rupp R, Weidner N. Lower motoneuron dysfunction impacts spontaneous motor recovery in acute cervical spinal cord injury. J Neurotrauma 2022; 40:862-875. [PMID: 36006372 PMCID: PMC10162119 DOI: 10.1089/neu.2022.0181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Paresis after spinal cord injury is caused by damage to upper and lower motoneurons and may differentially impact neurological recovery. This prospective monocentric longitudinal observational study investigated the extent and severity of lower motoneuron dysfunction and its impact on upper extremity motor recovery after acute cervical spinal cord injury. Pathological spontaneous activity at rest and/or increased discharge rates of motor unit action potentials recorded by needle electromyography (EMG) were taken as parameters for lower motoneuron dysfunction and its relation to the extent of myelopathy in the first available spine MRI was determined. Motor recovery was assessed by standardized neurological examination within the first 4 weeks (acute stage) and up to 1 year (chronic stage) after injury. Eighty-five muscles of 17 individuals with cervical spinal cord injury (neurological level of injury from C1 to C7) and a median age of 54 (28-59) were examined. The results showed that muscles with signs of lower motoneuron dysfunction peaked at the lesion center (Χ²[2,n=85]=6.6, p=0.04) and that the severity of lower motoneuron dysfunction correlated with T2-weighted hyperintense MRI signal changes in routine spine MRI at the lesion site (spearman ρ=0.31, p=0.01). Muscles exhibiting signs of lower motoneuron dysfunction, as indicated by pathological spontaneous activity at rest and/or increased discharge rates of motor unit action potentials, were associated with more severe paresis in both the acute and chronic stages after spinal cord injury (spearman ρ acute=-0.22, p=0.04 and chronic=-0.31, p=0.004). Moreover, the severity of lower motoneuron dysfunction in the acute stage was also associated with a greater degree of paresis (spearman ρ acute=-0.24, p=0.03 and chronic=-0.35, p=0.001). While both muscles with and without signs of lower motoneuron dysfunction were capable of regaining strength over time, those without lower motoneuron dysfunctions had a higher potential to reach full strength. Muscles with signs of lower motoneuron dysfunction in the acute stage displayed increased amplitudes of motor unit action potentials with chronic-stage needle EMG, indicating reinnervation through peripheral collateral sprouting as compensatory mechanism (Χ²[1,n=72]=4.3, p=0.04). Thus, lower motoneuron dysfunction represents a relevant factor contributing to motor impairment and recovery in acute cervical spinal cord injury. Defined recovery mechanisms (peripheral reinnervation) may at least partially underlie spontaneous recovery in respective muscles. Therefore, assessment of lower motoneuron dysfunction could help refine prediction of motor recovery following spinal cord injury.
Collapse
Affiliation(s)
- Steffen Franz
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
- Address correspondence to: Steffen Franz, MD, Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstraße 200 a, 69118 Heidelberg, Germany
| | - Ute Eck
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Schuld
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Laura Heutehaus
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Wolf
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Einar Wilder-Smith
- Department of Neurology, Kantonsspital Lucerne, Lucerne, Switzerland
- Department of Neurology, Inselspital Bern, University of Bern, Bern, Switzerland
| | | | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Rüdiger Rupp
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
6
|
Kjell J, Svensson M. Advancing Peripheral Nerve Graft Transplantation for Incomplete Spinal Cord Injury Repair. Front Cell Neurosci 2022; 16:885245. [PMID: 35573831 PMCID: PMC9097274 DOI: 10.3389/fncel.2022.885245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Peripheral nerves have a propensity for axon growth and regeneration that the central nervous system lacks (CNS). However, CNS axons can also grow long distances if introduced to a graft harvested from a peripheral nerve (PNGs), which is the rationale for using PNGs as repair strategy for injuries of the spinal cord. From a clinical perspective, PNGs provide interesting possibilities with potential to repair the injured spinal cord. First, there are numerous options to harvest autologous grafts associated with low risk for the patient. Second, a PNG allow axons to grow considerable distances and can, by the surgical procedure, be navigated to specific target sites in the CNS. Furthermore, a PNG provides all necessary biological substrates for myelination of elongating axons. A PNG can thus be suited to bridge axons long distances across an injury site and restore long tracts in incomplete SCI. Experimentally, locomotor functions have been improved transplanting a PNG after incomplete injury. However, we still know little with regard to the formation of new circuitries and functional outcome in association to when, where, and how grafts are inserted into the injured spinal cord, especially for sensory functions. In this perspective, we discuss the advantages of PNG from a clinical and surgical perspective, the need for adding/repairing long tracts, how PNGs are best applied for incomplete injuries, and the unexplored areas we believe are in need of answers.
Collapse
Affiliation(s)
- Jacob Kjell
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
- Neurosurgery, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
7
|
Bai Y, Han S, Guan JY, Lin J, Zhao MG, Liang GB. Contralateral C7 nerve transfer in the treatment of upper-extremity paralysis: a review of anatomical basis, surgical approaches, and neurobiological mechanisms. Rev Neurosci 2022; 33:491-514. [PMID: 34979068 DOI: 10.1515/revneuro-2021-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/27/2021] [Indexed: 11/15/2022]
Abstract
The previous three decades have witnessed a prosperity of contralateral C7 nerve (CC7) transfer in the treatment of upper-extremity paralysis induced by both brachial plexus avulsion injury and central hemiplegia. From the initial subcutaneous route to the pre-spinal route and the newly-established post-spinal route, this surgical operation underwent a series of innovations and refinements, with the aim of shortening the regeneration distance and even achieving direct neurorrhaphy. Apart from surgical efforts for better peripheral nerve regeneration, brain involvement in functional improvements after CC7 transfer also stimulated scientific interest. This review summarizes recent advances of CC7 transfer in the treatment of upper-extremity paralysis of both peripheral and central causes, which covers the neuroanatomical basis, the evolution of surgical approach, and central mechanisms. In addition, motor cortex stimulation is discussed as a viable rehabilitation treatment in boosting functional recovery after CC7 transfer. This knowledge will be beneficial towards improving clinical effects of CC7 transfer.
Collapse
Affiliation(s)
- Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110015, China
| | - Song Han
- Department of Neurosurgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110015, China
| | - Jing-Yu Guan
- Department of Neurosurgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110015, China
| | - Jun Lin
- Department of Neurosurgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110015, China
| | - Ming-Guang Zhao
- Department of Neurosurgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110015, China
| | - Guo-Biao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110015, China
| |
Collapse
|
8
|
Cao Y, Shi Y, Xiao Z, Chen X, Chen B, Yang B, Shu M, Yin Y, Wu S, Yin W, Fu X, Tan J, Zhou Q, Wu Z, Jiang X, Dai J. Contralateral Axon Sprouting but Not Ipsilateral Regeneration Is Responsible for Spontaneous Locomotor Recovery Post Spinal Cord Hemisection. Front Cell Neurosci 2021; 15:730348. [PMID: 34512270 PMCID: PMC8426601 DOI: 10.3389/fncel.2021.730348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) usually results in permanent functional impairment and is considered a worldwide medical problem. However, both motor and sensory functions can spontaneously recover to varying extents in humans and animals with incomplete SCI. This study observed a significant spontaneous hindlimb locomotor recovery in Sprague-Dawley rats at four weeks after post-right-side spinal cord hemisection at thoracic 8 (T8). To verify whether the above spontaneous recovery derives from the ipsilateral axonal or neuronal regeneration to reconnect the lesion site, we resected either the scar tissue or right side T7 spinal cord at five weeks post-T8 hemisected injury. The results showed that the spontaneously achieved right hindlimb locomotor function had little change after resection. Furthermore, when T7 left hemisection was performed five weeks after the initial injury, the spontaneously achieved right hindlimb locomotor function was dramatically abolished. A similar result could also be observed when T7 transection was performed after the initial hemisection. The results indicated that it might be the contralateral axonal remolding rather than the ipsilateral axonal or neuronal regeneration beyond the lesion site responsible for the spontaneous hindlimb locomotor recovery. The immunostaining analyses and corticospinal tracts (CSTs) tracing results confirmed this hypothesis. We detected no substantial neuronal and CST regeneration throughout the lesion site; however, significantly more CST fibers were observed to sprout from the contralateral side at the lumbar 4 (L4) spinal cord in the hemisection model rats than in intact ones. In conclusion, this study verified that contralateral CST sprouting, but not ipsilateral CST or neuronal regeneration, is primarily responsible for the spontaneous locomotor recovery in hemisection SCI rats.
