1
|
Lam MH, Novoselova M, Yung A, Prevost VH, Manning AP, Liu J, Tetzlaff W, Kozlowski P. Interpretation of inhomogeneous magnetization transfer in myelin water using a four-pool model with dipolar reservoirs. Magn Reson Med 2025; 94:278-292. [PMID: 39963772 PMCID: PMC12021340 DOI: 10.1002/mrm.30465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 04/26/2025]
Abstract
PURPOSE To confirm ihMT's specificity to myelin, an ihMT presaturation module was combined with a Poon-Henkelman multi-echo spin-echo readout to separate the ihMT signal in myelin water from intra-/extra-cellular water. This study explored the relationship between two quantitative myelin imaging techniques and measured the ihMT signal of myelin water. METHODS Six rats were injured; three were sacrificed three weeks post-injury, and three were sacrificed eight weeks post-injury, and three healthy control rats were also sacrificed. The nine formalin-fixed rat spinal cords were imaged using a Poon-Henkelman multi-echo spin-echo readout with an ihMT prepulse at different strengths ofT 1 D $$ {T}_{1D} $$ filtering at 7T. RESULTS The proposed model was able to characterize the ihMT decay signal in myelin water and intra-/extra-cellular water pool. From this proposed four-pool model with dipolar order reservoirs, we see a drop in theT 1 D ( myelin ) $$ {T}_{1D}\left(\mathrm{myelin}\right) $$ fit parameter in the fasciculus gracilis white matter region of the three-week post-injury cord.T 1 D ( myelin ) $$ {T}_{1D}\left(\mathrm{myelin}\right) $$ andT 1 D $$ {T}_{1D} $$ (non-myelin) were estimated to be approx. 8 and 1.5 ms, respectively. CONCLUSION The drop inT 1 D ( myelin ) $$ {T}_{1D}\left(\mathrm{myelin}\right) $$ in the three-week post-injury cords suggests thatT 1 D ( myelin ) $$ {T}_{1D}\left(\mathrm{myelin}\right) $$ could potentially distinguish between functional myelin and myelin debris; however, more studies are needed to confirm this.
Collapse
Affiliation(s)
- Michelle H. Lam
- Physics and AstronomyUniversity of British ColumbiaBritish ColumbiaVancouverCanada
- UBC MRI Research CentreUniversity of British ColumbiaBritish ColumbiaVancouverCanada
- Biomedical EngineeringMcGill UniversityQuebecMontrealCanada
| | - Masha Novoselova
- Physics and AstronomyUniversity of British ColumbiaBritish ColumbiaVancouverCanada
- UBC MRI Research CentreUniversity of British ColumbiaBritish ColumbiaVancouverCanada
- Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Andrew Yung
- UBC MRI Research CentreUniversity of British ColumbiaBritish ColumbiaVancouverCanada
| | - Valentin H. Prevost
- UBC MRI Research CentreUniversity of British ColumbiaBritish ColumbiaVancouverCanada
| | - Alan P. Manning
- Physics and AstronomyUniversity of British ColumbiaBritish ColumbiaVancouverCanada
| | - Jie Liu
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaBritish ColumbiaVancouverCanada
| | - Wolfram Tetzlaff
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaBritish ColumbiaVancouverCanada
| | - Piotr Kozlowski
- Physics and AstronomyUniversity of British ColumbiaBritish ColumbiaVancouverCanada
- UBC MRI Research CentreUniversity of British ColumbiaBritish ColumbiaVancouverCanada
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaBritish ColumbiaVancouverCanada
- RadiologyUniversity of British ColumbiaBritish ColumbiaVancouverCanada
| |
Collapse
|
2
|
Sekiya T, Holley MC. The Glial Scar: To Penetrate or Not for Motor Pathway Restoration? Cell Transplant 2025; 34:9636897251315271. [PMID: 40152462 PMCID: PMC11951902 DOI: 10.1177/09636897251315271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 03/29/2025] Open
Abstract
Although notable progress has been made, restoring motor function from the brain to the muscles continues to be a substantial clinical challenge in motor neuron diseases/disorders such as spinal cord injury (SCI). While cell transplantation has been widely explored as a potential therapeutic method for reconstructing functional motor pathways, there remains considerable opportunity for enhancing its therapeutic effectiveness. We reviewed studies on motor pathway regeneration to identify molecular and ultrastructural cues that could enhance the efficacy of cell transplantation. While the glial scar is often cited as an intractable barrier to axon regeneration, this mainly applies to axons trying to penetrate its "core" to reach the opposite side. However, the glial scar exhibits a "duality," with an anti-regenerative core and a pro-regenerative "surface." This surface permissiveness is attributed to pro-regenerative molecules, such as laminin in the basement membrane (BM). Transplanting donor cells onto the BM, which forms plastically after injury, may significantly enhance the efficacy of cell transplantation. Specifically, forming detour pathways between transplanted cells and endogenous propriospinal neurons on the pro-regenerative BM may efficiently bypass the intractable scar core and promote motor pathway regeneration. We believe harnessing the tissue's innate repair capacity is crucial, and targeting post-injury plasticity in astrocytes and Schwann cells, especially those associated with the BM that has predominantly been overlooked in the field of SCI research, can advance motor system restoration to a new stage. A shift in cell delivery routes-from the traditional intra-parenchymal (InP) route to the transplantation of donor cells onto the pro-regenerative BM via the extra-parenchymal (ExP) route-may signify a transformative step forward in neuro-regeneration research. Practically, however, the complementary use of both InP and ExP methods may offer the most substantial benefit for restoring motor pathways. We aim for this review to deepen the understanding of cell transplantation and provide a framework for evaluating the efficacy of this therapeutic modality in comparison to others.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Neurological Surgery, Hikone Chuo Hospital, Hikone, Japan
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, England
| |
Collapse
|
3
|
Shao H, Liu Q, Saeed A, Liu C, Liu WV, Zhang Q, Huang S, Zhang G, Li L, Zhang J, Zhu W, Tang X. Feasibility of diffusion tensor imaging in cervical spondylotic myelopathy using MUSE sequence. Spine J 2024; 24:1352-1360. [PMID: 38556218 DOI: 10.1016/j.spinee.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND CONTEXT The most frequent type of spinal cord injury is cervical spondylotic myelopathy (CSM). Conventional structural magnetic resonance imaging (MRI) is the gold diagnosis standard for CSM. Diffusion tensor imaging (DTI) could reflect microstructural changes in the spinal cord by tracing water molecular diffusion in early stages of CSM. However, due to the complex local anatomical structure and small field of view of the spinal cord, the imaging effect of traditional DTI imaging on the spinal cord is limited. MUSE (MUltiplexed Sensitivity-Encoding) -DTI is a novel diffusion-weighted imaging (DWI) sequence that achieves higher signal intensity through multiple excitation acquisition. MUSE sequence may improve the quality of spinal cord DTI imaging. STUDY DESIGN Prospective study. PURPOSE This study aimed to investigate the clinical diagnosis value of a novel protocol of MUSE-DTI in patients with cervical spondylotic myelopathy (CSM). PATIENT SAMPLE From August 2021 to March 2022, a total of 60 subjects (22-71 years) were enrolled, including 51 CSM patients (22 males, 29 females) and 9 healthy subjects (4 males and 5 females). Each subject underwent a MUSE-DTI examination and a clinical Japanese Orthopedic Association (JOA) scale. OUTCOME MEASURES We measured values of FA (Fractional Anisotropy), MD (Mean Diffusivity), AD (Axial Diffusivity), and RD (Radial Diffusivity), and collected the clinical JOA scores of each subject before the MR examination. METHODS A 3.0T MR scanner (Signa Architect, GE Healthcare) performed the MUSE-DTI sequence on each subject. The cervical canal stenosis of subjects was classified from grade 0 to grade Ⅲ according to the method of an MRI grading system. FA, MD, AD, and RD maps were generated by postprocessing MUSE-DTI data on the GE workstation. Regions of interest (ROIs) were manually drawn at the C2 vertebral body level and C2/3-C6/7 intervertebral disc levels by covering the whole spinal cord. The clinical severity of myelopathy of subjects was assessed by the clinical Japanese Orthopedic Association scale (JOA). RESULTS MUSE-DTI can acquire a high-resolution diffusion image compared to traditional DTI. The FAMCL values showed a decreasing trend from grade 0 to grade Ⅲ, while the MDMCL, ADMCL, and RDMCL values showed an overall increasing trend. Significant differences in MDMCL, ADMCL, and RDMCL values were found between adjacent groups among grades Ⅰ-Ⅲ (p<.05). The ADC2 values in CSM patients (grade I-Ⅲ) were significantly lower than in healthy individuals (grade 0) (p=.019). The clinical JOA score has a significant correlation with FAMCL (p=.035), MDMCL (p<.001), ADMCL (p<.001), and RDMCL (p<.001) values. CONCLUSIONS MUSE-DTI displayed a better image quality compared to traditional DTI. MUSE-DTI parameters displayed a grade-dependent trend. All the MUSE-DTI parameters at MCL were correlated with the clinical JOA scores. The ADC2 values can reflect the secondary damage of distal spinal cord. Therefore, MUSE-DTI could be a reliable biomarker for clinical auxiliary diagnosis of spinal cord injury severity in cervical spondylotic myelopathy.
Collapse
Affiliation(s)
- Haoyue Shao
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiufeng Liu
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Azzam Saeed
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Qiya Zhang
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuting Huang
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiling Zhang
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxuan Zhang
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Middleton DM, Li Y, Chen A, Shinohara R, Fisher J, Krisa L, Elliot M, Faro SH, Woo JH, Flanders AE, Mohamed FB. Harmonization of multi-site diffusion tensor imaging data for cervical and thoracic spinal cord at 1.5 T and 3 T using longitudinal ComBat. Sci Rep 2023; 13:19809. [PMID: 37957164 PMCID: PMC10643628 DOI: 10.1038/s41598-023-46465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
MRI scanner hardware, field strengths, and sequence parameters are major variables in diffusion studies of the spinal cord. Reliability between scanners is not well known, particularly for the thoracic cord. DTI data was collected for the entire cervical and thoracic spinal cord in thirty healthy adult subjects with different MR vendors and field strengths. DTI metrics were extracted and averaged for all slices within each vertebral level. Metrics were examined for variability and then harmonized using longitudinal ComBat (longComBat). Four scanners were used: Siemens 3 T Prisma, Siemens 1.5 T Avanto, Philips 3 T Ingenia, Philips 1.5 T Achieva. Average full cord diffusion values/standard deviation for all subjects and scanners were FA: 0.63, σ = 0.10, MD: 1.11, σ = 0.12 × 10-3 mm2/s, AD: 1.98, σ = 0.55 × 10-3 mm2/s, RD: 0.67, σ = 0.31 × 10-3 mm2/s. FA metrics averaged for all subjects by level were relatively consistent across scanners, but large variability was found in diffusivity measures. Coefficients of variation were lowest in the cervical region, and relatively lower for FA than diffusivity measures. Harmonized metrics showed greatly improved agreement between scanners. Variability in DTI of the spinal cord arises from scanner hardware differences, pulse sequence differences, physiological motion, and subject compliance. The use of longComBat resulted in large improvement in agreement of all DTI metrics between scanners. This study shows the importance of harmonization of diffusion data in the spinal cord and potential for longitudinal and multisite clinical research and clinical trials.
Collapse
Affiliation(s)
- Devon M Middleton
- Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor COB, Philadelphia, PA, 19107, USA.
| | - Yutong Li
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew Chen
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Russell Shinohara
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | | | - Laura Krisa
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mark Elliot
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott H Faro
- Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor COB, Philadelphia, PA, 19107, USA
| | - John H Woo
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam E Flanders
- Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor COB, Philadelphia, PA, 19107, USA
| | - Feroze B Mohamed
- Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor COB, Philadelphia, PA, 19107, USA
| |
Collapse
|
5
|
Evans CW, Egid A, Mamsa SSA, Paterson DJ, Ho D, Bartlett CA, Fehily B, Lins BR, Fitzgerald M, Hackett MJ, Smith NM. Elemental Mapping in a Preclinical Animal Model Reveals White Matter Copper Elevation in the Acute Phase of Central Nervous System Trauma. ACS Chem Neurosci 2023; 14:3518-3527. [PMID: 37695072 DOI: 10.1021/acschemneuro.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Understanding the chemical events following trauma to the central nervous system could assist in identifying causative mechanisms and potential interventions to protect neural tissue. Here, we apply a partial optic nerve transection model of injury in rats and use synchrotron X-ray fluorescence microscopy (XFM) to perform elemental mapping of metals (K, Ca, Fe, Cu, Zn) and other related elements (P, S, Cl) in white matter tracts. The partial optic nerve injury model and spatial precision of microscopy allow us to obtain previously unattained resolution in mapping elemental changes in response to a primary injury and subsequent secondary effects. We observed significant elevation of Cu levels at multiple time points following the injury, both at the primary injury site and in neural tissue near the injury site vulnerable to secondary damage, as well as significant changes in Cl, K, P, S, and Ca. Our results suggest widespread metal dyshomeostasis in response to central nervous system trauma and that altered Cu homeostasis may be a specific secondary event in response to white matter injury. The findings highlight metal homeostasis as a potential point of intervention in limiting damage following nervous system injury.