Collapse
Affiliation(s)
- Yudong Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Ya Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- Shigatse Branch, Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Muya Shu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shuyu Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Wen Yin
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Xianyong Fu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Quanwei Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Zhaoping Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Liu CH, Chang HM, Yang YS, Lin YT, Ho YJ, Tseng TJ, Lan CT, Li ST, Liao WC. Melatonin Promotes Nerve Regeneration Following End-to-Side Neurorrhaphy by Accelerating Cytoskeletal Remodeling via the Melatonin Receptor-dependent Pathway. Neuroscience 2019; 429:282-292. [PMID: 31689489 DOI: 10.1016/j.neuroscience.2019.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022]
Abstract
Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and β3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as β3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and β3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the β3-tubulin remodeling may occur via CaMKII-mediated Ca2+ signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway.
Collapse
Affiliation(s)
- Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yin-Shuo Yang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ta Lin
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chyn-Tair Lan
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shao-Ti Li
- Division of Radiation Oncology, Chung Shan University Hospital, Taichung, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
10
|
Wang K, Li M, Jin L, Deng C, Chen Z, Chen H, Han Y, Qian L, Li X, Shen H. Retracted Article: Melatonin protects spinal cord injury by up-regulating IGFBP3 through the improvement of microcirculation in a rat model. RSC Adv 2019; 9:32072-32080. [PMID: 35530801 PMCID: PMC9072846 DOI: 10.1039/c9ra04591k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/28/2019] [Indexed: 12/03/2022] Open
Abstract
The present study was aimed at the investigation of the effects of melatonin on spinal cord injury (SCI) and the role of IGFBP3 in SCI both in vivo and in vitro. The rats received treatment with 100 mg kg-1 melatonin or both melatonin and pGenesil-1-si-IGFBP3 (50 µg per g bw) after SCI surgery. The motor function in rats was measured using the Basso-Beattie-Bresnahan (BBB) scale score; perfusion vessel area was determined by injecting FITC-conjugated lycopersicon esculentum agglutinin lectin (FITC-LEA), whereas the blood-spinal cord barrier permeability was measured using Evans blue. The pericytes were isolated, and the cells were cultured under hypoxia, treated with melatonin or transfected with si-IGFBP3. RT-qPCR and western blotting were conducted for the determination of IGFBP3, VEGF, MMP-2, ICAM-1 and Ang1. The expression of IGFBP3 was significantly down-regulated in the SCI rats, and melatonin significantly enhanced the IGFBP3 level. Melatonin improved the motor function, reduced the neuron injury, and improved the microcirculation in rats. However, the down-regulation of IGFBP3 significantly reversed these effects. Moreover, in both the SCI rat spinal cord tissues and the in vitro pericytes under hypoxia, the expressions of IGFBP3 and Ang1 were significantly down-regulated, whereas those of the proteins MMP-2, VEGF and ICAM-1 were significantly up-regulated, and melatonin dramatically inhibited these changes. Melatonin could protect the rats from SCI by improving the microcirculation through the up-regulation of IGFBP3.
Collapse
Affiliation(s)
- Kun Wang
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University 160 Pujian Rd. Shanghai 200127 China +86-21-68383536 +86-21-68383536
| | - Meng Li
- Department of Ultrasound, Obstetrics and Gynecology Hospital, Fudan University Shanghai 200090 China
| | - Linyu Jin
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University 160 Pujian Rd. Shanghai 200127 China +86-21-68383536 +86-21-68383536
| | - Chao Deng
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University 160 Pujian Rd. Shanghai 200127 China +86-21-68383536 +86-21-68383536
| | - Zhi Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University 160 Pujian Rd. Shanghai 200127 China +86-21-68383536 +86-21-68383536
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University 160 Pujian Rd. Shanghai 200127 China +86-21-68383536 +86-21-68383536
| | - Yingchao Han
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University 160 Pujian Rd. Shanghai 200127 China +86-21-68383536 +86-21-68383536
| | - Lie Qian
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University 160 Pujian Rd. Shanghai 200127 China +86-21-68383536 +86-21-68383536
| | - Xinfeng Li
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University 160 Pujian Rd. Shanghai 200127 China +86-21-68383536 +86-21-68383536
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University 160 Pujian Rd. Shanghai 200127 China +86-21-68383536 +86-21-68383536
| |
Collapse
|
11
|
Filipp ME, Travis BJ, Henry SS, Idzikowski EC, Magnuson SA, Loh MY, Hellenbrand DJ, Hanna AS. Differences in neuroplasticity after spinal cord injury in varying animal models and humans. Neural Regen Res 2019; 14:7-19. [PMID: 30531063 PMCID: PMC6263009 DOI: 10.4103/1673-5374.243694] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rats have been the primary model to study the process and underlying mechanisms of recovery after spinal cord injury. Two weeks after a severe spinal cord contusion, rats can regain weight-bearing abilities without therapeutic interventions, as assessed by the Basso, Beattie and Bresnahan locomotor scale. However, many human patients suffer from permanent loss of motor function following spinal cord injury. While rats are the most understood animal model, major differences in sensorimotor pathways between quadrupeds and bipeds need to be considered. Understanding the major differences between the sensorimotor pathways of rats, non-human primates, and humans is a start to improving targets for treatments of human spinal cord injury. This review will discuss the neuroplasticity of the brain and spinal cord after spinal cord injury in rats, non-human primates, and humans. A brief overview of emerging interventions to induce plasticity in humans with spinal cord injury will also be discussed.
Collapse
Affiliation(s)
- Mallory E Filipp
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Benjamin J Travis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Stefanie S Henry
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Emma C Idzikowski
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Sarah A Magnuson
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Megan Yf Loh
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | | | - Amgad S Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
12
|
Sliwinski C, Nees TA, Puttagunta R, Weidner N, Blesch A. Sensorimotor Activity Partially Ameliorates Pain and Reduces Nociceptive Fiber Density in the Chronically Injured Spinal Cord. J Neurotrauma 2018; 35:2222-2238. [PMID: 29706124 DOI: 10.1089/neu.2017.5431] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A large proportion of patients suffering from spinal cord injury (SCI) develop chronic central neuropathic pain. Previously, we and others have shown that sensorimotor training early after SCI can prevent the development of mechanical allodynia. To determine whether training initiated in the subchronic/chronic phase remains effective, correlates of below-level neuropathic pain were analyzed in the hindpaws 5-10 weeks after a moderate T11 contusion SCI (50 kDyn) in adult female C57BL/6 mice. In a comparison of SCI and sham mice 5 weeks post-injury, about 80% of injured animals developed mechanical hypersensitivity to light mechanical stimuli, whereas testing of noxious stimuli revealed hypo-responsiveness. Thermal sensitivity testing showed a decreased response latency after injury. Without intervention, mechanical and thermal hyper-responsiveness were evident until the end of the experiment (10 weeks). In contrast, treadmill training (2 × 15 min/day; 5 × /week) initiated 6 weeks post-injury resulted in partial amelioration of pain behavior and this effect remained stable. Analysis of calcitonin gene-related peptide (CGRP)-labeled fibers in lamina III-IV of the lumbar dorsal horn revealed an increase in labeling density after SCI. This was not due to changes in the number or size distribution of CGRP-labeled lumbar dorsal root ganglion neurons. Treadmill training reduced the CGRP-labeling density in the spinal cord of injured mice, whereas the density of non-peptidergic isolectin-B4 (IB4)+ fibers showed no changes in lamina IIi and a slight reduction of sparse IB4 labeling in laminae III-IV. Thus, sensorimotor activity initiated in the subchronic/chronic phase of SCI remains effective in ameliorating pain behavior and influencing structural changes of the nociceptive system.