Collapse
Affiliation(s)
- Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Abigail Egid
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Somayra S A Mamsa
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | | | - Diwei Ho
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Carole A Bartlett
- Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Brooke Fehily
- Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - Brittney R Lins
- Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - Melinda Fitzgerald
- Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - Mark J Hackett
- Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Nicole M Smith
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
6
|
Ahmed RU, Medina‐Aguinaga D, Adams S, Knibbe CA, Morgan M, Gibson D, Kim J, Sharma M, Chopra M, Davison S, Sherwood LC, Negahdar M, Bert R, Ugiliweneza B, Hubscher C, Budde MD, Xu J, Boakye M. Predictive values of spinal cord diffusion magnetic resonance imaging to characterize outcomes after contusion injury. Ann Clin Transl Neurol 2023; 10:1647-1661. [PMID: 37501362 PMCID: PMC10502634 DOI: 10.1002/acn3.51855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVES To explore filtered diffusion-weighted imaging (fDWI), in comparison with conventional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI), as a predictor for long-term locomotor and urodynamic (UD) outcomes in Yucatan minipig model of spinal cord injury (SCI). Additionally, electrical conductivity of neural tissue using D-waves above and below the injury was measured to assess correlations between fDWI and D-waves data. METHODS Eleven minipigs with contusion SCI at T8-T10 level underwent MRI at 3T 4 h. post-SCI. Parameters extracted from region of interest analysis included Daxial from fDWI at injury site, fractional anisotropy and radial diffusivity from DTI above the injury site along with measures of edema length and cord width at injury site from T2 -weighted images. Locomotor recovery was assessed pre- and weekly post-SCI through porcine thoracic injury behavior scale (PTIBS) and UD were performed pre- and at 12 weeks of SCI. D-waves latency and amplitude differences were recorded before and immediately after SCI. RESULTS Two groups of pigs were found based on the PTIBS at week 12 (p < 0.0001) post-SCI and were labeled "poor" and "good" recovery. D-waves amplitude decreased below injury and increased above injury. UD outcomes pre/post SCI changed significantly. Conventional MRI metrics from T2 -weighted images were significantly correlated with diffusion MRI metrics. Daxial at injury epicenter was diminished by over 50% shortly after SCI, and it differentiated between good and poor locomotor recovery and UD outcomes. INTERPRETATION Similar to small animal studies, fDWI from acute imaging after SCI is a promising predictor for functional outcomes in large animals.
Collapse
Affiliation(s)
- Rakib Uddin Ahmed
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Daniel Medina‐Aguinaga
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Shawns Adams
- Department of NeurosurgeryDuke UniversityRaleighNorth CarolinaUSA
| | - Chase A. Knibbe
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Monique Morgan
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Destiny Gibson
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Joo‐won Kim
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of PsychiatryBaylor College of MedicineHoustonTexasUSA
| | - Mayur Sharma
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Manpreet Chopra
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Steven Davison
- Comparative Medicine Research UnitUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Leslie C. Sherwood
- Comparative Medicine Research UnitUniversity of LouisvilleLouisvilleKentuckyUSA
| | - M.J. Negahdar
- Department of RadiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Robert Bert
- Department of RadiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Charles Hubscher
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Matthew D. Budde
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Clement J. Zablocki Veterans Affairs Medical CenterMilwaukeeWisconsinUSA
| | - Junqian Xu
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of PsychiatryBaylor College of MedicineHoustonTexasUSA
| | - Maxwell Boakye
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| |
Collapse
|
7
|
High-resolution magnetization-transfer imaging of post-mortem marmoset brain: Comparisons with relaxometry and histology. Neuroimage 2023; 268:119860. [PMID: 36610679 DOI: 10.1016/j.neuroimage.2023.119860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Cell membranes and macromolecules or paramagnetic compounds interact with water proton spins, which modulates magnetic resonance imaging (MRI) contrast providing information on tissue composition. For a further investigation, quantitative magnetization transfer (qMT) parameters (at 3T), including the ratio of the macromolecular and water proton pools, F, and the exchange-rate constant as well as the (observed) longitudinal and the effective transverse relaxation rates (at 3T and 7T), R1obs and R2*, respectively, were measured at high spatial resolution (200 µm) in a slice of fixed marmoset brain and compared to histology results obtained with Gallyas' myelin stain and Perls' iron stain. R1obs and R2* were linearly correlated with the iron content for the entire slice, whereas distinct differences were obtained between gray and white matter for correlations of relaxometry and qMT parameters with myelin content. The combined results suggest that the macromolecular pool interacting with water consists of myelin and (less efficient) non-myelin contributions. Despite strong correlation of F and R1obs, none of these parameters was uniquely specific to myelination. Due to additional sensitivity to iron stores, R1obs and R2* were more sensitive for depicting microstructural differences between cortical layers than F.
Collapse
|
8
|
A pilot study comparing myelin measurements from myelin water imaging and 11C-PIB PET in multiple sclerosis. Mult Scler Relat Disord 2022; 68:104238. [PMID: 36274287 DOI: 10.1016/j.msard.2022.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/30/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022]
Abstract
MRI-based myelin water fraction (MWF) and PET-based Pittsburgh compound B (PiB) imaging both have potential to measure myelin in multiple sclerosis (MS). We characterised the differences in MWF and PiB binding in MS lesions relative to normal-appearing white matter and assessed the correlation between MWF and PiB binding in 11 MS participants and 3 healthy controls within 14 white matter regions of interest. Both PiB binding and MWF were reduced in MS lesions relative to NAWM, and a modest within subject correlation between MWF and PiB binding was found. This pilot study shows that MWF and PET-PiB provide different information about myelin loss in MS.
Collapse
|
9
|
Malomo T, Allard Brown A, Bale K, Yung A, Kozlowski P, Heran M, Streijger F, Kwon BK. Quantifying Intraparenchymal Hemorrhage after Traumatic Spinal Cord Injury: A Review of Methodology. J Neurotrauma 2022; 39:1603-1635. [PMID: 35538847 DOI: 10.1089/neu.2021.0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intraparenchymal hemorrhage (IPH) after a traumatic injury has been associated with poor neurological outcomes. Although IPH may result from the initial mechanical trauma, the blood and its breakdown products have potentially deleterious effects. Further, the degree of IPH has been correlated with injury severity and the extent of subsequent recovery. Therefore, accurate evaluation and quantification of IPH following traumatic spinal cord injury (SCI) is important to define treatments' effects on IPH progression and secondary neuronal injury. Imaging modalities, such as magnetic resonance imaging (MRI) and ultrasound (US), have been explored by researchers for the detection and quantification of IPH following SCI. Both quantitative and semiquantitative MRI and US measurements have been applied to objectively assess IPH following SCI, but the optimal methods for doing so are not well established. Studies in animal SCI models (rodent and porcine) have explored US and histological techniques in evaluating SCI and have demonstrated the potential to detect and quantify IPH. Newer techniques using machine learning algorithms (such as convolutional neural networks [CNN]) have also been studied to calculate IPH volume and have yielded promising results. Despite long-standing recognition of the potential pathological significance of IPH within the spinal cord, quantifying IPH with MRI or US is a relatively new area of research. Further studies are warranted to investigate their potential use. Here, we review the different and emerging quantitative MRI, US, and histological approaches used to detect and quantify IPH following SCI.
Collapse
Affiliation(s)
- Toluyemi Malomo
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aysha Allard Brown
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirsten Bale
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Yung
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manraj Heran
- Department of Radiology, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, and Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Morales-Guadarrama A, Salgado-Ceballos H, Grijalva I, Morales-Corona J, Hernández-Godínez B, Ibáñez-Contreras A, Ríos C, Diaz-Ruiz A, Cruz GJ, Olayo MG, Sánchez-Torres S, Mondragón-Lozano R, Alvarez-Mejia L, Fabela-Sánchez O, Olayo R. Evolution of Spinal Cord Transection of Rhesus Monkey Implanted with Polymer Synthesized by Plasma Evaluated by Diffusion Tensor Imaging. Polymers (Basel) 2022; 14:polym14050962. [PMID: 35267785 PMCID: PMC8912689 DOI: 10.3390/polym14050962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
In spinal cord injury (SCI) there is damage to the nervous tissue, due to the initial damage and pathophysiological processes that are triggered subsequently. There is no effective therapeutic strategy for motor functional recovery derived from the injury. Several studies have demonstrated neurons growth in cell cultures on polymers synthesized by plasma derived from pyrrole, and the increased recovery of motor function in rats by implanting the polymer in acute states of the SCI in contusion and transection models. In the process of transferring these advances towards humans it is recommended to test in mayor species, such as nonhuman primates, prioritizing the use of non-invasive techniques to evaluate the injury progression with the applied treatments. This work shows the ability of diffusion tensor imaging (DTI) to evaluate the evolution of the SCI in nonhuman primates through the fraction of anisotropy (FA) analysis and the diffusion tensor tractography (DTT) calculus. The injury progression was analysed up to 3 months after the injury day by FA and DTT. The FA recovery and the DTT re-stabilization were observed in the experimental implanted subject with the polymer, in contrast with the non-implanted subject. The parameters derived from DTI are concordant with the histology and the motor functional behaviour.
Collapse
Affiliation(s)
- Axayacatl Morales-Guadarrama
- Centro Nacional de Investigación en Imagenología e Instrumentación Médica, Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City 09340, Mexico;
- Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City 09340, Mexico;
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Axapusco 52750, Mexico; (G.J.C.); (M.G.O.)
| | - Hermelinda Salgado-Ceballos
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, CDMX, Mexico City 06720, Mexico; (H.S.-C.); (I.G.); (S.S.-T.); (L.A.-M.)
- Centro de Investigación del Proyecto CAMINA A.C., CDMX, Mexico City 14050, Mexico;
| | - Israel Grijalva
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, CDMX, Mexico City 06720, Mexico; (H.S.-C.); (I.G.); (S.S.-T.); (L.A.-M.)
- Centro de Investigación del Proyecto CAMINA A.C., CDMX, Mexico City 14050, Mexico;
| | - Juan Morales-Corona
- Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City 09340, Mexico;
| | - Braulio Hernández-Godínez
- Investigación Biomédica Aplicada S.A.S. de C.V., CDMX, Mexico City 14240, Mexico; (B.H.-G.); (A.I.-C.)
| | | | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., CDMX, Mexico City 14269, Mexico; (C.R.); (A.D.-R.)
| | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., CDMX, Mexico City 14269, Mexico; (C.R.); (A.D.-R.)
| | - Guillermo Jesus Cruz
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Axapusco 52750, Mexico; (G.J.C.); (M.G.O.)
| | - María Guadalupe Olayo
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Axapusco 52750, Mexico; (G.J.C.); (M.G.O.)
| | - Stephanie Sánchez-Torres
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, CDMX, Mexico City 06720, Mexico; (H.S.-C.); (I.G.); (S.S.-T.); (L.A.-M.)
- Centro de Investigación del Proyecto CAMINA A.C., CDMX, Mexico City 14050, Mexico;
| | - Rodrigo Mondragón-Lozano
- Centro de Investigación del Proyecto CAMINA A.C., CDMX, Mexico City 14050, Mexico;
- Catedrático CONACyT-Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, CDMX, Mexico City 06720, Mexico
| | - Laura Alvarez-Mejia
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, CDMX, Mexico City 06720, Mexico; (H.S.-C.); (I.G.); (S.S.-T.); (L.A.-M.)
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., CDMX, Mexico City 14269, Mexico; (C.R.); (A.D.-R.)
| | - Omar Fabela-Sánchez
- Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City 09340, Mexico;
- Departamento de Química Macromoléculas y Nanomateriales, Centro de Investigación en Química Aplicada, Saltillo 25294, Mexico
| | - Roberto Olayo
- Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City 09340, Mexico;
- Correspondence:
| |
Collapse
|
11
|
Yik JT, Becquart P, Gill J, Petkau J, Traboulsee A, Carruthers R, Kolind SH, Devonshire V, Sayao AL, Schabas A, Tam R, Moore GRW, Li DKB, Stukas S, Wellington C, Quandt JA, Vavasour IM, Laule C. Serum neurofilament light chain correlates with myelin and axonal magnetic resonance imaging markers in multiple sclerosis. Mult Scler Relat Disord 2022; 57:103366. [PMID: 35158472 DOI: 10.1016/j.msard.2021.103366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neurofilaments are cytoskeletal proteins that are detectable in the blood after neuroaxonal injury. Multiple sclerosis (MS) disease progression, greater lesion volume, and brain atrophy are associated with higher levels of serum neurofilament light chain (NfL), but few studies have examined the relationship between NfL and advanced magnetic resonance imaging (MRI) measures related to myelin and axons. We assessed the relationship between serum NfL and brain MRI measures in a diverse group of MS participants. METHODS AND MATERIALS 103 participants (20 clinically isolated syndrome, 33 relapsing-remitting, 30 secondary progressive, 20 primary progressive) underwent 3T MRI to obtain myelin water fraction (MWF), geometric mean T2 (GMT2), water content, T1; high angular resolution diffusion imaging (HARDI)-derived axial diffusivity (AD), radial diffusivity (RD), fractional anisotropy (FA); diffusion basis spectrum imaging (DBSI)-derived AD, RD, FA; restricted, hindered, water and fiber fractions; and volume measurements of normalized brain, lesion, thalamic, deep gray matter (GM), and cortical thickness. Multiple linear regressions assessed the strength of association between serum NfL (dependent variable) and each MRI measure in whole brain (WB), normal appearing white matter (NAWM) and T2 lesions (independent variables), while controlling for age, expanded disability status scale, and disease duration. RESULTS Serum NfL levels were significantly associated with metrics of axonal damage (FA: R2WB-HARDI = 0.29, R2NAWM-HARDI = 0.31, R2NAWM-DBSI = 0.30, R2Lesion-DBSI = 0.31; AD: R2WB-HARDI=0.31), myelin damage (MWF: R2WB = 0.29, R2NAWM = 0.30, RD: R2WB-HARDI = 0.32, R2NAWM-HARDI = 0.34, R2Lesion-DBSI = 0.30), edema and inflammation (T1: R2Lesion = 0.32; GMT2: R2WB = 0.31, R2Lesion = 0.31), and cellularity (restricted fraction R2WB = 0.30, R2NAWM = 0.32) across the entire MS cohort. Higher serum NfL levels were associated with significantly higher T2 lesion volume (R2 = 0.35), lower brain structure volumes (thalamus R2 = 0.31; deep GM R2 = 0.33; normalized brain R2 = 0.31), and smaller cortical thickness R2 = 0.31). CONCLUSION The association between NfL and myelin MRI markers suggest that elevated serum NfL is a useful biomarker that reflects not only acute axonal damage, but also damage to myelin and inflammation, likely due to the known synergistic myelin-axon coupling relationship.
Collapse
Affiliation(s)
- Jackie T Yik
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Pierre Becquart
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jasmine Gill
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - John Petkau
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - Anthony Traboulsee
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert Carruthers
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shannon H Kolind
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Virginia Devonshire
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ana-Luiza Sayao
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alice Schabas
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Roger Tam
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - G R Wayne Moore
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David K B Li
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl Wellington
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jacqueline A Quandt
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Irene M Vavasour
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Cornelia Laule
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Paul DA, Strawderman E, Rodriguez A, Hoang R, Schneider CL, Haber S, Chernoff BL, Shafiq I, Williams ZR, Vates GE, Mahon BZ. Empty Sella Syndrome as a Window Into the Neuroprotective Effects of Prolactin. Front Med (Lausanne) 2021; 8:680602. [PMID: 34307410 PMCID: PMC8295462 DOI: 10.3389/fmed.2021.680602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The goal of this study was to relate diffusion MR measures of white matter integrity of the retinofugal visual pathway with prolactin levels in a patient with downward herniation of the optic chiasm secondary to medical treatment of a prolactinoma. Methods: A 36-year-old woman with a prolactinoma presented with progressive bilateral visual field defects 9 years after initial diagnosis and medical treatment. She was diagnosed with empty-sella syndrome and instructed to stop cabergoline. Hormone testing was conducted in tandem with routine clinical evaluations over 1 year and the patient was followed with diffusion magnetic resonance imaging (dMRI), optical coherence tomography (OCT), and automated perimetry at three time points. Five healthy controls underwent a complementary battery of clinical and neuroimaging tests at a single time point. Results: Shortly after discontinuing cabergoline, diffusion metrics in the optic tracts were within the range of values observed in healthy controls. However, following a brief period where the patient resumed cabergoline (of her own volition), there was a decrease in serum prolactin with a corresponding decrease in visual ability and increase in radial diffusivity (p < 0.001). Those measures again returned to their baseline ranges after discontinuing cabergoline a second time. Conclusions: These results demonstrate the sensitivity of dMRI to detect rapid and functionally significant microstructural changes in white matter tracts secondary to alterations in serum prolactin levels. The inverse relations between prolactin and measures of white matter integrity and visual function are consistent with the hypothesis that prolactin can play a neuroprotective role in the injured nervous system.
Collapse
Affiliation(s)
- David A. Paul
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Emma Strawderman
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
| | - Alejandra Rodriguez
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Ricky Hoang
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Colleen L. Schneider
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Sam Haber
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Benjamin L. Chernoff
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Ismat Shafiq
- Department of Endocrinology and Metabolism, University of Rochester Medical Center, Rochester, NY, United States
| | - Zoë R. Williams
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - G. Edward Vates
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Bradford Z. Mahon
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
13
|
|
14
|
Morgan ML, Brideau C, Teo W, Caprariello AV, Stys PK. Label-free assessment of myelin status using birefringence microscopy. J Neurosci Methods 2021; 360:109226. [PMID: 34052286 DOI: 10.1016/j.jneumeth.2021.109226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Label-free methods for quantifying myelination can reduce expense, time, and variability in results when examining tissue white matter pathology. NEW METHOD We sought to determine whether the optical birefringent properties of myelin could be exploited to determine myelination status of white matter in tissue sections. Sections of forebrains of mice (normal, and treated with cuprizone to cause demyelination) were examined by birefringence using a birefringence imaging system (Thorlabs LCC7201), and results compared with sections stained using Luxol Fast Blue. RESULTS Quantitative birefringence analysis of myelin was not only reliable in detecting demyelination, but also showed abnormalities that preceded myelin loss in cuprizone-treated mice. COMPARISON WITH EXISTING METHODS Subtle myelin pathology visible with electron microscopy but not with conventional histopathological staining was readily detected with birefringence microscopy. CONCLUSIONS Birefringence imaging provides a rapid, label-free method of analyzing the myelin content and nanostructural status in longitudinal white matter structures, being sensitive to subtle myelin changes that precede overt pathological damage.
Collapse
Affiliation(s)
- Megan Lynn Morgan
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Craig Brideau
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Wulin Teo
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Andrew Vincent Caprariello
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Peter K Stys
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
15
|
Lazari A, Lipp I. Can MRI measure myelin? Systematic review, qualitative assessment, and meta-analysis of studies validating microstructural imaging with myelin histology. Neuroimage 2021; 230:117744. [PMID: 33524576 PMCID: PMC8063174 DOI: 10.1016/j.neuroimage.2021.117744] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
Recent years have seen an increased understanding of the importance of myelination in healthy brain function and neuropsychiatric diseases. Non-invasive microstructural magnetic resonance imaging (MRI) holds the potential to expand and translate these insights to basic and clinical human research, but the sensitivity and specificity of different MR markers to myelination is a subject of debate. To consolidate current knowledge on the topic, we perform a systematic review and meta-analysis of studies that validate microstructural imaging by combining it with myelin histology. We find meta-analytic evidence for correlations between various myelin histology metrics and markers from different MRI modalities, including fractional anisotropy, radial diffusivity, macromolecular pool, magnetization transfer ratio, susceptibility and longitudinal relaxation rate, but not mean diffusivity. Meta-analytic correlation effect sizes range widely, between R2 = 0.26 and R2 = 0.82. However, formal comparisons between MRI-based myelin markers are limited by methodological variability, inconsistent reporting and potential for publication bias, thus preventing the establishment of a single most sensitive strategy to measure myelin with MRI. To facilitate further progress, we provide a detailed characterisation of the evaluated studies as an online resource. We also share a set of 12 recommendations for future studies validating putative MR-based myelin markers and deploying them in vivo in humans.
Collapse
Affiliation(s)
- Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Ilona Lipp
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
16
|
Dang C, Lu Y, Chen X, Li Q. Baricitinib Ameliorates Experimental Autoimmune Encephalomyelitis by Modulating the Janus Kinase/Signal Transducer and Activator of Transcription Signaling Pathway. Front Immunol 2021; 12:650708. [PMID: 33927721 PMCID: PMC8076548 DOI: 10.3389/fimmu.2021.650708] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/22/2021] [Indexed: 02/05/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS) and a CD4+ T cell-mediated autoimmune disease. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is recognized as the major mechanism that regulates the differentiation and function of T helper (Th) 1 and Th17 cells, which are recognized as pivotal effector cells responsible for the development of EAE. We used baricitinib, a JAK 1/2 inhibitor, to investigate the therapeutic efficacy of inhibiting the JAK/STAT pathway in EAE mice. Our results showed that baricitinib significantly delayed the onset time, decreased the severity of clinical symptoms, shortened the duration of EAE, and alleviated demyelination and immune cell infiltration in the spinal cord. In addition, baricitinib treatment downregulated the proportion of interferon-γ+CD4+ Th1 and interleukin-17+CD4+ Th17 cells, decreased the levels of retinoic acid-related orphan receptor γ t and T-bet mRNA, inhibited lymphocyte proliferation, and decreased the expression of proinflammatory cytokines and chemokines in the spleen of mice with EAE. Furthermore, our results showed the role of baricitinib in suppressing the phosphorylation of STATs 1, 3, and 4 in the spleen of EAE mice. Therefore, our study demonstrates that baricitinib could potentially alleviate inflammation in mice with EAE and may be a promising candidate for treating MS.
Collapse
Affiliation(s)
- Chun Dang
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, China
| | - Yaoheng Lu
- Department of General Surgery, Chengdu Integrated Traditional Chinese Medicine & Western Medicine Hospital, Chengdu, China
- Department of General Surgery, Chengdu University of Traditional Chinese Medicine Affiliated Traditional Chinese Medicine & Western Hospital, Chengdu, China
| | - Xingyu Chen
- Department of General Surgery, Chengdu Integrated Traditional Chinese Medicine & Western Medicine Hospital, Chengdu, China
| | - Qian Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Dao E, Tam R, Hsiung GYR, Ten Brinke L, Crockett R, Barha CK, Yoo Y, Al Keridy W, Doherty SH, Laule C, MacKay AL, Liu-Ambrose T. Exploring the Contribution of Myelin Content in Normal Appearing White Matter to Cognitive Outcomes in Cerebral Small Vessel Disease. J Alzheimers Dis 2021; 80:91-101. [PMID: 33523006 DOI: 10.3233/jad-201134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Myelin damage is a salient feature in cerebral small vessel disease (cSVD). Of note, myelin damage extends into the normal appearing white matter (NAWM). Currently, the specific role of myelin content in cognition is poorly understood. OBJECTIVE The objective of this exploratory study was to investigate the association between NAWM myelin and cognitive function in older adults with cSVD. METHODS This exploratory study included 55 participants with cSVD. NAWM myelin was measured using myelin water imaging and was quantified as myelin water fraction (MWF). Assessment of cognitive function included processing speed (Trail Making Test Part A), set shifting (Trail Making Test Part B minus A), working memory (Verbal Digit Span Backwards Test), and inhibition (Stroop Test). Multiple linear regression analyses assessed the contribution of NAWM MWF on cognitive outcomes controlling for age, education, and total white matter hyperintensity volume. The overall alpha was set at ≤0.05. RESULTS After accounting for age, education, and total white matter hyperintensity volume, lower NAWM MWF was significantly associated with slower processing speed (β = -0.29, p = 0.037) and poorer working memory (β= 0.30, p = 0.048). NAWM MWF was not significantly associated with set shifting or inhibitory control (p > 0.132). CONCLUSION Myelin loss in NAWM may play a role in the evolution of impaired processing speed and working memory in people with cSVD. Future studies, with a longitudinal design and larger sample sizes, are needed to fully elucidate the role of myelin as a potential biomarker for cognitive function.
Collapse
Affiliation(s)
- Elizabeth Dao
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Roger Tam
- Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Department of Radiology, UBC, Vancouver, Canada.,School of Biomedical Engineering, UBC, Vancouver, Canada
| | - Ging-Yuek R Hsiung
- Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Division of Neurology, UBC Hospital, Vancouver, Canada
| | - Lisanne Ten Brinke
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Rachel Crockett
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Cindy K Barha
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | | | - Walid Al Keridy
- Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Division of Neurology, UBC Hospital, Vancouver, Canada.,Department of Medicine, King Saud University, College of Medicine, Riyadh, Saudi Arabia
| | - Stephanie H Doherty
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Cornelia Laule
- Department of Radiology, UBC, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada.,Department of Physics and Astronomy, UBC, Vancouver, Canada.,International Collaboration on Repair Discoveries, Vancouver, Canada
| | - Alex L MacKay
- Department of Radiology, UBC, Vancouver, Canada.,UBC MRI Research Centre, UBC, Vancouver, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, UBC, Vancouver, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| |
Collapse
|
18
|
Rink S, Pavlov S, Wöhler A, Bendella H, Manthou M, Papamitsou T, Dunlop SA, Angelov DN. Numbers of Axons in Spared Neural Tissue Bridges But Not Their Widths or Areas Correlate With Functional Recovery in Spinal Cord-Injured Rats. J Neuropathol Exp Neurol 2021; 79:1203-1217. [PMID: 32594136 DOI: 10.1093/jnen/nlaa050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/11/2020] [Accepted: 05/08/2020] [Indexed: 11/14/2022] Open
Abstract
The relationships between various parameters of tissue damage and subsequent functional recovery after spinal cord injury (SCI) are not well understood. Patients may regain micturition control and walking despite large postinjury medullar cavities. The objective of this study was to establish possible correlations between morphological findings and degree of functional recovery after spinal cord compression at vertebra Th8 in rats. Recovery of motor (Basso, Beattie, Bresnahan, foot-stepping angle, rump-height index, and ladder climbing), sensory (withdrawal latency), and bladder functions was analyzed at 1, 3, 6, 9, and 12 weeks post-SCI. Following perfusion fixation, spinal cord tissue encompassing the injury site was cut in longitudinal frontal sections. Lesion lengths, lesion volumes, and areas of perilesional neural tissue bridges were determined after staining with cresyl violet. The numbers of axons in these bridges were quantified after staining for class III β-tubulin. We found that it was not the area of the spared tissue bridges, which is routinely determined by magnetic resonance imaging (MRI), but the numbers of axons in them that correlated with functional recovery after SCI (Spearman's ρ > 0.8; p < 0.001). We conclude that prognostic statements based only on MRI measurements should be considered with caution.