Collapse
Affiliation(s)
| | - Timo A Nees
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany .,2 Center for Orthopedic and Trauma Surgery, Heidelberg University Hospital , Heidelberg, Germany
| | - Radhika Puttagunta
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany
| | - Norbert Weidner
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany
| | - Armin Blesch
- 1 Spinal Cord Injury Center, Heidelberg University Hospital , Heidelberg, Germany .,3 Department of Neurological Surgery and Goodman Campbell Brain and Spine, Stark Neurosciences Research Institute, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
13
|
Zou JL, Sun JH, Qiu S, Chen SH, He FL, Li JC, Mao HQ, Liu XL, Quan DP, Zeng YS, Zhu QT. Spatial distribution affects the role of CSPGs in nerve regeneration via the actin filament-mediated pathway. Exp Neurol 2018; 307:37-44. [PMID: 29852179 DOI: 10.1016/j.expneurol.2018.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 11/28/2022]
Abstract
CSPGs are components of the extracellular matrix in the nervous system, where they serve as cues for axon guidance during development. After a peripheral nerve injury, CSPGs switch roles and become axon inhibitors and become diffusely distributed at the injury site. To investigate whether the spatial distribution of CSPGs affects their role, we combined in vitro DRG cultures with CSPG stripe or coverage assays to simulate the effect of a patterned substrate or dispersive distribution of CSPGs on growing neurites. We observed neurite steering at linear CSPG interfaces and neurite inhibition when diffused CSPGs covered the distal but not the proximal segment of the neurite. The repellent and inhibitory effects of CSPGs on neurite outgrowth were associated with the disappearance of focal actin filaments on growth cones. The application of an actin polymerization inducer, jasplakinolide, allowed neurites to break through the CSPG boundary and grow on CSPG-coated surfaces. The results of our study collectively reveal a novel mechanism that explains how the spatial distribution of CSPGs determines whether they act as a cue for axon guidance or as an axon-inhibiting factor. Increasing our understanding of this issue may promote the development of novel therapeutic strategies that regulate the spatial distributions of CSPGs to use them as an axon guidance cue.
Collapse
Affiliation(s)
- Jian-Long Zou
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou 510080, China
| | - Jia-Hui Sun
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Shuai Qiu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou 510080, China
| | - Shi-Hao Chen
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510127, China
| | - Fu-Lin He
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou 510080, China
| | - Jia-Chun Li
- Orthopedics Department, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiao-Lin Liu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangzhou 510080, China
| | - Da-Ping Quan
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510127, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Qing-Tang Zhu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangzhou 510080, China.
| |
Collapse
|
14
|
Early-onset treadmill training reduces mechanical allodynia and modulates calcitonin gene-related peptide fiber density in lamina III/IV in a mouse model of spinal cord contusion injury. Pain 2016; 157:687-697. [PMID: 26588690 DOI: 10.1097/j.pain.0000000000000422] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Below-level central neuropathic pain (CNP) affects a large proportion of spinal cord injured individuals. To better define the dynamic changes of the spinal cord neural network contributing to the development of CNP after spinal cord injury (SCI), we characterized the morphological and behavioral correlates of CNP in female C57BL/6 mice after a moderate T11 contusion SCI (50 kdyn) and the influence of moderate physical activity. Compared with sham-operated animals, injured mice developed mechanical allodynia 2 weeks post injury when tested with small-diameter von Frey hair filaments (0.16 g and 0.4 g filament), but presented hyporesponsiveness to noxious mechanical stimuli (1.4 g filament). The mechano-sensory alterations lasted up to 35 days post injury, the longest time point examined. The response latency to heat stimuli already decreased significantly 10 days post injury reaching a plateau 2 weeks later. In contrast, injured mice developed remarkable hyposensitivity to cold stimuli. Animals that underwent moderate treadmill training (2 × 15 minutes; 5 d/wk) showed a significant reduction in the response rate to light mechanical stimuli as early as 6 days after training. Calcitonin gene-related peptide (CGRP) labeling in lamina III-IV of the dorsal horn revealed significant increases in CGRP-labeling density in injured animals compared with sham control animals. Importantly, treadmill training reduced CGRP-labeling density by about 50% (P < 0.01), partially reducing the injury-induced increases. Analysis of IB4-labeled nonpeptidergic sensory fibers revealed no differences between experimental groups. Abnormalities in temperature sensation were not influenced by physical activity. Thus, treadmill training partially resolves signs of below-level CNP after SCI and modulates the density of CGRP-labeled fibers.
Collapse
|
15
|
|
16
|
Keller AVP, Wainwright G, Shum-Siu A, Prince D, Hoeper A, Martin E, Magnuson DSK. Disruption of Locomotion in Response to Hindlimb Muscle Stretch at Acute and Chronic Time Points after a Spinal Cord Injury in Rats. J Neurotrauma 2016; 34:661-670. [PMID: 27196003 DOI: 10.1089/neu.2015.4227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
After spinal cord injury (SCI) muscle contractures develop in the plegic limbs of many patients. Physical therapists commonly use stretching as an approach to avoid contractures and to maintain the extensibility of soft tissues. We found previously that a daily stretching protocol has a negative effect on locomotor recovery in rats with mild thoracic SCI. The purpose of the current study was to determine the effects of stretching on locomotor function at acute and chronic time points after moderately severe contusive SCI. Female Sprague-Dawley rats with 25 g-cm T10 contusion injuries received our standard 24-min stretching protocol starting 4 days (acutely) or 10 weeks (chronically) post-injury (5 days/week for 5 or 4 weeks, respectively). Locomotor function was assessed using the BBB (Basso, Beattie, and Bresnahan) Open Field Locomotor Scale, video-based kinematics, and gait analysis. Locomotor deficits were evident in the acute animals after only 5 days of stretching and increasing the perceived intensity of stretching at week 4 resulted in greater impairment. Stretching initiated chronically resulted in dramatic decrements in locomotor function because most animals had BBB scores of 0-3 for weeks 2, 3, and 4 of stretching. Locomotor function recovered to control levels for both groups within 2 weeks once daily stretching ceased. Histological analysis revealed no apparent signs of overt and persistent damage to muscles undergoing stretching. The current study extends our observations of the stretching phenomenon to a more clinically relevant moderately severe SCI animal model. The results are in agreement with our previous findings and further demonstrate that spinal cord locomotor circuitry is especially vulnerable to the negative effects of stretching at chronic time points. While the clinical relevance of this phenomenon remains unknown, we speculate that stretching may contribute to the lack of locomotor recovery in some patients.
Collapse
Affiliation(s)
- Anastasia V P Keller
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,2 Department of Physiology and Biophysics, University of Louisville , Louisville, Kentucky
| | - Grace Wainwright
- 5 Department of J.B. Speed School of Engineering, University of Louisville , Louisville, Kentucky
| | - Alice Shum-Siu
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,3 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky
| | - Daniella Prince
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,3 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky
| | - Alyssa Hoeper
- 5 Department of J.B. Speed School of Engineering, University of Louisville , Louisville, Kentucky
| | - Emily Martin
- 5 Department of J.B. Speed School of Engineering, University of Louisville , Louisville, Kentucky
| | - David S K Magnuson
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,3 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky.,4 Department of Anatomical Sciences and Neurobiology, University of Louisville , Louisville, Kentucky
| |
Collapse
|
17
|
Winkle CC, Taylor KL, Dent EW, Gallo G, Greif KF, Gupton SL. Beyond the cytoskeleton: The emerging role of organelles and membrane remodeling in the regulation of axon collateral branches. Dev Neurobiol 2016; 76:1293-1307. [PMID: 27112549 DOI: 10.1002/dneu.22398] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022]
Abstract
The generation of axon collateral branches is a fundamental aspect of the development of the nervous system and the response of axons to injury. Although much has been discovered about the signaling pathways and cytoskeletal dynamics underlying branching, additional aspects of the cell biology of axon branching have received less attention. This review summarizes recent advances in our understanding of key factors involved in axon branching. This article focuses on how cytoskeletal mechanisms, intracellular organelles, such as mitochondria and the endoplasmic reticulum, and membrane remodeling (exocytosis and endocytosis) contribute to branch initiation and formation. Together this growing literature provides valuable insight as well as a platform for continued investigation into how multiple aspects of axonal cell biology are spatially and temporally orchestrated to give rise to axon branches. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1293-1307, 2016.
Collapse
Affiliation(s)
- Cortney C Winkle
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kendra L Taylor
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Erik W Dent
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Gianluca Gallo
- Lewis Katz School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, Pennsylvania, 19140
| | - Karen F Greif
- Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania, 19010
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
18
|
Ganzer PD, Meyers EC, Sloan AM, Maliakkal R, Ruiz A, Kilgard MP, Robert LR. Awake behaving electrophysiological correlates of forelimb hyperreflexia, weakness and disrupted muscular synchronization following cervical spinal cord injury in the rat. Behav Brain Res 2016; 307:100-11. [PMID: 27033345 DOI: 10.1016/j.bbr.2016.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/26/2016] [Indexed: 01/22/2023]
Abstract
Spinal cord injury usually occurs at the level of the cervical spine and results in profound impairment of forelimb function. In this study, we recorded awake behaving intramuscular electromyography (EMG) from the biceps and triceps muscles of the impaired forelimb during volitional and reflexive forelimb movements before and after unilateral cervical spinal cord injury (cSCI) in rats. C5/C6 hemicontusion reduced volitional forelimb strength by more than 50% despite weekly rehabilitation for one month post-injury. Triceps EMG during volitional strength assessment was reduced by more than 60% following injury, indicating reduced descending drive. Biceps EMG during reflexive withdrawal from a thermal stimulus was increased by 500% following injury, indicating flexor withdrawal hyperreflexia. The reduction in volitional forelimb strength was significantly correlated with volitional and reflexive biceps EMG activity. Our results support the hypothesis that biceps hyperreflexia and descending volitional drive both significantly contribute to forelimb strength deficits after cSCI and provide new insight into dynamic muscular dysfunction after cSCI. The use of multiple automated quantitative measures of forelimb dysfunction in the rodent cSCI model will likely aid the search for effective regenerative, pharmacological, and neuroprosthetic treatments for spinal cord injury.
Collapse
Affiliation(s)
- Patrick Daniel Ganzer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Eric Christopher Meyers
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Andrew Michael Sloan
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Reshma Maliakkal
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States.
| | - Andrea Ruiz
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States.
| | - Michael Paul Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States.
| | - LeMoine Rennaker Robert
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| |
Collapse
|
19
|
Rao JS, Ma M, Zhao C, Liu Z, Yang ZY, Li XG. Alteration of brain regional homogeneity of monkeys with spinal cord injury: A longitudinal resting-state functional magnetic resonance imaging study. Magn Reson Imaging 2015; 33:1156-1162. [PMID: 26117702 DOI: 10.1016/j.mri.2015.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/12/2015] [Accepted: 06/20/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the longitudinal brain regional homogeneity (ReHo) changes in nonhuman primate after spinal cord injury (SCI) by resting-state functional magnetic resonance imaging (fMRI). METHODS Three adult female rhesus monkeys underwent unilateral thoracic cord injury. A resting-state fMRI examination was performed in the healthy stage and 4, 8, and 12 weeks after the injury. The ReHo value of each voxel in the monkey brain was calculated and compared between pre- and post-SCI monkeys with paired t test. The regions of interest (ROIs) in the significantly changed ReHo regions were set. The correlations between the ReHo change and the time after injury were also determined. RESULTS Compared with those in healthy period, the ReHo values of the left premotor cortex and the anterior cingulate cortex (ACC) in post-SCI rhesus monkeys significantly increased in 4-week follow-up examinations. The ReHo values of posterior cingulate cortex, left precuneus, left temporal parietooccipital area, and bilateral superior parietal lobules decreased at 8-week follow-up examinations. In 12-week follow-up examinations, the ReHo values of the left postcentral gyrus, right caudate nucleus, and superior temporal gyrus increased. Correlation analysis showed positive correlations between left ACC and the postoperative time. CONCLUSION SCI can change the regional synchronism of brain activity in sensorimotor system and the default mode network. These findings may help us to understand the potential pathophysiological changes in the central nervous system after SCI.
Collapse
Affiliation(s)
- Jia-Sheng Rao
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Manxiu Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Can Zhao
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zuxiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhao-Yang Yang
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Institutes for Neuroscience, Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiao-Guang Li
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Institutes for Neuroscience, Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
20
|
Meng L, Jiang X, Ji R. Role of neurotrophin in the taste system following gustatory nerve injury. Metab Brain Dis 2015; 30:605-13. [PMID: 25381474 DOI: 10.1007/s11011-014-9626-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
Taste system is a perfect system to study degeneration and regeneration after nerve injury because the taste system is highly plastic and the regeneration is robust. Besides, degeneration and regeneration can be easily measured since taste buds arise in discrete locations, and nerves that innervate them can be accurately quantified. Neurotrophins are a family of proteins that regulate neural survival, function, and plasticity after nerve injury. Recent studies have shown that neurotrophins play an important role in the developmental and mature taste system, indicating neurtrophin might also regulate taste system following gustatory nerve injury. This review will summarize how taste system degenerates and regenerates after gustatory nerve cut and conclude potential roles of neurotrophin in regulating the process.
Collapse
Affiliation(s)
- Lingbin Meng
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY, 40202, USA
| | | | | |
Collapse
|
21
|
Krishnan A, Zochodne DW. Targeting retinoblastoma protein offers therapeutic opportunities for peripheral nerve injury. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Anand Krishnan
- Division of Neurology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada
| |
Collapse
|
22
|
Carmel JB, Martin JH. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function. Front Integr Neurosci 2014; 8:51. [PMID: 24994971 PMCID: PMC4061747 DOI: 10.3389/fnint.2014.00051] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/28/2014] [Indexed: 12/11/2022] Open
Abstract
The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay.
Collapse
Affiliation(s)
- Jason B Carmel
- Department of Neurology, Weill Cornell Medical College New York, NY, USA ; Department of Pediatrics, Weill Cornell Medical College New York, NY, USA ; Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA ; Burke Medical Research Institute White Plains, NY, USA
| | - John H Martin
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York New York, NY, USA
| |
Collapse
|
23
|
Detloff MR, Smith EJ, Quiros Molina D, Ganzer PD, Houlé JD. Acute exercise prevents the development of neuropathic pain and the sprouting of non-peptidergic (GDNF- and artemin-responsive) c-fibers after spinal cord injury. Exp Neurol 2014; 255:38-48. [PMID: 24560714 PMCID: PMC4036591 DOI: 10.1016/j.expneurol.2014.02.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/29/2014] [Accepted: 02/14/2014] [Indexed: 11/18/2022]
Abstract
Spinal cord injury (SCI) impaired sensory fiber transmission leads to chronic, debilitating neuropathic pain. Sensory afferents are responsive to neurotrophic factors, molecules that are known to promote survival and maintenance of neurons, and regulate sensory neuron transduction of peripheral stimuli. A subset of primary afferent fibers responds only to the glial cell-line derived neurotrophic factor (GDNF) family of ligands (GFLs) and is non-peptidergic. In peripheral nerve injury models, restoration of GDNF or artemin (another GFL) to pre-injury levels within the spinal cord attenuates neuropathic pain. One non-invasive approach to increase the levels of GFLs in the spinal cord is through exercise (Ex), and to date exercise training is the only ameliorative, non-pharmacological treatment for SCI-induced neuropathic pain. The purpose of this study was 3-fold: 1) to determine whether exercise affects the onset of SCI-induced neuropathic pain; 2) to examine the temporal profile of GDNF and artemin in the dorsal root ganglia and spinal cord dorsal horn regions associated with forepaw dermatomes after SCI and Ex; and 3) to characterize GFL-responsive sensory fiber plasticity after SCI and Ex. Adult, female, Sprague-Dawley rats received a moderate, unilateral spinal cord contusion at C5. A subset of rats was exercised (SCI+Ex) on automated running wheels for 20min, 5days/week starting at 5days post-injury (dpi), continuing until 9 or 37dpi. Hargreaves' and von Frey testing was performed preoperatively and weekly post-SCI. Forty-two percent of rats in the unexercised group exhibited tactile allodynia of the forepaws while the other 58% retained normal sensation. The development of SCI-induced neuropathic pain correlated with a marked decrease in the levels of GDNF and artemin in the spinal cord and DRGs. Additionally, a dramatic increase in the density and the distribution throughout the dorsal horn of GFL-responsive afferents was observed in rats with SCI-induced allodynia. Importantly, in SCI rats that received Ex, the incidence of tactile allodynia decreased to 7% (1/17) and there was maintenance of GDNF and artemin at normal levels, with a normal distribution of GFL-responsive fibers. These data suggest that GFLs and/or their downstream effectors may be important modulators of pain fiber plasticity, representing effective targets for anti-allodynic therapeutics. Furthermore, we highlight the potent beneficial effects of acute exercise after SCI.