Collapse
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Germany
| | - Stoyan Pavlov
- Department of Anatomy, Histology and Embryology, Medical University, Varna, Bulgaria
| | | | - Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | - Marilena Manthou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece
| | - Theodora Papamitsou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece
| | - Sarah A Dunlop
- School of Biological Sciences, The University of Western Australia, Australia
| | | |
Collapse
|
19
|
Bighinati A, Khalajzeyqami Z, Baldassarro VA, Lorenzini L, Cescatti M, Moretti M, Giardino L, Calzà L. Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury-A Data-Driven Approach. Int J Mol Sci 2021; 22:ijms22041744. [PMID: 33572341 PMCID: PMC7916102 DOI: 10.3390/ijms22041744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
The involvement of the extracellular matrix (ECM) in lesion evolution and functional outcome is well recognized in spinal cord injury. Most attention has been dedicated to the “core” area of the lesion and scar formation, while only scattered reports consider ECM modification based on the temporal evolution and the segments adjacent to the lesion. In this study, we investigated the expression profile of 100 genes encoding for ECM proteins at 1, 8 and 45 days post-injury, in the spinal cord segments rostral and caudal to the lesion and in the scar segment, in a rat model. During both the active lesion phases and the lesion stabilization, we observed an asymmetric gene expression induced by the injury, with a higher regulation in the rostral segment of genes involved in ECM remodeling, adhesion and cell migration. Using bioinformatic approaches, the metalloproteases inhibitor Timp1 and the hyaluronan receptor Cd44 emerged as the hub genes at all post-lesion times. Results from the bioinformatic gene expression analysis were then confirmed at protein level by tissue analysis and by cell culture using primary astrocytes. These results indicated that ECM regulation also takes place outside of the lesion area in spinal cord injury.
Collapse
Affiliation(s)
- Andrea Bighinati
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
| | - Zahra Khalajzeyqami
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Vito Antonio Baldassarro
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Luca Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
| | - Maura Cescatti
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Marzia Moretti
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Laura Calzà
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Montecatone Rehabilitation Institute, 40026 Imola (BO), Italy
- Correspondence:
| |
Collapse
|
20
|
Li Z, Gao H, Zeng P, Jia Y, Kong X, Xu K, Bai R. Secondary Degeneration of White Matter After Focal Sensorimotor Cortical Ischemic Stroke in Rats. Front Neurosci 2021; 14:611696. [PMID: 33536869 PMCID: PMC7848148 DOI: 10.3389/fnins.2020.611696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemic lesions could lead to secondary degeneration in remote regions of the brain. However, the spatial distribution of secondary degeneration along with its role in functional deficits is not well understood. In this study, we explored the spatial and connectivity properties of white matter (WM) secondary degeneration in a focal unilateral sensorimotor cortical ischemia rat model, using advanced microstructure imaging on a 14 T MRI system. Significant axonal degeneration was observed in the ipsilateral external capsule and even remote regions including the contralesional external capsule and corpus callosum. Further fiber tractography analysis revealed that only fibers having direct axonal connections with the primary lesion exhibited a significant degeneration. These results suggest that focal ischemic lesions may induce remote WM degeneration, but limited to fibers tied to the primary lesion. These “direct” fibers mainly represent perilesional, interhemispheric, and subcortical axonal connections. At last, we found that primary lesion volume might be the determining factor of motor function deficits.
Collapse
Affiliation(s)
- Zhaoqing Li
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Huan Gao
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China
| | - Pingmei Zeng
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yinhang Jia
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Physical Medicine and Rehabilitation, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Kedi Xu
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Department of Physical Medicine and Rehabilitation, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
van der Weijden CWJ, García DV, Borra RJH, Thurner P, Meilof JF, van Laar PJ, Dierckx RAJO, Gutmann IW, de Vries EFJ. Myelin quantification with MRI: A systematic review of accuracy and reproducibility. Neuroimage 2020; 226:117561. [PMID: 33189927 DOI: 10.1016/j.neuroimage.2020.117561] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/27/2020] [Accepted: 11/07/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Currently, multiple sclerosis is treated with anti-inflammatory therapies, but these treatments lack efficacy in progressive disease. New treatment strategies aim to repair myelin damage and efficacy evaluation of such new therapies would benefit from validated myelin imaging techniques. Several MRI methods for quantification of myelin density are available now. This systematic review aims to analyse the performance of these MRI methods. METHODS Studies comparing myelin quantification by MRI with histology, the current gold standard, or assessing reproducibility were retrieved from PubMed/MEDLINE and Embase (until December 2019). Included studies assessed both myelin histology and MRI quantitatively. Correlation or variance measurements were extracted from the studies. Non-parametric tests were used to analyse differences in study methodologies. RESULTS The search yielded 1348 unique articles. Twenty-two animal studies and 13 human studies correlated myelin MRI with histology. Eighteen clinical studies analysed the reproducibility. Overall bias risk was low or unclear. All MRI methods performed comparably, with a mean correlation between MRI and histology of R2=0.54 (SD=0.30) for animal studies, and R2=0.54 (SD=0.18) for human studies. Reproducibility for the MRI methods was good (ICC=0.75-0.93, R2=0.90-0.98, COV=1.3-27%), except for MTR (ICC=0.05-0.51). CONCLUSIONS Overall, MRI-based myelin imaging methods show a fairly good correlation with histology and a good reproducibility. However, the amount of validation data is too limited and the variability in performance between studies is too large to select the optimal MRI method for myelin quantification yet.
Collapse
Affiliation(s)
- Chris W J van der Weijden
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Ronald J H Borra
- Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Patrick Thurner
- Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090 Wien, Austria.
| | - Jan F Meilof
- Multiple Sclerosis Center Noord Nederland, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Peter-Jan van Laar
- Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Radiology, Zorggroep Twente, Zilvermeeuw 1, 7609 PP Almelo, the Netherlands.
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Ingomar W Gutmann
- Physics of Functional Material, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| |
Collapse
|
22
|
Hu D, Moalem-Taylor G, Potas JR. Red-Light (670 nm) Therapy Reduces Mechanical Sensitivity and Neuronal Cell Death, and Alters Glial Responses after Spinal Cord Injury in Rats. J Neurotrauma 2020; 37:2244-2260. [PMID: 32552352 DOI: 10.1089/neu.2020.7066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Individuals with spinal cord injury (SCI) often develop debilitating neuropathic pain, which may be driven by neuronal damage and neuroinflammation. We have previously demonstrated that treatment using 670 nm (red) light irradiation alters microglia/macrophage responses and alleviates mechanical hypersensitivity at 7 days post-injury (dpi). Here, we investigated the effect of red light on the development of mechanical hypersensitivity, neuronal markers, and glial response in the subacute stage (days 1-7) following SCI. Wistar rats were subjected to a mild hemi-contusion SCI at vertebra T10 or to sham surgery followed by daily red-light treatment (30 min/day; 670 nm LED; 35 mW/cm2) or sham treatment. Mechanical sensitivity of the rat dorsum was assessed from 1 dpi and repeated every second day. Spinal cords were collected at 1, 3, 5, and 7 dpi for analysis of myelination, neurofilament protein NF200 expression, neuronal cell death, reactive astrocytes (glial fibrillary acidic protein [GFAP]+ cells), interleukin 1 β (IL-1β) expression, and inducible nitric oxide synthase (iNOS) production in IBA1+ microglia/macrophages. Red-light treatment significantly reduced the cumulative mechanical sensitivity and the hypersensitivity incidence following SCI. This effect was accompanied by significantly reduced neuronal cell death, reduced astrocyte activation, and reduced iNOS expression in IBA1+ cells at the level of the injury. However, myelin and NF200 immunoreactivity and IL-1β expression in GFAP+ and IBA1+ cells were not altered by red-light treatment. Thus, red-light therapy may represent a useful non-pharmacological approach for treating pain during the subacute period after SCI by decreasing neuronal loss and modulating the inflammatory glial response.
Collapse
Affiliation(s)
- Di Hu
- John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
| | - Gila Moalem-Taylor
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, Kensington, New South Wales, Australia
| | - Jason R Potas
- John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia.,Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
23
|
Doucette J, Kames C, Rauscher A. DECAES - DEcomposition and Component Analysis of Exponential Signals. Z Med Phys 2020; 30:271-278. [PMID: 32451148 DOI: 10.1016/j.zemedi.2020.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Combinations of multiple exponentially decaying signals are found across many disciplines of science. Decomposition of these multi-exponential signals into their individual components provides insight into the various contributors to the signal. Magnetic resonance images, for instance, can be acquired with multiple gradient or spin echoes to provide voxel by voxel multi-exponential T2* or T2 decays, respectively. With their millions of voxels, these images make the task of decomposition into individual exponentials computationally challenging. Current implementations take several hours, which is prohibitively long in many settings, such as on-scanner calculation for clinical applications. Here, we present a fast approach for the decomposition of multi-exponential signals. The method is applied to multi echo spin echo MRI scans and computes myelin water maps of the whole brain in under 2min, and luminal water maps of the prostate in under 1min.
Collapse
Affiliation(s)
- Jonathan Doucette
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, V6T 1Z1 Vancouver, BC, Canada; UBC MRI Research Centre, 2221 Wesbrook Mall, V6T 2B5 Vancouver, BC, Canada.
| | - Christian Kames
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, V6T 1Z1 Vancouver, BC, Canada; UBC MRI Research Centre, 2221 Wesbrook Mall, V6T 2B5 Vancouver, BC, Canada
| | - Alexander Rauscher
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, V6T 1Z1 Vancouver, BC, Canada; UBC MRI Research Centre, 2221 Wesbrook Mall, V6T 2B5 Vancouver, BC, Canada; Department of Radiology, University of British Columbia, 2775 Laurel Street, V5Z 1M9 Vancouver, BC, Canada; Department of Pediatrics, Faculty of Medicine, University of British Columbia, 4480 Oak Street, BC Children's Hospital, V6H 3V4 Vancouver, BC, Canada
| |
Collapse
|
24
|
Mancini M, Karakuzu A, Cohen-Adad J, Cercignani M, Nichols TE, Stikov N. An interactive meta-analysis of MRI biomarkers of myelin. eLife 2020; 9:e61523. [PMID: 33084576 PMCID: PMC7647401 DOI: 10.7554/elife.61523] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Several MRI measures have been proposed as in vivo biomarkers of myelin, each with applications ranging from plasticity to pathology. Despite the availability of these myelin-sensitive modalities, specificity and sensitivity have been a matter of discussion. Debate about which MRI measure is the most suitable for quantifying myelin is still ongoing. In this study, we performed a systematic review of published quantitative validation studies to clarify how different these measures are when compared to the underlying histology. We analyzed the results from 43 studies applying meta-analysis tools, controlling for study sample size and using interactive visualization (https://neurolibre.github.io/myelin-meta-analysis). We report the overall estimates and the prediction intervals for the coefficient of determination and find that MT and relaxometry-based measures exhibit the highest correlations with myelin content. We also show which measures are, and which measures are not statistically different regarding their relationship with histology.
Collapse
Affiliation(s)
- Matteo Mancini
- Department of Neuroscience, Brighton and Sussex Medical School, University of SussexBrightonUnited Kingdom
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- CUBRIC, Cardiff UniversityCardiffUnited Kingdom
| | | | - Julien Cohen-Adad
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- Functional Neuroimaging Unit, CRIUGM, Université de MontréalMontrealCanada
| | - Mara Cercignani
- Department of Neuroscience, Brighton and Sussex Medical School, University of SussexBrightonUnited Kingdom
- Neuroimaging Laboratory, Fondazione Santa LuciaRomeItaly
| | - Thomas E Nichols
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of OxfordOxfordUnited Kingdom
- Big Data Institute, University of OxfordOxfordUnited Kingdom
| | - Nikola Stikov
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- Montreal Heart Institute, Université de MontréalMontrealCanada
| |
Collapse
|
25
|
Birkl C, Doucette J, Fan M, Hernández-Torres E, Rauscher A. Myelin water imaging depends on white matter fiber orientation in the human brain. Magn Reson Med 2020; 85:2221-2231. [PMID: 33017486 PMCID: PMC7821018 DOI: 10.1002/mrm.28543] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Purpose The multi‐exponential T2 decay of the MRI signal from cerebral white matter can be separated into short T2 components related to myelin water and long T2 components related to intracellular and extracellular water. In this study, we investigated to what degree the apparent myelin water fraction (MWF) depends on the angle between white matter fibers and the main magnetic field. Methods Maps of the apparent MWF were acquired using multi‐echo Carr‐Purcell‐Meiboom‐Gill and gradient‐echo spin‐echo sequences. The Carr‐Purcell‐Meiboom‐Gill sequence was acquired with a TR of 1073 ms, 1500 ms, and 2000 ms. The fiber orientation was mapped with DTI. By angle‐wise pooling the voxels across the brain’s white matter, orientation‐dependent apparent MWF curves were generated. Results We found that the apparent MWF varied between 25% and 35% across different fiber orientations. Furthermore, the selection of the TR influences the apparent MWF. Conclusion White matter fiber orientation induces a strong systematic bias on the estimation of the apparent MWF. This finding has implications for future research and the interpretation of MWI results in previously published studies.