Collapse
Affiliation(s)
- Megan Ryan Detloff
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Evan J Smith
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Daniel Quiros Molina
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Patrick D Ganzer
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - John D Houlé
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
24
|
Detloff MR, Wade RE, Houlé JD. Chronic at- and below-level pain after moderate unilateral cervical spinal cord contusion in rats. J Neurotrauma 2013; 30:884-90. [PMID: 23216008 DOI: 10.1089/neu.2012.2632] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chronic neuropathic pain is a significant consequence of spinal cord injury (SCI) that is associated with evoked pain, including allodynia and/or hyperalgesia. Allodynia is defined as a painful response to normally innocuous stimuli, and hyperalgesia occurs when there is an amplified pain response to normally noxious stimuli. We describe a model of a unilateral cervical level (C5) contusion injury where sensory recovery was assessed weekly for 6 weeks in 32 adult, female, Sprague-Dawley rats. Bilateral thermal hyperalgesia and tactile allodynia are detectable in the fore- and hindpaws as early as 7 days post-injury (dpi) and persist for at least 42 days. Paw withdrawal latency in response to a noxious thermal stimulus significantly intra-animal pre-operative values. Change in paw withdrawal latency plateaued at 21 dpi. Interestingly, bilateral forepaw allodynia develops in fewer than 40% of rats as measured by von Frey monofilament testing. Similar results occur in the hindpaws, where bilateral allodynia occurs in 46% of rats with SCI. The contralesional forepaw and both hindpaws of rats showed a slight increase in paw withdrawal threshold to tactile stimuli acutely after SCI, corresponding to ipsilesional forelimb motor deficits that resolve over time. That there is no difference among allodynic and non-allodynic groups in overall spared tissue or specifically of the dorsal column or ventrolateral white matter where ascending sensory tracts reside suggests that SCI-induced pain does not depend solely on the size or extent of the lesion, but that other mechanisms are in play. These observations provide a valid model system for future testing of therapeutic interventions to prevent the onset or to reduce the debilitating effects of chronic neuropathic pain after SCI.
Collapse
Affiliation(s)
- Megan Ryan Detloff
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
25
|
Chen Q, Shine HD. Neuroimmune processes associated with Wallerian degeneration support neurotrophin-3-induced axonal sprouting in the injured spinal cord. J Neurosci Res 2013; 91:1280-91. [PMID: 23907999 DOI: 10.1002/jnr.23257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/06/2013] [Accepted: 05/10/2013] [Indexed: 11/11/2022]
Abstract
Lesions of the spinal cord cause two distinctive types of neuroimmune responses, a response at the lesion site that leads to additional tissue destruction and a more subtle response, termed Wallerian degeneration (WD), that occurs distal to the lesion site. We have evidence that the neuroimmune response associated with WD may support tissue repair. Previously, we found that overexpression of neurotrophin-3 (NT-3) induced axonal growth in the spinal cord after a unilateral corticospinal tract (CST) lesion, but only if the immune system was intact and activated. We reasoned that a neuroimmune response associated with WD was involved in this neuroplasticity. To test this, we compared NT-3-induced axonal sprouting in athymic nude rats that lack functional T cells with rats with functional T cells and in nude rats grafted with CD4(+) T cells or CD8(+) T cells. There was no sprouting in nude rats and in nude rats grafted with CD8(+) T cells. However, nude rats grafted with CD4(+) T cells mounted a sprouting response. To determine which CD4(+) subtype, type 1 T helper (Th1) or type 2 T helper (Th2) cells, was responsible, we grafted Th1 and Th2 cells into nude rats and tested whether they would support sprouting. Axonal sprouting was greater in rats grafted with Th2 cells, demonstrating that the Th2 subtype was responsible for supporting axonal sprouting. These data suggest that WD activates Th2 cells that, along with the direct effects of NT-3 on CST axons, act to support axonal sprouting in the lesioned spinal cord.
Collapse
Affiliation(s)
- Qin Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
26
|
Fouad K, Tse A. Adaptive changes in the injured spinal cord and their role in promoting functional recovery. Neurol Res 2013; 30:17-27. [DOI: 10.1179/016164107x251781] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Carmel JB, Kimura H, Berrol LJ, Martin JH. Motor cortex electrical stimulation promotes axon outgrowth to brain stem and spinal targets that control the forelimb impaired by unilateral corticospinal injury. Eur J Neurosci 2013; 37:1090-102. [PMID: 23360401 DOI: 10.1111/ejn.12119] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 11/30/2022]
Abstract
We previously showed that electrical stimulation of motor cortex (M1) after unilateral pyramidotomy in the rat increased corticospinal tract (CST) axon length, strengthened spinal connections, and restored forelimb function. Here, we tested: (i) if M1 stimulation only increases spinal axon length or if it also promotes connections to brain stem forelimb control centers, especially magnocellular red nucleus; and (ii) if stimulation-induced increase in axon length depends on whether pyramidotomy denervated the structure. After unilateral pyramidotomy, we electrically stimulated the forelimb area of intact M1, to activate the intact CST and other corticofugal pathways, for 10 days. We anterogradely labeled stimulated M1 and measured axon length using stereology. Stimulation increased axon length in both the spinal cord and magnocellular red nucleus, even though the spinal cord is denervated by pyramidotomy and the red nucleus is not. Stimulation also promoted outgrowth in the cuneate and parvocellular red nuclei. In the spinal cord, electrical stimulation caused increased axon length ipsilateral, but not contralateral, to stimulation. Thus, stimulation promoted outgrowth preferentially to the sparsely corticospinal-innervated and impaired side. Outgrowth resulted in greater axon density in the ipsilateral dorsal horn and intermediate zone, resembling the contralateral termination pattern. Importantly, as in spinal cord, increase in axon length in brain stem also was preferentially directed towards areas less densely innervated by the stimulated system. Thus, M1 electrical stimulation promotes increases in corticofugal axon length to multiple M1 targets. We propose the axon length change was driven by competition into an adaptive pattern resembling lost connections.
Collapse
Affiliation(s)
- Jason B Carmel
- Departments of Neurology & Neuroscience and Pediatrics, Weill Cornell Medical College, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
28
|
Ter-Avetisyan G, Tröster P, Schmidt H, Rathjen FG. cGMP signaling and branching of sensory axons in the spinal cord. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Axonal branching is essential for neurons to establish contacts to different targets. It therefore provides the physical basis for the integration and distribution of information within the nervous system. During embryonic and early postnatal development, several axonal branching modes may be distinguished that might be regulated by activities of the growth cone or by the axon shaft. The various forms of axonal branching are dependent on intrinsic components and are regulated by extrinsic factors that activate specific signaling systems. This article focuses on components implicated in cyclic guanosine monophosphate signaling that regulate axon bifurcation – a specific form of branching – within the spinal cord in animal models. This cascade is composed of the ligand CNP, the guanylyl cyclase Npr2 and the cyclic guanosine monophosphate-dependent kinase I. In the absence of one of these components, axons of dorsal root ganglion neurons do not form T-shaped branches when entering the spinal cord, while collateral (interstitial) branching, another branching mode of the same type of the neuron, is not affected. It will be important to analyze human patients with mutations in the corresponding genes to get insights into the pathophysiological effects of impaired sensory axon branching in the spinal cord.
Collapse
Affiliation(s)
- Gohar Ter-Avetisyan
- MaxDelbrück Center of Molecular Medicine, Robert-Rössle-Str.10, 13092 Berlin, Germany
| | - Philip Tröster
- MaxDelbrück Center of Molecular Medicine, Robert-Rössle-Str.10, 13092 Berlin, Germany
| | - Hannes Schmidt
- MaxDelbrück Center of Molecular Medicine, Robert-Rössle-Str.10, 13092 Berlin, Germany
| | - Fritz G Rathjen
- MaxDelbrück Center of Molecular Medicine, Robert-Rössle-Str.10, 13092 Berlin, Germany
| |
Collapse
|
29
|
Molecular and cellular mechanisms underlying the role of blood vessels in spinal cord injury and repair. Cell Tissue Res 2012; 349:269-88. [PMID: 22592628 DOI: 10.1007/s00441-012-1440-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/24/2012] [Indexed: 02/07/2023]
Abstract
Spinal cord injury causes immediate damage of nervous tissue accompanied by the loss of motor and sensory function. The limited self-repair ability of damaged nervous tissue underlies the need for reparative interventions to restore function after spinal cord injury. Blood vessels play a crucial role in spinal cord injury and repair. Injury-induced loss of local blood vessels and a compromised blood-brain barrier contribute to inflammation and ischemia and thus to the overall damage to the nervous tissue of the spinal cord. Lack of vasculature and leaking blood vessels impede endogenous tissue repair and limit prospective repair approaches. A reduction of blood vessel loss and the restoration of blood vessels so that they no longer leak might support recovery from spinal cord injury. The promotion of new blood vessel formation (i.e., angio- and vasculogenesis) might aid repair but also incorporates the danger of exacerbating tissue loss and thus functional impairment. The delicate interplay between cells and molecules that govern blood vessel repair and formation determines the extent of damage and the success of reparative interventions. This review deals with the cellular and molecular mechanisms underlying the role of blood vessels in spinal cord injury and repair.