Collapse
Affiliation(s)
- Christoph Birkl
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada.,Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Neurology, Medical University of Graz, Graz, Austria
| | - Jonathan Doucette
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada.,Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada
| | - Michael Fan
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada.,Texas Oncology, Dallas, Texas, USA
| | - Enedino Hernández-Torres
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada.,Department of Medicine (Division of Neurology), University of British Columbia, Vancouver, Canada
| | - Alexander Rauscher
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada.,Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada.,Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, Canada
| |
Collapse
|
26
|
Lewis MJ, Early PJ, Mariani CL, Munana KR, Olby NJ. Influence of Duration of Injury on Diffusion Tensor Imaging in Acute Canine Spinal Cord Injury. J Neurotrauma 2020; 37:2261-2267. [PMID: 32586187 DOI: 10.1089/neu.2019.6786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diffusion tensor imaging (DTI) quantifies microstructural lesion characteristics, but impact of the interval between spinal cord injury (SCI) and examination on imaging characteristics is unclear. Our objective was to investigate the impact of duration of injury on DTI indices in dogs with acute, spontaneous SCI from thoracolumbar intervertebral disc herniation (IVDH) and explore associations with clinical severity. Twenty-six dogs with acute thoracolumbar IVDH of variable severity who underwent DTI were included. Neurological severity was graded using the modified Frankel Score (0-V). Fractional anisotropy (FA) and mean diffusivity (MD) were calculated on regions of interest within and adjacent to the lesion epicenter. Relationships between FA or MD and duration (injury to imaging interval) or neurological severity were determined using regression analysis and Wilcoxon rank sum. Median age was 6.8 years (1-13), median duration was 1.5 days (1-9), and neurological signs ranged from ambulatory paraparesis (MFS II) to paraplegia with absent pain perception (MFS V). Mean FA was 0.61 ± 0.09 cranial to the lesion, 0.57 ± 0.12 at the epicenter and 0.55 ± 0.10 caudally. Mean MD was 1.18 × 10-3 ± 0.0002 cranially, 1.09 × 10-3 ± 0.0002 at the epicenter, and 1.14 × 10-3 ± 0.0002 caudally. Accounting for neurological severity and age, FA caudal to the epicenter decreased with increasing duration of injury (p = 0.02). Lower MD within the lesion epicenter was associated with worse neurological severity (p = 0.01). Duration of injury should be considered when interpreting DTI results in dogs with acute thoracolumbar IVDH. The MD might differentiate injury severity in the acute setting and be worthy of development as an imaging biomarker.
Collapse
Affiliation(s)
- Melissa J Lewis
- Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Peter J Early
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Christopher L Mariani
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Karen R Munana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
27
|
Lee J, Hyun JW, Lee J, Choi EJ, Shin HG, Min K, Nam Y, Kim HJ, Oh SH. So You Want to Image Myelin Using MRI: An Overview and Practical Guide for Myelin Water Imaging. J Magn Reson Imaging 2020; 53:360-373. [PMID: 32009271 DOI: 10.1002/jmri.27059] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
Myelin water imaging (MWI) is an MRI imaging biomarker for myelin. This method can generate an in vivo whole-brain myelin water fraction map in approximately 10 minutes. It has been applied in various applications including neurodegenerative disease, neurodevelopmental, and neuroplasticity studies. In this review we start with a brief introduction of myelin biology and discuss the contributions of myelin in conventional MRI contrasts. Then the MRI properties of myelin water and four different MWI methods, which are categorized as T2 -, T2 *-, T1 -, and steady-state-based MWI, are summarized. After that, we cover more practical issues such as availability, interpretation, and validation of these methods. To illustrate the utility of MWI as a clinical research tool, MWI studies for two diseases, multiple sclerosis and neuromyelitis optica, are introduced. Additional topics about imaging myelin in gray matter and non-MWI methods for myelin imaging are also included. Although technical and physiological limitations exist, MWI is a potent surrogate biomarker of myelin that carries valuable and useful information of myelin. Evidence Level: 5 Technical Efficacy: 1 J. MAGN. RESON. IMAGING 2021;53:360-373.
Collapse
Affiliation(s)
- Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital, National Cancer Center, Goyang-si, Korea
| | - Jieun Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Eun-Jung Choi
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Hyeong-Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Kyeongseon Min
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Yoonho Nam
- Department of Radiology, Seoul Saint Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital, National Cancer Center, Goyang-si, Korea
| | - Se-Hong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Korea.,Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
28
|
David G, Mohammadi S, Martin AR, Cohen-Adad J, Weiskopf N, Thompson A, Freund P. Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat Rev Neurol 2019; 15:718-731. [PMID: 31673093 DOI: 10.1038/s41582-019-0270-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 01/23/2023]
Abstract
Pathophysiological changes in the spinal cord white and grey matter resulting from injury can be observed with MRI techniques. These techniques provide sensitive markers of macrostructural and microstructural tissue integrity, which correlate with histological findings. Spinal cord MRI findings in traumatic spinal cord injury (tSCI) and nontraumatic spinal cord injury - the most common form of which is degenerative cervical myelopathy (DCM) - have provided important insights into the pathophysiological processes taking place not just at the focal injury site but also rostral and caudal to the spinal injury. Although tSCI and DCM have different aetiologies, they show similar degrees of spinal cord pathology remote from the injury site, suggesting the involvement of similar secondary degenerative mechanisms. Advanced quantitative MRI protocols that are sensitive to spinal cord pathology have the potential to improve diagnosis and, more importantly, predict outcomes in patients with tSCI or nontraumatic spinal cord injury. This Review describes the insights into tSCI and DCM that have been revealed by neuroimaging and outlines current activities and future directions for the field.
Collapse
Affiliation(s)
- Gergely David
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Allan R Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alan Thompson
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK. .,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. .,Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK. .,Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Chu T, Zhang YP, Tian Z, Ye C, Zhu M, Shields LBE, Kong M, Barnes GN, Shields CB, Cai J. Dynamic response of microglia/macrophage polarization following demyelination in mice. J Neuroinflammation 2019; 16:188. [PMID: 31623610 PMCID: PMC6798513 DOI: 10.1186/s12974-019-1586-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/11/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The glial response in multiple sclerosis (MS), especially for recruitment and differentiation of oligodendrocyte progenitor cells (OPCs), predicts the success of remyelination of MS plaques and return of function. As a central player in neuroinflammation, activation and polarization of microglia/macrophages (M/M) that modulate the inflammatory niche and cytokine components in demyelination lesions may impact the OPC response and progression of demyelination and remyelination. However, the dynamic behaviors of M/M and OPCs during demyelination and spontaneous remyelination are poorly understood, and the complex role of neuroinflammation in the demyelination-remyelination process is not well known. In this study, we utilized two focal demyelination models with different dynamic patterns of M/M to investigate the correlation between M/M polarization and the demyelination-remyelination process. METHODS The temporal and spatial features of M/M activation/polarization and OPC response in two focal demyelination models induced by lysolecithin (LPC) and lipopolysaccharide (LPS) were examined in mice. Detailed discrimination of morphology, sensorimotor function, diffusion tensor imaging (DTI), inflammation-relevant cytokines, and glial responses between these two models were analyzed at different phases. RESULTS The results show that LPC and LPS induced distinctive temporal and spatial lesion patterns. LPS produced diffuse demyelination lesions, with a delayed peak of demyelination and functional decline compared to LPC. Oligodendrocytes, astrocytes, and M/M were scattered throughout the LPS-induced demyelination lesions but were distributed in a layer-like pattern throughout the LPC-induced lesion. The specific M/M polarization was tightly correlated to the lesion pattern associated with balance beam function. CONCLUSIONS This study elaborated on the spatial and temporal features of neuroinflammation mediators and glial response during the demyelination-remyelination processes in two focal demyelination models. Specific M/M polarization is highly correlated to the demyelination-remyelination process probably via modulations of the inflammatory niche, cytokine components, and OPC response. These findings not only provide a basis for understanding the complex and dynamic glial phenotypes and behaviors but also reveal potential targets to promote/inhibit certain M/M phenotypes at the appropriate time for efficient remyelination.
Collapse
Affiliation(s)
- Tianci Chu
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA
| | - Zhisen Tian
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Chuyuan Ye
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Mingming Zhu
- Department of Radiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, 40202, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
30
|
Liu H, Ljungberg E, Dvorak AV, Lee LE, Yik JT, MacMillan EL, Barlow L, Li DKB, Traboulsee A, Kolind SH, Kramer JLK, Laule C. Myelin Water Fraction and Intra/Extracellular Water Geometric Mean T 2 Normative Atlases for the Cervical Spinal Cord from 3T MRI. J Neuroimaging 2019; 30:50-57. [PMID: 31407400 DOI: 10.1111/jon.12659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Acquiring and interpreting quantitative myelin-specific MRI data at an individual level is challenging because of technical difficulties and natural myelin variation in the population. To overcome these challenges, we used multiecho T2 myelin water imaging (MWI) to create T2 metric healthy population atlases that depict the mean and variation of myelin water fraction (MWF), and intra- and extracellular water mobility as described by geometric mean T2 (IEGMT2 ). METHODS Cervical cord MWI was performed at 3T on 20 healthy individuals (10M/10F, mean age: 36 years) and 3 relapsing remitting multiple sclerosis (RRMS) participants (1M/2F, age: 39/42/37 years). Anatomical data were collected for the purpose of image segmentation and registration. Atlases were created by coregistering and averaging T2 metrics from all controls. Voxel-wise z-score maps from 3 RRMS participants were produced to demonstrate the preliminary utility of the MWF and IEGMT2 atlases. RESULTS The average MWF atlas provides a representation of myelin in the spinal cord consistent with well-known spinal cord anatomical characteristics. The IEGMT2 atlas also depicted structural variations in the spinal cord. Z-score analysis illustrated distinct abnormalities in MWF and IEGMT2 in the 3 RRMS cases. CONCLUSIONS Our findings highlight the potential for using a quantitative T2 relaxation metric atlas to visualize and detect pathology in spinal cord. Our MWF and IEGMT2 atlases (URL: https://sourceforge.net/projects/mwi-spinal-cord-atlases/) can serve as normative references in the cervical spinal cord for other studies.
Collapse
Affiliation(s)
- Hanwen Liu
- Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Emil Ljungberg
- Department of Neuroimaging, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Adam V Dvorak
- Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Lisa Eunyoung Lee
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Jackie T Yik
- Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Erin L MacMillan
- Philips, Markham, Canada.,School of Mechatronic Systems Engineering, Simon Fraser University, Canada.,Department of Radiology, University of British Columbia, Vancouver, Canada
| | | | - David K B Li
- Department of Medicine, University of British Columbia, Vancouver, Canada.,Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Anthony Traboulsee
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Shannon H Kolind
- Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,Department of Medicine, University of British Columbia, Vancouver, Canada.,Department of Radiology, University of British Columbia, Vancouver, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Cornelia Laule
- Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,Department of Radiology, University of British Columbia, Vancouver, Canada.,Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
31
|
Perovic D, Kolenc D, Bilic V, Somun N, Drmic D, Elabjer E, Buljat G, Seiwerth S, Sikiric P. Stable gastric pentadecapeptide BPC 157 can improve the healing course of spinal cord injury and lead to functional recovery in rats. J Orthop Surg Res 2019; 14:199. [PMID: 31266512 PMCID: PMC6604284 DOI: 10.1186/s13018-019-1242-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We focused on the therapeutic effects of the stable gastric pentadecapeptide BPC 157 in spinal cord injury using a rat model. BPC 157, of which the LD1 has not been achieved, has been implemented as an anti-ulcer peptide in inflammatory bowel disease trials and recently in a multiple sclerosis trial. In animals, BPC 157 has an anti-inflammatory effect and therapeutic effects in functional recovery and the rescue of somatosensory neurons in the sciatic nerve after transection, upon brain injury after concussive trauma, and in severe encephalopathies. Additionally, BPC 157 affects various molecular pathways. METHODS Therefore, BPC 157 therapy was administered by a one-time intraperitoneal injection (BPC 157 (200 or 2 μg/kg) or 0.9% NaCl (5 ml/kg)) 10 min after injury. The injury procedure involved laminectomy (level L2-L3) and a 60-s compression (neurosurgical piston (60-66 g) of the exposed dural sac of the sacrocaudal spinal cord). Assessments were performed at 1, 4, 7, 15, 30, 90, 180, and 360 days after injury. RESULTS All of the injured rats that received BPC 157 exhibited consistent clinical improvement, increasingly better motor function of the tail, no autotomy, and resolved spasticity by day 15. BPC 157 application largely counteracted changes at the microscopic level, including the formation of vacuoles and the loss of axons in the white matter, the formation of edema and the loss of motoneurons in the gray matter, and a decreased number of large myelinated axons in the rat caudal nerve from day 7. EMG recordings showed a markedly lower motor unit potential in the tail muscle. CONCLUSION Axonal and neuronal necrosis, demyelination, and cyst formation were counteracted. The functional rescue provided by BPC 157 after spinal cord injury implies that BPC 157 therapy can impact all stages of the secondary injury phase.