Collapse
|
30
|
Yoon C, Tuszynski MH. Frontiers of spinal cord and spine repair: experimental approaches for repair of spinal cord injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 760:1-15. [PMID: 23281510 DOI: 10.1007/978-1-4614-4090-1_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regeneration of injured CNS neurons was once thought to be an unachievable goal. Most patients with significant damage to the spinal cord suffer from permanently impaired neurological function. A century of research, however, has led to an understanding of multiple factors that limit CNS regeneration and from this knowledge experimental strategies have emerged for enhancing CNS repair. Some of these approaches have undergone human translation. Nevertheless, translating experimental findings to human trials has been more challenging than anticipated. In this chapter, we will review the current state of knowledge regarding central axonal growth failure after injury, and approaches taken to enhance recovery after SCI.
Collapse
Affiliation(s)
- Choya Yoon
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA.
| | | |
Collapse
|
31
|
Abstract
Axon branching is a complex morphological process, the regulation of which we are just beginning to understand. Many factors known to be important for axon growth and guidance have emerged as key regulators of axon branching. The extrinsic factors implicated in axon branching include traditional axon guidance cues such as the slits, semaphorins, and ephrins; neurotrophins such as BDNF; the secreted glycoprotein Wnt; the extracellular matrix protein anosmin-1; and certain transmembrane cell adhesion molecules--as well as sensory experience and neuronal activity. Although less is known about the intracellular control of axon branching, in recent years significant advances have been made in this area. Kinases and their regulators, Rho GTPases and their regulators, transcription factors, ubiquitin ligases, and several microtubule and actin-binding proteins are now implicated in the control of axon branching. It is likely that many more branching regulators remain to be discovered, as do the links between extrinsic cues and intracellular signaling proteins in the control of axon branching.
Collapse
Affiliation(s)
- Parizad M Bilimoria
- Department of Neurobiology and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
32
|
Abstract
During development, axons are guided to their appropriate targets by a variety of guidance factors. On arriving at their synaptic targets, or while en route, axons form branches. Branches generated de novo from the main axon are termed collateral branches. The generation of axon collateral branches allows individual neurons to make contacts with multiple neurons within a target and with multiple targets. In the adult nervous system, the formation of axon collateral branches is associated with injury and disease states and may contribute to normally occurring plasticity. Collateral branches are initiated by actin filament– based axonal protrusions that subsequently become invaded by microtubules, thereby allowing the branch to mature and continue extending. This article reviews the current knowledge of the cellular mechanisms of the formation of axon collateral branches. The major conclusions of this review are (1) the mechanisms of axon extension and branching are not identical; (2) active suppression of protrusive activity along the axon negatively regulates branching; (3) the earliest steps in the formation of axon branches involve focal activation of signaling pathways within axons, which in turn drive the formation of actin-based protrusions; and (4) regulation of the microtubule array by microtubule-associated and severing proteins underlies the development of branches. Linking the activation of signaling pathways to specific proteins that directly regulate the axonal cytoskeleton underlying the formation of collateral branches remains a frontier in the field.
Collapse
Affiliation(s)
- Gianluca Gallo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA.
| |
Collapse
|
33
|
Esposito E, Paterniti I, Mazzon E, Genovese T, Galuppo M, Meli R, Bramanti P, Cuzzocrea S. MK801 attenuates secondary injury in a mouse experimental compression model of spinal cord trauma. BMC Neurosci 2011; 12:31. [PMID: 21492450 PMCID: PMC3094200 DOI: 10.1186/1471-2202-12-31] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 04/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glutamergic excitotoxicity has been shown to play a deleterious role in the pathophysiology of spinal cord injury (SCI). The aim of this study was to investigate the neuroprotective effect of dizocilpine maleate, MK801 (2 mg/Kg, 30 min and 6 hours after injury) in a mice model of SCI. The spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5-T8 laminectomy. RESULTS Spinal cord injury in mice resulted in severe trauma characterized by edema, neutrophil infiltration and apoptosis. In this study we clearly demonstrated that administration of MK801 attenuated all inflammatory parameters. In fact 24 hours after injury, the degree of spinal cord inflammation and tissue injury (evaluated as histological score), infiltration of neutrophils, NF-κB activation, iNOS, cytokines levels (TNF-α and IL-1β), neurotrophin expression were markedly reduced by MK801 treatment. Moreover, in a separate set of experiments, we have demonstrated that MK801 treatment significantly improved the recovery of locomotory function. CONCLUSIONS Blockade of NMDA by MK801 lends support to the potential importance of NMDA antagonists as therapeutic agents in the treatment of acute spinal cord injury.
Collapse
Affiliation(s)
- Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Irene Paterniti
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
| | | | - Tiziana Genovese
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
| | - Maria Galuppo
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
| | - Rosaria Meli
- Department of Experimental Pharmacology, University of Naples Federico II, Italy
| | | | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| |
Collapse
|
34
|
Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia. J Neurosci 2010; 30:12185-97. [PMID: 20826681 DOI: 10.1523/jneurosci.1740-10.2010] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The initiation of axonal filopodia is the first step in the formation of collateral branches and synaptic structures. In sensory neurons, nerve growth factor (NGF) promotes the formation of axonal filopodia and branches. However, the signaling and cytoskeletal mechanisms of NGF-induced initiation of axonal filopodia are not clear. Axonal filopodia arise from precursor axonal cytoskeletal structures termed filamentous actin (F-actin) patches. Patches form spontaneously and are transient. Although filopodia emerge from patches, only a fraction of patches normally gives rise to filopodia. Using chicken sensory neurons and live imaging of enhanced yellow fluorescent protein (eYFP)-actin dynamics, we report that NGF promotes the formation of axonal filopodia by increasing the rate of F-actin patch formation but not the fraction of patches that give rise to filopodia. We also demonstrate that activation of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway is sufficient and required for driving the formation of axonal F-actin patches, filopodia, and axon branches. Using the green fluorescent protein-plekstrin homology domain of Akt, which targets to PI3K-generated phosphatidylinositol-3,4,5-triphosphate (PIP(3)), we report localized microdomains of PIP(3) accumulation that form in synchrony with F-actin patches and that NGF promotes the formation of microdomains of PIP(3) and patches. Finally, we find that, in NGF, F-actin patches form in association with axonal mitochondria and oxidative phosphorylation is required for patch formation. This investigation demonstrates that surprisingly NGF promotes formation of axonal filopodia by increasing the formation of cytoskeletal filopodial precursors (patches) through localized microdomains of PI3K signaling but not the emergence of filopodia from patches.
Collapse
|
35
|
Rasouli A, Bhatia N, Dinh P, Cahill K, Suryadevara S, Gupta R. Resection of glial scar following spinal cord injury. J Orthop Res 2009; 27:931-6. [PMID: 19062171 PMCID: PMC2696557 DOI: 10.1002/jor.20793] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
While many studies have focused on modulating the immune response and enhancing axonal regeneration after spinal cord injury (SCI), there is limited work being performed on evaluating the role of glial scar in SCI. We sought to evaluate the effects of glial scar resection in contusion models and dorsal hemisection models of SCI. At 1-week postinjury, 2 mm of glial scar was excised from specimens in one of the two groups from each injury model. Functional outcome was measured weekly using the Basso, Beattie, Bresnahan (BBB) Locomotor Rating Scale along with histologic evaluation of spinal cord tracts to determine axonal regeneration. Within the dorsal hemisection model, there was no significant difference in recovery for animals that underwent glial scar excision versus animals that did not have scar excision (p = 0.61). Animals subjected to the contusion model, however, demonstrated lower BBB scores in the glial resection group during the earlier postoperative periods (< 4 weeks; p < 0.05). Histological analysis revealed no axons within the glial resection contusion model, and moderate axonal growth within the nonresection contusion group and both hemisection groups (p > 0.05 for differences among the three groups). While glial scar may serve to stabilize the preserved axonal tracts and thereby permit modest recovery in a contusion model of SCI, it may be of less importance with a dorsal hemisection model. These experiments highlight that basic biologic processes following SCI may vary tremendously based on the injury mechanism and that the role of glial scar in spinal cord regeneration must be elucidated.