Collapse
Affiliation(s)
- Darko Perovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia
| | - Danijela Kolenc
- Department of Pathology, School of Medicine, University of Zagreb, Salata 9, 10000 Zagreb, Croatia
| | - Vide Bilic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia
| | - Nenad Somun
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia
| | - Esmat Elabjer
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia
| | - Gojko Buljat
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Salata 9, 10000 Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia
| |
Collapse
|
32
|
Seif M, Gandini Wheeler-Kingshott CA, Cohen-Adad J, Flanders AE, Freund P. Guidelines for the conduct of clinical trials in spinal cord injury: Neuroimaging biomarkers. Spinal Cord 2019; 57:717-728. [PMID: 31267015 PMCID: PMC6760553 DOI: 10.1038/s41393-019-0309-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/16/2022]
Abstract
Traumatic spinal cord injury (SCI) leads to immediate neuronal and axonal damage at the focal injury site and triggers secondary pathologic series of events resulting in sensorimotor and autonomic dysfunction below the level of injury. Although there is no cure for SCI, neuroprotective and regenerative therapies show promising results at the preclinical stage. There is a pressing need to develop non-invasive outcome measures that can indicate whether a candidate therapeutic agent or a cocktail of therapeutic agents are positively altering the underlying disease processes. Recent conventional MRI studies have quantified spinal cord lesion characteristics and elucidated their relationship between severity of injury to clinical impairment and recovery. Next to the quantification of the primary cord damage, quantitative MRI measures of spinal cord (rostrocaudally to the lesion site) and brain integrity have demonstrated progressive and specific neurodegeneration of afferent and efferent neuronal pathways. MRI could therefore play a key role to ultimately uncover the relationship between clinical impairment/recovery and injury-induced neurodegenerative changes in the spinal cord and brain. Moreover, neuroimaging biomarkers hold promises to improve clinical trial design and efficiency through better patient stratification. The purpose of this narrative review is therefore to propose a guideline of clinically available MRI sequences and their derived neuroimaging biomarkers that have the potential to assess tissue damage at the macro- and microstructural level after SCI. In this piece, we make a recommendation for the use of key MRI sequences-both conventional and advanced-for clinical work-up and clinical trials.
Collapse
Affiliation(s)
- Maryam Seif
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Claudia Am Gandini Wheeler-Kingshott
- Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Mondino Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Adam E Flanders
- Regional Spinal Cord Injury Center of the Delaware Valley, Department of Radiology, Division of Neuroradiology, Thomas Jefferson University, 1087 Main Building, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | - Patrick Freund
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland. .,Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom. .,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. .,Department of Neurology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
33
|
Dvorak AV, Ljungberg E, Vavasour IM, Liu H, Johnson P, Rauscher A, Kramer JLK, Tam R, Li DKB, Laule C, Barlow L, Briemberg H, MacKay AL, Traboulsee A, Kozlowski P, Cashman N, Kolind SH. Rapid myelin water imaging for the assessment of cervical spinal cord myelin damage. NEUROIMAGE-CLINICAL 2019; 23:101896. [PMID: 31276928 PMCID: PMC6611998 DOI: 10.1016/j.nicl.2019.101896] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Background Rapid myelin water imaging (MWI) using a combined gradient and spin echo (GRASE) sequence can produce myelin specific metrics for the human brain. Spinal cord MWI could be similarly useful, but technical challenges have hindered routine application. GRASE rapid MWI was recently successfully implemented for imaging of healthy cervical spinal cord and may complement other advanced imaging methods, such as diffusion tensor imaging (DTI) and quantitative T1 (qT1). Objective To demonstrate the feasibility of cervical cord GRASE rapid MWI in multiple sclerosis (MS), primary lateral sclerosis (PLS) and neuromyelitis optica spectrum disorder (NMO), with comparison to DTI and qT1 metrics. Methods GRASE MWI, DTI and qT1 data were acquired in 2 PLS, 1 relapsing-remitting MS (RRMS), 1 primary-progressive MS (PPMS) and 2 NMO subjects, as well as 6 age (±3 yrs) and sex matched healthy controls (HC). Internal cord structure guided template registrations, used for region of interest (ROI) analysis. Z score maps were calculated for the difference between disease subject and mean HC metric values. Results PLS subjects had low myelin water fraction (MWF) in the lateral funiculi compared to HC. RRMS subject MWF was heterogeneous within the cord. The PPMS subject showed no trends in ROI results but had a region of low MWF Z score corresponding to a focal lesion. The NMO subject with a longitudinally extensive transverse myelitis lesion had low values for whole cord mean MWF of 12.8% compared to 24.3% (standard deviation 2.2%) for HC. The NMO subject without lesions also had low MWF compared to HC. DTI and qT1 metrics showed similar trends, corroborating the MWF results and providing complementary information. Conclusion GRASE is sufficiently sensitive to detect decreased myelin within MS spinal cord plaques, NMO lesions, and PLS diffuse spinal cord injury. Decreased MWF in PLS is consistent with demyelination secondary to motor neuron degeneration. GRASE MWI is a feasible method for rapid assessment of myelin content in the cervical spinal cord and provides complementary information to that of DTI and qT1 measures. Downstream myelin changes in motor tracts of primary lateral sclerosis spinal cord. Low myelin water fraction in multiple sclerosis and neuromyelitis optica cord lesions. Diffuse demyelination evidence in neuromyelitis optica normal-appearing white matter. Myelin water imaging provides complementary information to diffusion and T1 metrics.
Collapse
Affiliation(s)
- Adam V Dvorak
- Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada; International Collaboration on Repair Discoveries, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada.
| | - Emil Ljungberg
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park PO89, London SE5 8AF, United Kingdom
| | - Irene M Vavasour
- Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Hanwen Liu
- Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada; International Collaboration on Repair Discoveries, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - Poljanka Johnson
- Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Alexander Rauscher
- Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada; Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada; Pediatrics, University of British Columbia, 4480 Oak Street BC Children's Hospital Vancouver, BC V6H 3V4, Canada; UBC MRI Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; School of Kinesiology, University of British Columbia, 210-6081 University Boulevard, Vancouver, BC V6T 1Z1, Canada
| | - Roger Tam
- Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - David K B Li
- Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada; Medicine (Neurology), University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada; UBC MRI Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Cornelia Laule
- Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada; Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada; International Collaboration on Repair Discoveries, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; Pathology & Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Laura Barlow
- Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada; UBC MRI Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Hannah Briemberg
- Medicine (Neurology), University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Alex L MacKay
- Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada; Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Anthony Traboulsee
- Medicine (Neurology), University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Piotr Kozlowski
- Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada; Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada; International Collaboration on Repair Discoveries, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; UBC MRI Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Neil Cashman
- Medicine (Neurology), University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Shannon H Kolind
- Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada; Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada; International Collaboration on Repair Discoveries, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; Medicine (Neurology), University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| |
Collapse
|
34
|
Birkl C, Birkl-Toeglhofer AM, Endmayr V, Höftberger R, Kasprian G, Krebs C, Haybaeck J, Rauscher A. The influence of brain iron on myelin water imaging. Neuroimage 2019; 199:545-552. [PMID: 31108214 DOI: 10.1016/j.neuroimage.2019.05.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022] Open
Abstract
With myelin playing a vital role in normal brain integrity and function and thus in various neurological disorders, myelin sensitive magnetic resonance imaging (MRI) techniques are of great importance. In particular, multi-exponential T2 relaxation was shown to be highly sensitive to myelin. The myelin water imaging (MWI) technique allows to separate the T2 decay into short components, specific to myelin water, and long components reflecting the intra- and extracellular water. The myelin water fraction (MWF) is the ratio of the short components to all components. In the brain's white matter (WM), myelin and iron are closely linked via the presence of iron in the myelin generating oligodendrocytes. Iron is known to decrease T2 relaxation times and may therefore mimic myelin. In this study, we investigated if variations in WM iron content can lead to apparent MWF changes. We performed MWI in post mortem human brain tissue prior and after chemical iron extraction. Histology for iron and myelin confirmed a decrease in iron content and no change in myelin content after iron extraction. In MRI, iron extraction lead to a decrease in MWF by 26%-28% in WM. Thus, a change in MWF does not necessarily reflect a change in myelin content. This observation has important implications for the interpretation of MWI findings in previously published studies and future research.
Collapse
Affiliation(s)
- Christoph Birkl
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Neurology, Medical University of Graz, Austria.
| | - Anna Maria Birkl-Toeglhofer
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Verena Endmayr
- Institute of Neurology, Medical University of Vienna, Austria
| | | | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Claudia Krebs
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Johannes Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria; Department of Pathology, Medical Faculty, Otto-von-Guerecke University Magdeburg, Germany
| | - Alexander Rauscher
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada; Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Göçmen R. The Relevance of Neuroimaging Findings to Physical Disability in Multiple Sclerosis. ACTA ACUST UNITED AC 2019; 55:S31-S36. [PMID: 30692852 DOI: 10.29399/npa.23409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system and one of the leading causes of disability in young adults. While some patients with MS have a benign course in which they develop limited disability even after many years, other patients have a rapidly progressive course resulting in severe disability. However, the progression of the disease, particularly disability, is currently a predictable course with neuroimaging features to some extend. Magnetic resonance imaging (MRI) is not only the main diagnostic tool but also used to monitor response to therapies, thanks to its high sensitivity and ability to identify clinically silent lesions. This report presents a literature review which examines in detail the relationship between MRI findings and disability.
Collapse
Affiliation(s)
- Rahşan Göçmen
- Hacettepe University School of Medicine, Department of Radiology, Ankara, Turkey
| |
Collapse
|
36
|
Motovylyak A, Skinner NP, Schmit BD, Wilkins N, Kurpad SN, Budde MD. Longitudinal In Vivo Diffusion Magnetic Resonance Imaging Remote from the Lesion Site in Rat Spinal Cord Injury. J Neurotrauma 2018; 36:1389-1398. [PMID: 30259800 DOI: 10.1089/neu.2018.5964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diffusion tensor imaging (DTI) has demonstrated success as a biomarker of spinal cord injury (SCI) severity as shown from numerous pre-clinical studies. However, artifacts from stabilization hardware at the lesion have precluded its use for longitudinal assessments. Previous research has documented ex vivo diffusion changes in the spinal cord both caudal and cranial to the injury epicenter. The aim of this study was to use a rat contusion model of SCI to evaluate the utility of in vivo cervical DTI after a thoracic injury. Forty Sprague-Dawley rats underwent a thoracic contusion (T8) of mild, moderate, severe, or sham severity. Magnetic resonance imaging (MRI) of the cervical cord was performed at 2, 30, and 90 days post-injury, and locomotor performance was assessed weekly using the Basso, Bresnahan, and Beattie (BBB) scoring scale. The relationships between BBB scores and MRI were assessed using region of interest analysis and voxel-wise linear regression of DTI, and free water elimination (FWE) modeling to reduce partial volume effects. At 90 days, axial diffusivity (ADFWE), mean diffusivity (MDFWE), and free water fraction (FWFFWE) using the FWE model were found to be significantly correlated with BBB score. FWE was found to be more predictive of injury severity than conventional DTI, specifically at later time-points. This study validated the use of FWE technique in spinal cord and demonstrated its sensitivity to injury remotely.
Collapse
Affiliation(s)
- Alice Motovylyak
- 1 Department of Biomedical Engineering, Marquette University/Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nathan P Skinner
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.,3 Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian D Schmit
- 1 Department of Biomedical Engineering, Marquette University/Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Natasha Wilkins
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shekar N Kurpad
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew D Budde
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
37
|
Testing Pathological Variation of White Matter Tract in Adult Rats after Severe Spinal Cord Injury with MRI. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4068156. [PMID: 30534561 PMCID: PMC6252222 DOI: 10.1155/2018/4068156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/07/2018] [Accepted: 10/15/2018] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to assess the pathological variation in white matter tracts in the adult severe thoracic contusion spinal cord injury (SCI) rat models combined with in vivo magnetic resonance imaging (MRI), as well as the effect of spared white matter (WM) quantity on hindlimb motor function recovery. 7.0T MRI was conducted for all experimental animals before SCI and 1, 3, 7, and 14 days after SCI. The variation in the white matter tract in different regions of the spinal cord after SCI was examined by luxol fast blue (LFB) staining, NF200 immunochemistry, and diffusion tensor imaging (DTI) parameters, including fraction anisotropy, mean diffusivity, axial diffusion, and radial diffusivity. Meanwhile, Basso-Beattie-Bresnahan (BBB) open-field scoring was performed to evaluate the behavior of the paraplegic hind limbs. The quantitative analysis showed that spared white matter measures assessed by LFB and MRI had a close correlation (R2 = 0.8508). The percentage of spared white matter area was closely correlated with BBB score (R2 = 0.8460). After SCI, spared white matter in the spinal cord, especially the ventral column WM, played a critical role in motor function restoration. The results suggest that the first three days provides a key time window for SCI protection and treatment; spared white matter, especially in the ventral column, plays a key role in motor function recovery in rats. Additionally, DTI may be an important noninvasive technique to diagnose acute SCI degree as well as a tool to evaluate functional prognosis. During the transition from nerve protection toward clinical treatment after SCI, in vivo DTI may serve as an emerging noninvasive technique to diagnose acute SCI degree and predict the degree of spontaneous functional recovery after SCI.