Collapse
Affiliation(s)
| | | | - Paul Dinh
- Department of Anatomy and Neurobiology
| | | | | | - Ranjan Gupta
- Department of Anatomy and Neurobiology, Department of Biomedical Engineering, University of California, Irvine,Corresponding Author: Ranjan Gupta, MD, 2226 Gillespie Neuroscience Research Facility, Irvine, CA 92697, Phone: 949-824-1405, Fax: 949-824-1462,
| |
Collapse
|
36
|
Abstract
Spinal cord injury research has greatly expanded in recent years, but our understanding of the mechanisms that underlie the functional recovery that can occur over the weeks and months following the initial injury, is far from complete. To grasp the scope of the problem, it is important to begin by defining the sensorimotor pathways that might be involved by a spinal injury. This is done in the rodent and nonhuman primate, which are two of the most commonly used animal models in basic and translational spinal injury research. Many of the better known experimentally induced models are then reviewed in terms of the pathways they involve and the reorganization and recovery that have been shown to follow. The better understood neuronal mechanisms mediating such post-injury plasticity, including dendritic spine growth and axonal sprouting, are then examined.
Collapse
Affiliation(s)
- Corinna Darian-Smith
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
37
|
Neurite consolidation is an active process requiring constant repression of protrusive activity. EMBO J 2008; 28:248-60. [PMID: 19096364 DOI: 10.1038/emboj.2008.265] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 11/25/2008] [Indexed: 01/05/2023] Open
Abstract
During development, neurons extend projections that pathfind to reach their appropriate targets. These projections are composed of two distinct domains: a highly dynamic growth cone and a stable neurite shaft, which is considered to be consolidated. Although the regulation of these domains is critical to the appropriate formation of neural networks, the molecular mechanisms that regulate neurite shape remain poorly understood. Here, we show that calpain protease activity localizes to the neurite shaft, where it is essential for the repression of protrusive activity by limiting cortactin levels and inhibiting actin polymerization. Correspondingly, inhibition of calpain by branching factors induces the formation of new growth cones along the neurite shaft through cAMP elevation. These findings demonstrate that neurite consolidation is an active process requiring constant repression of protrusive activity. We also show that sprouting is, at least in part, accomplished by turning off the mechanism of consolidation.
Collapse
|
38
|
Kastner A, Gauthier P. Are rodents an appropriate pre-clinical model for treating spinal cord injury? Examples from the respiratory system. Exp Neurol 2008; 213:249-56. [PMID: 18675802 DOI: 10.1016/j.expneurol.2008.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 12/11/2022]
Abstract
Because most studies of the effects of spinal cord injury (SCI) and resulting repair and treatments use rodent models, it is important to determine if these models are relevant to humans. In this review, we focus on alterations in respiratory function as a result of SCI. Several injury paradigms have been used in the rat to examine restoration of post-lesion respiratory function and potential benefits from repair strategies designed for humans. Unlike the corticospinal locomotor system, respiratory neural organization is well preserved between rodents and humans, and resembles the general organization of motor pathways in primates. These similarities justify the use of the rodent respiratory system as a model to analyze SCI and putative repair strategies.
Collapse
Affiliation(s)
- Anne Kastner
- Université Paul Cézanne Aix-Marseille III, UMR CNRS 6231 - CRN2M, Centre de Recherches en Neurobiologie et Neurophysiologie de Marseille, Equipe MP3-Respiration, Marseille Cedex 20, France
| | | |
Collapse
|
39
|
Grosheva M, Guntinas-Lichius O, Arnhold S, Skouras E, Kuerten S, Streppel M, Angelova SK, Wewetzer K, Radtke C, Dunlop SA, Angelov DN. Bone marrow-derived mesenchymal stem cell transplantation does not improve quality of muscle reinnervation or recovery of motor function after facial nerve transection in rats. Biol Chem 2008; 389:873-88. [DOI: 10.1515/bc.2008.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractRecently, we devised and validated a novel strategy in rats to improve the outcome of facial nerve reconstruction by daily manual stimulation of the target muscles. The treatment resulted in full recovery of facial movements (whisking), which was achieved by reducing the proportion of pathologically polyinnervated motor endplates. Here, we posed whether manual stimulation could also be beneficial after a surgical procedure potentially useful for treatment of large peripheral nerve defects, i.e., entubulation of the transected facial nerve in a conduit filled with suspension of isogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) in collagen. Compared to control treatment with collagen only, entubulation with BM-MSCs failed to decrease the extent of collateral axonal branching at the lesion site and did not improve functional recovery. Post-operative manual stimulation of vibrissal muscles also failed to promote a better recovery following entubulation with BM-MSCs. We suggest that BM-MSCs promote excessive trophic support for regenerating axons which, in turn, results in excessive collateral branching at the lesion site and extensive polyinnervation of the motor endplates. Furthermore, such deleterious effects cannot be overridden by manual stimulation. We conclude that entubulation with BM-MSCs is not beneficial for facial nerve repair.
Collapse
|
40
|
Kim BG, Dai HN, McAtee M, Bregman BS. Modulation of dendritic spine remodeling in the motor cortex following spinal cord injury: effects of environmental enrichment and combinatorial treatment with transplants and neurotrophin-3. J Comp Neurol 2008; 508:473-86. [PMID: 18338331 DOI: 10.1002/cne.21686] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Incomplete spinal cord injury (SCI) elicits structural plasticity of the spared motor system, including the motor cortex, which may underlie some of the spontaneous recovery of motor function seen after injury. Promoting structural plasticity may become an important component of future strategies to improve functional outcomes. We have recently observed dynamic changes in the density and morphology of dendritic spines in the motor cortex following SCI. The present study sought to test whether SCI-induced changes in spine density and morphology could be modulated by potential strategies to enhance functional recovery. We examined the effects of enriched environment, transplants, and neurotrophin-3 on the plasticity of synaptic structures in the motor cortex following SCI. Housing rats in an enriched environment increased spine density in the motor cortex regardless of injury. SCI led to a more slender and elongated spine morphology. Enriched housing mitigated the SCI-induced morphological alterations, suggesting that the environmental modification facilitates maturation of synaptic structures. Transplantation of embryonic spinal cord tissue and delivery of neurotrophin-3 at the injury site further increased spine density when combined with enriched housing. This combinatorial treatment completely abolished the injury-induced changes, restoring a preinjury pattern of spine morphology. These results demonstrated that remodeling of dendritic spines in the motor cortex after SCI can be modulated by enriched housing, and the combinatorial treatment with embryonic transplants and neurotrophin-3 can potentiate the effects of enriched housing. We suggest that synaptic remodeling processes in the motor cortex can be targeted for an intervention to enhance functional recovery after SCI.
Collapse
Affiliation(s)
- Byung G Kim
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
41
|
Konya D, Liao WL, Choi H, Yu D, Woodard MC, Newton KM, King AM, Pamir NM, Black PM, Frontera WR, Sabharwal S, Teng YD. Functional recovery in T13–L1 hemisected rats resulting from peripheral nerve rerouting: role of central neuroplasticity. Regen Med 2008; 3:309-27. [DOI: 10.2217/17460751.3.3.309] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Functional improvements after spinal cord injury (SCI) have been reported anecdotally following neurotization, in other words, rerouting nerves proximal to injured cord segments to distal neuromuscular targets, although the underlying mechanisms remain largely unknown. Aim: To test our hypothesis that neurotization-mediated recovery is primarily attributable to CNS neuroplasticity that therefore manifests optimal response during particular therapeutic windows, we anastomosed the T12 intercostal nerve to the ipsilateral L3 nerve root 1–4 weeks after T13–L1 midline hemisection in rats. Results: While axonal tracing and electromyography revealed limited reinnervation in the target muscles, neurobehavioral function, as assessed by locomotion, extensor postural thrust and sciatic functional index of SCI rats receiving neurotization 7–10 days postinjury (n = 11), recovered to levels close to non-SCI controls with neurotization only (n = 3), beginning 3–5 weeks postanastomosis. Conversely, hindlimb deficits were unchanged in hemisected controls with sham neurotization (n = 7) or 4 weeks-delayed neurotization (n = 3) and in rats that had undergone T13–L1 transection plus bilateral anastomoses (n = 6). Conclusion: Neurotized SCI animals demonstrated multiparameters of neural reorganization in the distal lumbar cord, including enhanced proliferation of endogenous neural stem cells, increased immunoreactivity of serotonin and synaptophysin, and neurite growth/sprouting, suggesting that anastomosing functional nerves with the nerve stump emerging distal to the hemisection stimulates neuroplasticity in the dysfunctional spinal cord. Our conclusion is validated by the fact that severance of the T13–L1 contralateral cord abolished the postanastomosis functional recovery. Neurotization and its neuroplastic sequelae need to be explored further to optimize clinical strategies of post-SCI functional repair.
Collapse
Affiliation(s)
- Deniz Konya
- Division of SCI Research, VA Boston Healthcare System, Boston, MA 02132, USA
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
- Department of Neurosurgery, Marmara University, Istanbul, Turkey
| | - Wei-Lee Liao
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA
| | - Howard Choi
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA
| | - Dou Yu
- Division of SCI Research, VA Boston Healthcare System, Boston, MA 02132, USA
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
| | - Matthew C Woodard
- Division of SCI Research, VA Boston Healthcare System, Boston, MA 02132, USA
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
| | - Kimberly M Newton
- Division of SCI Research, VA Boston Healthcare System, Boston, MA 02132, USA
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
| | - Allyson M King
- Division of SCI Research, VA Boston Healthcare System, Boston, MA 02132, USA
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
| | | | - Peter M Black
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
| | - Walter R Frontera
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA
- School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Sunil Sabharwal
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA
| | - Yang D Teng
- Division of SCI Research, VA Boston Healthcare System, Boston, MA 02132, USA
- Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA
| |
Collapse
|
42
|
Vinit S, Darlot F, Stamegna JC, Sanchez P, Gauthier P, Kastner A. Long-term reorganization of respiratory pathways after partial cervical spinal cord injury. Eur J Neurosci 2008; 27:897-908. [DOI: 10.1111/j.1460-9568.2008.06072.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Iarikov DE, Kim BG, Dai HN, McAtee M, Kuhn PL, Bregman BS. Delayed transplantation with exogenous neurotrophin administration enhances plasticity of corticofugal projections after spinal cord injury. J Neurotrauma 2007; 24:690-702. [PMID: 17439351 DOI: 10.1089/neu.2006.0172] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional deficits following spinal cord injury (SCI) result from a disruption of corticofugal projections at the lesion site. Not only direct regeneration of the severed axons but also anatomical re-organization of spared corticofugal pathways can reestablish connections between the supraspinal and spinal motor centers. We have previously shown that delayed transplantation of fetal spinal cord tissue and neurotrophin administration by two weeks after SCI supported recovery of forelimb function in adult rats. The current study determined whether the same intervention enhances plasticity of corticofugal fibers at the midbrain and spinal cord level. Anterograde tracing of the left corticorubral fibers revealed that the animals with transplants and neurotrophins (BDNF or NT-3) increased the extent of the traced fibers crossing to the right red nucleus (RN), of which the axons are spared by a right cervical overhemisection lesion. More neurons in the left motor cortex were recruited by the treatment to establish connections with the right RN. The right corticorubral projections also increased the density of midline crossing fibers to the axotomized left RN in response to transplants and neurotrophins. Transplants plus NT-3, but not BDNF, significantly increased the amount of spared corticospinal fibers in the left dorsolateral funiculus at the spinal level both rostral and caudal to the lesion. These results suggest that corticofugal projections retain the capacity until at least two weeks after injury to undergo extensive reorganization along the entire neuraxis in response to transplants and neurotrophins. Targeting anatomical plasticity of corticofugal projections may be a promising strategy to enhance functional recovery following incomplete SCI.
Collapse
Affiliation(s)
- Dmitri E Iarikov
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
44
|
Vinit S, Stamegna JC, Boulenguez P, Gauthier P, Kastner A. Restorative respiratory pathways after partial cervical spinal cord injury: role of ipsilateral phrenic afferents. Eur J Neurosci 2007; 25:3551-60. [PMID: 17610574 DOI: 10.1111/j.1460-9568.2007.05619.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
After disruption of the descending respiratory pathways induced by unilateral cervical spinal cord injury (SCI) in rats, the inactivated ipsilateral (ipsi) phrenic nerve (PN) discharge may partially recover following some specific experimental procedures [such as contralateral (contra) phrenicotomy (Phx)]. This phrenic reactivation involves normally silent contra pathways decussating at the level of the phrenic nucleus, but the mechanisms of this crossed phrenic activation are still poorly understood. The present study investigates the contribution of sensory phrenic afferents to this process by comparing the acute effects of ipsi and contra Phx. We show that the phrenic discharge (recorded on intact PNs) was almost completely suppressed 0 h and 3 h after a lateral cervical SCI, but was already spontaneously reactivated after 1 week. This ipsi phrenic activity was enhanced immediately after contra Phx and was completely suppressed by an acute contra cervical section, indicating that it is triggered by crossed phrenic pathways located laterally in the contra spinal cord. Ipsi phrenic activity was also abolished immediately after ipsi Phx that interrupts phrenic sensory afferents, an effect prevented by prior acute ablation of the cervical dorsal root ganglia, indicating that crossed phrenic activation depends on excitatory phrenic sensory afferents but also putatively on inhibitory non-phrenic afferents. On the basis of these data, we propose a new model for crossed phrenic activation after partial cervical injury, with an essential role played by ipsi-activating phrenic sensory afferents.
Collapse
Affiliation(s)
- Stéphane Vinit
- Université Paul Cézanne Aix-Marseille III, Laboratoire de Physiologie Neurovégétative, UMR-CNRS 6153 INRA 1147, Avenue Escadrille Normandie Niemen, F-13397 Marseille Cedex 20, France.
| | | | | | | | | |
Collapse
|
45
|
Khastgir J, Drake MJ, Abrams P. Recognition and effective management of autonomic dysreflexia in spinal cord injuries. Expert Opin Pharmacother 2007; 8:945-56. [PMID: 17472540 DOI: 10.1517/14656566.8.7.945] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Autonomic dysreflexia is a potentially life-threatening hypertensive medical emergency that occurs most often in spinal cord-injured individuals with spinal lesions at or above the mid-thoracic spinal cord level. It is a condition that remains poorly recognised outside of spinal cord injury centres, which may result in adverse outcomes including mortality from potentially delayed diagnosis and treatment. Acute autonomic dysreflexia is characterised by severe paroxysmal hypertension associated with throbbing headaches, profuse sweating, nasal stuffiness, flushing of the skin above the level of the lesion, bradycardia, apprehension and anxiety, which is sometimes accompanied by cognitive impairment. The key to effective management is prevention of the condition, by recognition and avoidance of factors that initiate the condition. When it occurs, immediate recognition and reversal of trigger factors along with prompt administration of pharmacological treatment is of paramount importance in order to prevent complications, which include intracranial and retinal haemorrhage, convulsions, cardiac irregularities and death. Promising data from recent animal studies may hold the key to future treatment options.
Collapse
Affiliation(s)
- Jay Khastgir
- Bristol Urological Institute, Southmead Hospital, Bristol, UK.
| | | | | |
Collapse
|
46
|
Abstract
Neuronal motility is a fundamental feature that underlies the development, regeneration, and plasticity of the nervous system. Two major developmental events--directed migration of neuronal precursor cells to the proper positions and guided elongation of axons to their target cells--depend on large-scale neuronal motility. At a finer scale, motility is also manifested in many aspects of neuronal structures and functions, ranging from differentiation and refinement of axonal and dendritic morphology during development to synapse remodeling associated with learning and memory in the adult brain. As a primary second messenger that conveys the cytoplasmic actions of electrical activity and many neuroactive ligands, Ca(2+) plays a central role in the regulation of neuronal motility. Recent studies have revealed common Ca(2+)-dependent signaling pathways that are deployed for regulating cytoskeletal dynamics associated with neuronal migration, axon and dendrite development and regeneration, and synaptic plasticity.
Collapse
Affiliation(s)
- James Q Zheng
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | |
Collapse
|