Collapse
|
38
|
Lucas E, Whyte T, Liu J, Russell C, Tetzlaff W, Cripton PA. High-Speed Fluoroscopy to Measure Dynamic Spinal Cord Deformation in an In Vivo Rat Model. J Neurotrauma 2018; 35:2572-2580. [PMID: 29786472 DOI: 10.1089/neu.2017.5478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although spinal cord deformation is thought to be a predictor of injury severity, few researchers have investigated dynamic cord deformation, in vivo, during impact. This is needed to establish correlations among impact parameters, internal cord deformation, and histological and functional outcomes. Relying on surface deformations alone may not sufficiently represent spinal cord deformation. The objective of this study was to develop a high-speed fluoroscopic method of tracking the surface and internal cord deformations of rat spinal cord during experimental cord injury. Two radio-opaque beads were injected into the cord at C5/6 in the dorsal and ventral white matter. Four additional beads were glued to the surface of the cord. Dynamic bead displacement was tracked during a dorsal impact (130 mm/sec, 1 mm depth) by high-speed radiographic imaging at 3000 FPS, laterally. The internal spinal cord beads displaced significantly more than the surface beads in the ventral direction (1.1-1.9 times) and more than most surface beads in the cranial direction (1.2-1.5 times). The dorsal beads (internal and surface) displaced more than the ventral beads during all impacts. The bead displacement pattern implies that the spinal cord undergoes complex internal and surface deformations during impact. Residual displacement of the internal beads was significantly greater than that of the surface beads in the cranial-caudal direction but not the dorsoventral direction. Finite element simulation confirmed that the additional bead mass likely had little effect on the internal cord deformations. These results support the merit of this technique for measuring in vivo spinal cord deformation.
Collapse
Affiliation(s)
- Erin Lucas
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Thomas Whyte
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Jie Liu
- 2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Colin Russell
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- 2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Peter Alec Cripton
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Yung A, Mattucci S, Bohnet B, Liu J, Fournier C, Tetzlaff W, Kozlowski P, Oxland T. Diffusion tensor imaging shows mechanism-specific differences in injury pattern and progression in rat models of acute spinal cord injury. Neuroimage 2018; 186:43-55. [PMID: 30409758 DOI: 10.1016/j.neuroimage.2018.10.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022] Open
Abstract
We investigate the ability of diffusion tensor imaging (DTI) to distinguish between three experimental rat models of spinal cord injury mechanism - contusion, dislocation, and distraction. Ex vivo DTI scans were performed on cord specimens that were preserved at different time points of the acute injury (3 hr, 24 hr, and 7 days post-injury) across all three injury mechanisms. White matter was classified as abnormal if their DTI metric was substantially different from regional values measured from a set of uninjured controls, thus allowing generation of binary "white matter damage maps" which categorizes each pixel in the DTI image as "normal" or "damaged". Damage classification was most robust using thresholds in the longitudinal diffusivity, which supports previous studies that show that longitudinal diffusivity is the most robust DTI metric in depicting damage in SCI. Furthermore, the spatial damage patterns from all subjects in the same group were consolidated into a "damage occurrence ratio map", which illustrates an average damage shape that characterizes the injury mechanism. Our analysis has yielded a dataset which highlights the differences in injury pattern due to the initial mode of mechanical injury. For example, contusion produced an initial injury that emanated radially outward from the central canal, with subsequent damage along the caudal corticospinal tract and rostral gracile fasciculus; dislocation injuries showed a high level of involvement in the lateral and ventral white matter which became less apparent by 7 days post-injury, and distraction injuries were found to be less focal and more distributed rostrocaudally. This work represents a first step in adopting the use of the primary injury mechanism as a clinical prognostic factor in SCI, which may help to inform the trialing of existing neuroprotective treatment candidates, the development of new therapies as well as personalize the management of SCI for the individual patient.
Collapse
Affiliation(s)
- Andrew Yung
- University of British Columbia MRI Research Centre, 2221, Wesbrook Mall, M10 Purdy Pavilion, Vancouver, BC V6T 2B5, Canada.
| | | | - Barry Bohnet
- University of British Columbia MRI Research Centre, 2221, Wesbrook Mall, M10 Purdy Pavilion, Vancouver, BC V6T 2B5, Canada.
| | - Jie Liu
- ICORD, 818 W. 10th Ave., Vancouver, BC V5Z 1M9, Canada.
| | | | | | - Piotr Kozlowski
- University of British Columbia MRI Research Centre, 2221, Wesbrook Mall, M10 Purdy Pavilion, Vancouver, BC V6T 2B5, Canada; ICORD, 818 W. 10th Ave., Vancouver, BC V5Z 1M9, Canada.
| | - Thomas Oxland
- ICORD, 818 W. 10th Ave., Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
40
|
Cao X, Fang L, Cui CY, Gao S, Wang TW. DTI and pathological changes in a rabbit model of radiation injury to the spinal cord after 125I radioactive seed implantation. Neural Regen Res 2018; 13:528-535. [PMID: 29623940 PMCID: PMC5900518 DOI: 10.4103/1673-5374.228758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Excessive radiation exposure may lead to edema of the spinal cord and deterioration of the nervous system. Magnetic resonance imaging can be used to judge and assess the extent of edema and to evaluate pathological changes and thus may be used for the evaluation of spinal cord injuries caused by radiation therapy. Radioactive 125I seeds to irradiate 90% of the spinal cord tissue at doses of 40–100 Gy (D90) were implanted in rabbits at T10 to induce radiation injury, and we evaluated their safety for use in the spinal cord. Diffusion tensor imaging showed that with increased D90, the apparent diffusion coefficient and fractional anisotropy values were increased. Moreover, pathological damage of neurons and microvessels in the gray matter and white matter was aggravated. At 2 months after implantation, obvious pathological injury was visible in the spinal cords of each group. Magnetic resonance diffusion tensor imaging revealed the radiation injury to the spinal cord, and we quantified the degree of spinal cord injury through apparent diffusion coefficient and fractional anisotropy.
Collapse
Affiliation(s)
- Xia Cao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Le Fang
- First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chuan-Yu Cui
- Department of MRI, Fourth Hospital, Jilin University, Changchun, Jilin Province, China
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Tian-Wei Wang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
41
|
Calabrese E, Adil SM, Cofer G, Perone CS, Cohen-Adad J, Lad SP, Johnson GA. Postmortem diffusion MRI of the entire human spinal cord at microscopic resolution. Neuroimage Clin 2018; 18:963-971. [PMID: 29876281 PMCID: PMC5988447 DOI: 10.1016/j.nicl.2018.03.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/15/2018] [Accepted: 03/21/2018] [Indexed: 11/20/2022]
Abstract
The human spinal cord is a central nervous system structure that plays an important role in normal motor and sensory function, and can be affected by many debilitating neurologic diseases. Due to its clinical importance, the spinal cord is frequently the subject of imaging research. Common methods for visualizing spinal cord anatomy and pathology include histology and magnetic resonance imaging (MRI), both of which have unique benefits and drawbacks. Postmortem microscopic resolution MRI of fixed specimens, sometimes referred to as magnetic resonance microscopy (MRM), combines many of the benefits inherent to both techniques. However, the elongated shape of the human spinal cord, along with hardware and scan time limitations, have restricted previous microscopic resolution MRI studies (both in vivo and ex vivo) to small sections of the cord. Here we present the first MRM dataset of the entire postmortem human spinal cord. These data include 50 μm isotropic resolution anatomic image data and 100 μm isotropic resolution diffusion data, made possible by a 280 h long multi-segment acquisition and automated image segment composition. We demonstrate the use of these data for spinal cord lesion detection, automated volumetric gray matter segmentation, and quantitative spinal cord morphometry including estimates of cross sectional dimensions and gray matter fraction throughout the length of the cord.
Collapse
Affiliation(s)
- Evan Calabrese
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA.
| | - Syed M Adil
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Gary Cofer
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
| | - Christian S Perone
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Shivanand P Lad
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
42
|
Shatil AS, Uddin MN, Matsuda KM, Figley CR. Quantitative Ex Vivo MRI Changes due to Progressive Formalin Fixation in Whole Human Brain Specimens: Longitudinal Characterization of Diffusion, Relaxometry, and Myelin Water Fraction Measurements at 3T. Front Med (Lausanne) 2018. [PMID: 29515998 PMCID: PMC5826187 DOI: 10.3389/fmed.2018.00031] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose Postmortem MRI can be used to reveal important pathologies and establish radiology-pathology correlations. However, quantitative MRI values are altered by tissue fixation. Therefore, the purpose of this study was to investigate time-dependent effects of formalin fixation on MRI relaxometry (T1 and T2), diffusion tensor imaging (fractional anisotropy, FA; and mean diffusivity, MD), and myelin water fraction (MWF) measurements throughout intact human brain specimens. Methods Two whole, neurologically-healthy human brains were immersed in 10% formalin solution and scanned at 13 time points between 0 and 1,032 h. Whole-brain maps of longitudinal (T1) and transverse (T2) relaxation times, FA, MD, and MWF were generated at each time point to illustrate spatiotemporal changes, and region-of-interest analyses were then performed in eight brain structures to quantify temporal changes with progressive fixation. Results Although neither of the diffusion measures (FA nor MD) showed significant changes as a function of formalin fixation time, both T1 and T2-relaxation times significantly decreased, and MWF estimates significantly increased with progressive fixation until (and likely beyond) our final measurements were taken at 1,032 h. Conclusion These results suggest that T1-relaxation, T2-relaxation and MWF estimates must be performed quite early in the fixation process to avoid formalin-induced changes compared to in vivo values; and furthermore, that different ex vivo scans within an experiment must be acquired at consistent (albeit still early) fixation intervals to avoid fixative-related differences between samples. Conversely, ex vivo diffusion measures (FA and MD) appear to depend more on other factors (e.g., pulse sequence optimization, sample temperature, etc.).
Collapse
Affiliation(s)
- Anwar S Shatil
- Biomedical Engineering Graduate Program, University of Manitoba, Winnipeg, MB, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
| | - Md Nasir Uddin
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada.,Department of Radiology, University of Manitoba, Winnipeg, MB, Canada.,Division of Diagnostic Imaging, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
| | - Kant M Matsuda
- Biomedical Engineering Graduate Program, University of Manitoba, Winnipeg, MB, Canada.,Department of Pathology, University of Manitoba, Winnipeg, MB, Canada
| | - Chase R Figley
- Biomedical Engineering Graduate Program, University of Manitoba, Winnipeg, MB, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada.,Department of Radiology, University of Manitoba, Winnipeg, MB, Canada.,Division of Diagnostic Imaging, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
43
|
Lewis MJ, Yap PT, McCullough S, Olby NJ. The Relationship between Lesion Severity Characterized by Diffusion Tensor Imaging and Motor Function in Chronic Canine Spinal Cord Injury. J Neurotrauma 2017; 35:500-507. [PMID: 28974151 DOI: 10.1089/neu.2017.5255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lesion heterogeneity among chronically paralyzed dogs after acute, complete thoracolumbar spinal cord injury (TLSCI) is poorly described. We hypothesized that lesion severity quantified by diffusion tensor imaging (DTI) is associated with hindlimb motor function. Our objectives were to quantify lesion severity with fractional anisotropy (FA), mean diffusivity (MD), and tractography and investigate associations with motor function. Twenty-two dogs with complete TLSCI in the chronic stage were enrolled and compared with six control dogs. All underwent thoracolumbar magnetic resonance imaging (MRI) with DTI and gait analysis. FA and MD were calculated on regions of interest (ROI) at the lesion epicenter and cranial and caudal to the visible lesion on conventional MRI and in corresponding ROI in controls. Tractography was performed to detect translesional fibers. Gait was quantified using an ordinal scale (OFS). FA and MD values were compared between cases and controls, and relationships between FA, MD, presence of translesional fibers and OFS were investigated. The FA at the epicenter (median: 0.228, 0.107-0.320), cranial (median: 0.420, 0.391-0.561), and caudal to the lesion (median: 0.369, 0.265-0.513) was lower than combined ROI in controls (median: 0.602, 0.342-0.826, p < 0.0001). The MD at the epicenter (median: 2.06 × 10-3, 1.33-2.96 × 10-3) and cranially (median: 1.52 × 10-3, 1.03-1.87 × 10-3) was higher than combined ROI in controls (median: 1.28 × 10-3, 0.81-1.44 × 10-3, p ≤ 0.001). Four dogs had no translesional fibers. Median OFS was 2 (0-6). The FA at the lesion epicenter and presence of translesional fibers were associated with OFS (p ≤ 0.0299). DTI can detect degeneration and physical transection after severe TLSCI. Findings suggest DTI quantifies injury severity and suggests motor recovery in apparently complete dogs is because of supraspinal input.
Collapse
Affiliation(s)
- Melissa J Lewis
- 1 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina.,2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina
| | - Pew-Thian Yap
- 3 Department of Radiology, School of Medicine, University of North Carolina , Chapel Hill, North Carolina
| | - Susan McCullough
- 4 Animal Scan Advanced Veterinary Imaging , Raleigh, North Carolina
| | - Natasha J Olby
- 1 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina.,2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina
| |
Collapse
|
44
|
Zheng ZL, Morykwas MJ, Tatter S, Gordon S, McGee M, Green H, Argenta LC. Ameliorating Spinal Cord Injury in an Animal Model With Mechanical Tissue Resuscitation. Neurosurgery 2017; 78:868-76. [PMID: 26479704 DOI: 10.1227/neu.0000000000001063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is a major worldwide cause of mortality and disability with limited treatment options. Previous research applying controlled negative pressure to traumatic brain injury in rat and swine models resulted in smaller injuries and more rapid recovery. OBJECTIVE To examine the effects of the application of a controlled vacuum (mechanical tissue resuscitation [MTR]) to SCI in a rat model under several magnitudes of vacuum. METHODS Controlled contusion SCIs were created in rats. Vacuums of -50 and -75 mm Hg were compared. Analysis included open-field locomotor performance, magnetic resonance imaging (in vivo T2, ex vivo diffusion tensor imaging and fiber tractography), and histological assessments. RESULTS MTR treatment significantly improved the locomotor recovery from a Basso, Beattie, and Bresnahan score of 7.8 ± 1.9 to 11.4 ± 1.2 and 10.7 ± 1.9 at -50- and -75-mm Hg pressures, respectively, 4 weeks after injury. Both pressures also reduced fluid accumulations > 10% by T2-imaging in SCI sites. The mean fiber number and mean fiber length were greater across injured sites after MTR treatment, especially with treatment with -50 mm Hg. Myelin volume was increased significantly by 60% in the group treated with -50 mm Hg. CONCLUSION MTR of SCI in a rat model is effective in reducing edema in the injured cord, preserving myelin survival, and improving the rate and quantity of functional recovery. ABBREVIATIONS BBB, Basso, Beattie, and BresnahanDTI, diffusion tensor imagingFA, fractional anisotropyMTR, mechanical tissue resuscitationMTR50, mechanical tissue resuscitation with 50-mm Hg subatmospheric pressureMTR75, mechanical tissue resuscitation with 75-mm Hg subatmospheric pressureROI, region of interestSCI, spinal cord injury.
Collapse
Affiliation(s)
- Zhen-Lin Zheng
- Departments of *Plastic and Reconstructive Surgery, and ‡Neurosurgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina; §Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | | | | | |
Collapse
|
45
|
Ganz J, Shor E, Guo S, Sheinin A, Arie I, Michaelevski I, Pitaru S, Offen D, Levenberg S. Implantation of 3D Constructs Embedded with Oral Mucosa-Derived Cells Induces Functional Recovery in Rats with Complete Spinal Cord Transection. Front Neurosci 2017; 11:589. [PMID: 29163001 PMCID: PMC5671470 DOI: 10.3389/fnins.2017.00589] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injury (SCI), involving damaged axons and glial scar tissue, often culminates in irreversible impairments. Achieving substantial recovery following complete spinal cord transection remains an unmet challenge. Here, we report of implantation of an engineered 3D construct embedded with human oral mucosa stem cells (hOMSC) induced to secrete neuroprotective, immunomodulatory, and axonal elongation-associated factors, in a complete spinal cord transection rat model. Rats implanted with induced tissue engineering constructs regained fine motor control, coordination and walking pattern in sharp contrast to the untreated group that remained paralyzed (42 vs. 0%). Immunofluorescence, CLARITY, MRI, and electrophysiological assessments demonstrated a reconnection bridging the injured area, as well as presence of increased number of myelinated axons, neural precursors, and reduced glial scar tissue in recovered animals treated with the induced cell-embedded constructs. Finally, this construct is made of bio-compatible, clinically approved materials and utilizes a safe and easily extractable cell population. The results warrant further research with regards to the effectiveness of this treatment in addressing spinal cord injury.
Collapse
Affiliation(s)
- Javier Ganz
- Department of Human Molecular Genetics and Biochemistry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erez Shor
- Department of Biomedical Engineering, Technion, Haifa, Israel
| | - Shaowei Guo
- Department of Biomedical Engineering, Technion, Haifa, Israel
| | - Anton Sheinin
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ina Arie
- Department of Oral Biology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Izhak Michaelevski
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Sandu Pitaru
- Department of Oral Biology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Department of Human Molecular Genetics and Biochemistry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
46
|
O'Hare Doig RL, Chiha W, Giacci MK, Yates NJ, Bartlett CA, Smith NM, Hodgetts SI, Harvey AR, Fitzgerald M. Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma. BMC Neurosci 2017; 18:62. [PMID: 28806920 PMCID: PMC5557315 DOI: 10.1186/s12868-017-0380-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/05/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca2+ channel inhibitor Lomerizine (Lom), the Ca2+ permeable AMPA receptor inhibitor YM872 and the P2X7 receptor inhibitor oxATP. RESULTS Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. CONCLUSIONS Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs.
Collapse
Affiliation(s)
- Ryan L O'Hare Doig
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Wissam Chiha
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Marcus K Giacci
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nathanael J Yates
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nicole M Smith
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Experimental and Regenerative Neurosciences, School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Stuart I Hodgetts
- Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Perron Institute for Neurological and Translational Science, Verdun St, Nedlands, WA, 6009, Australia
| | - Alan R Harvey
- Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Perron Institute for Neurological and Translational Science, Verdun St, Nedlands, WA, 6009, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia. .,Perron Institute for Neurological and Translational Science, Verdun St, Nedlands, WA, 6009, Australia.
| |
Collapse
|
47
|
Hilton BJ, Moulson AJ, Tetzlaff W. Neuroprotection and secondary damage following spinal cord injury: concepts and methods. Neurosci Lett 2017; 652:3-10. [DOI: 10.1016/j.neulet.2016.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 01/29/2023]
|
48
|
Yates NJ, Lydiard S, Fehily B, Weir G, Chin A, Bartlett CA, Alderson J, Fitzgerald M. Repeated mild traumatic brain injury in female rats increases lipid peroxidation in neurons. Exp Brain Res 2017; 235:2133-2149. [PMID: 28417146 DOI: 10.1007/s00221-017-4958-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/07/2017] [Indexed: 11/30/2022]
Abstract
Negative outcomes of mild traumatic brain injury (mTBI) can be exacerbated by repeated insult. Animal models of repeated closed-head mTBI provide the opportunity to define acute pathological mechanisms as the number of mTBI increases. Furthermore, little is known about the effects of mTBI impact site, and how this may affect brain function. We use a closed head, weight drop model of mTBI that allows head movement following impact, in adult female rats to determine the role of the number and location of mTBI on brain pathology and behaviour. Biomechanical assessment of two anatomically well-defined mTBI impact sites were used, anterior (bregma) and posterior (lambda). Location of the impact had no significant effect on impact forces (450 N), and the weight impact locations were on average 5.4 mm from the desired impact site. No between location vertical linear head kinematic differences were observed immediately following impact, however, in the 300 ms post-impact, significantly higher mean vertical head displacement and velocity were observed in the mTBI lambda trials. Breaches of the blood brain barrier were observed with three mTBI over bregma, associated with immunohistochemical indicators of damage. However, an increased incidence of hairline fractures of the skull and macroscopic haemorrhaging made bregma an unsuitable impact location to model repeated mTBI. Repeated mTBI over lambda did not cause skull fractures and were examined more comprehensively, with outcomes following one, two or three mTBI or sham, delivered at 1 day intervals, assessed on days 1-4. We observe a mild behavioural phenotype, with subtle deficits in cognitive function, associated with no identifiable neuroanatomical or inflammatory changes. However, an increase in lipid peroxidation in a subset of cortical neurons following two mTBI indicates increasing oxidative damage with repeated injury in female rats, supported by increased amyloid precursor protein immunoreactivity with three mTBI. This study of acute events following closed head mTBI identifies lipid peroxidation in neurons at the same time as cognitive deficits. Our study adds to existing literature, providing biomechanics data and demonstrating mild cognitive disturbances associated with diffuse injury, predominantly to grey matter, acutely following repeated mTBI.
Collapse
Affiliation(s)
- Nathanael J Yates
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Stephen Lydiard
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Brooke Fehily
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Gillian Weir
- School of Sport Science, Exercise and Health, The University of Western Australia, Perth, WA, 6009, Australia
| | - Aaron Chin
- School of Sport Science, Exercise and Health, The University of Western Australia, Perth, WA, 6009, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Jacqueline Alderson
- School of Sport Science, Exercise and Health, The University of Western Australia, Perth, WA, 6009, Australia.,Auckland University of Technology, Sports Performance Research Institute New Zealand (SPRINZ), Auckland, New Zealand
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia. .,Perron Institute for Nerurological and Translational Science, Sarich Neuroscience Research Institute, Verdun St, Nedlands, WA, 6009, Australia.
| |
Collapse
|
49
|
Chen HSM, Holmes N, Liu J, Tetzlaff W, Kozlowski P. Validating myelin water imaging with transmission electron microscopy in a rat spinal cord injury model. Neuroimage 2017; 153:122-130. [PMID: 28377211 DOI: 10.1016/j.neuroimage.2017.03.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022] Open
Abstract
Myelin content is an important marker for neuropathology and MRI generated myelin water fraction (MWF) has been shown to correlate well with myelin content. However, because MWF is based on the amount of signal from myelin water, that is, the water trapped between the myelin lipid bilayers, the reading may depend heavily on myelin morphology. This is of special concern when there is a mix of intact myelin and myelin debris, as in the case of injury. To investigate what MWF measures in the presence of debris, we compared MWF to transmission electron microscopy (TEM) derived myelin fraction that measures the amount of compact appearing myelin. A rat spinal cord injury model was used with time points at normal (normal myelin), 3 weeks post-injury (myelin debris), and 8 weeks post-injury (myelin debris, partially cleared). The myelin period between normal and 3 or 8 weeks post-injury cords did not differ significantly, suggesting that as long as the bilayer structure is intact, myelin debris has the same water content as intact myelin. The MWF also correlated strongly with the TEM-derived myelin fraction, suggesting that MWF measures the amount of compact appearing myelin in both intact myelin and myelin debris. From the TEM images, it appears that as myelin degenerates, it tends to form large watery spaces within the myelin sheaths that are not classified as myelin water. The results presented in this study improve our understanding and allows for better interpretation of MWF in the presence of myelin debris.
Collapse
Affiliation(s)
- Henry Szu-Meng Chen
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada; University of British Columbia MRI Research Centre, Vancouver, Canada.
| | - Nathan Holmes
- International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada; Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada.
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada; Department of Zoology, University of British Columbia, Vancouver, Canada.
| | - Piotr Kozlowski
- University of British Columbia MRI Research Centre, Vancouver, Canada; International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada; Department of Radiology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
50
|
Cohen Y, Anaby D, Morozov D. Diffusion MRI of the spinal cord: from structural studies to pathology. NMR IN BIOMEDICINE 2017; 30:e3592. [PMID: 27598689 DOI: 10.1002/nbm.3592] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/01/2016] [Accepted: 07/05/2016] [Indexed: 05/27/2023]
Abstract
Diffusion MRI is extensively used to study brain microarchitecture and pathologies, and water diffusion appears highly anisotropic in the white matter (WM) of the spinal cord (SC). Despite these facts, the use of diffusion MRI to study the SC, which has increased in recent years, is much less common than that in the brain. In the present review, after a brief outline of early studies of diffusion MRI (DWI) and diffusion tensor MRI (DTI) of the SC, we provide a short survey on DTI and on diffusion MRI methods beyond the tensor that have been used to study SC microstructure and pathologies. After introducing the porous view of WM and describing the q-space approach and q-space diffusion MRI (QSI), we describe other methodologies that can be applied to study the SC. Selected applications of the use of DTI, QSI, and other more advanced diffusion MRI methods to study SC microstructure and pathologies are presented, with some emphasis on the use of less conventional diffusion methodologies. Because of length constraints, we concentrate on structural studies and on a few selected pathologies. Examples of the use of diffusion MRI to study dysmyelination, demyelination as in experimental autoimmune encephalomyelitis and multiple sclerosis, amyotrophic lateral sclerosis, and traumatic SC injury are presented. We conclude with a brief summary and a discussion of challenges and future directions for diffusion MRI of the SC. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yoram Cohen
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Debbie Anaby
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Darya Morozov
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|