1
|
Xu Z, Liu M, Liu Y, Pan Y, Yang L, Ge D. Mechano-Optical Response Behavior of Polymer-Dispersed Cholesteric Liquid Crystals for Reversible and Highly Sensitive Force Recorders. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3673-3679. [PMID: 36608174 DOI: 10.1021/acsami.2c20959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Force recording (mode, intensity, and orientation) is of great importance in medical rehabilitation, military reconnaissance, space exploration, etc. However, sensors with both reversibility and memorability are still challenging. Here, a reversible sensor based on polymer-dispersed cholesteric liquid crystals (CLC) is developed as a force recorder. Based on the microarea mechano-optical response and finite element analysis, it is confirmed that the mechanochromic response is mediated by the shear deformation of the polymer network and neighboring CLC. There is an obvious quantitative relationship between force intensity, mode, orientation, and the microarea optical response. Moreover, the sensing layer with a lower modulus or thickness is advantageous for a more sensitive device with lower starting pressure. Additionally, the excellent sensitivity and accuracy also highlight the potential applications in force analysis, path tracking, or pattern detection.
Collapse
Affiliation(s)
- Zhao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
- Institute of Functional Materials, Donghua University, Shanghai201620, China
| | - Meng Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Yang Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Yan Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Lili Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Dengteng Ge
- Institute of Functional Materials, Donghua University, Shanghai201620, China
| |
Collapse
|
2
|
Wermer A, Kerwin J, Welsh K, Mejia-Alvarez R, Tartis M, Willis A. Materials Characterization of Cranial Simulants for Blast-Induced Traumatic Brain Injury. Mil Med 2020; 185:205-213. [PMID: 32074306 DOI: 10.1093/milmed/usz228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION The mechanical response of brain tissue to high-speed forces in the blast and blunt traumatic brain injury is poorly understood. Object-to-object variation and interspecies differences are current limitations in animal and cadaver studies conducted to study damage mechanisms. Biofidelic and transparent tissue simulants allow the use of high-speed optical diagnostics during a blast event, making it possible to observe deformations and damage patterns for comparison to observed injuries seen post-mortem in traumatic brain injury victims. METHODS Material properties of several tissue simulants were quantified using standard mechanical characterization techniques, that is, shear rheometric, tensile, and compressive testing. RESULTS Polyacrylamide simulants exhibited the best optical and mechanical property matching with the fewest trade-offs in the design of a cranial test object. Polyacrylamide gels yielded densities of ~1.04 g/cc and shear moduli ranging 1.3-14.55 kPa, allowing gray and white matter simulant tuning to a 30-35% difference in shear for biofidelity. CONCLUSIONS These materials are intended for use as layered cranial phantoms in a shock tube and open field blasts, with focus on observing phenomena occurring at the interfaces of adjacent tissue simulant types or material-fluid boundaries. Mechanistic findings from these studies may be used to inform the design of protective gear to mitigate blast injuries.
Collapse
Affiliation(s)
- Anna Wermer
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801
| | - Joseph Kerwin
- Department of Mechanical Engineering, Michigan State University, 1449 Engineering Research Ct. A117, East Lansing, MI 48824
| | - Kelsea Welsh
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801
| | - Ricardo Mejia-Alvarez
- Department of Mechanical Engineering, Michigan State University, 1449 Engineering Research Ct. A117, East Lansing, MI 48824
| | - Michaelann Tartis
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801
| | - Adam Willis
- Department of Neurology, San Antonio Military Medical Center, 3551 Roger Brooke Dr, San Antonio, TX 78219
| |
Collapse
|
3
|
Vaz R, Frasco MF, Sales MGF. Photonics in nature and bioinspired designs: sustainable approaches for a colourful world. NANOSCALE ADVANCES 2020; 2:5106-5129. [PMID: 36132040 PMCID: PMC9416915 DOI: 10.1039/d0na00445f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 05/07/2023]
Abstract
Biological systems possess nanoarchitectures that have evolved for specific purposes and whose ability to modulate the flow of light creates an extraordinary diversity of natural photonic structures. In particular, the striking beauty of the structural colouration observed in nature has inspired technological innovation in many fields. Intense research has been devoted to mimicking the unique vivid colours with newly designed photonic structures presenting stimuli-responsive properties, with remarkable applications in health care, safety and security. This review highlights bioinspired photonic approaches in this context, starting by presenting many appealing examples of structural colours in nature, followed by describing the versatility of fabrication methods and designed coloured structures. A particular focus is given to optical sensing for medical diagnosis, food control and environmental monitoring, which has experienced a significant growth, especially considering the advances in obtaining inexpensive miniaturized systems, more reliability, fast responses, and the use of label-free layouts. Additionally, naturally derived biomaterials and synthetic polymers are versatile and fit many different structural designs that are underlined. Progress in bioinspired photonic polymers and their integration in novel devices is discussed since recent developments have emerged to lift the expectations of smart, flexible, wearable and portable sensors. The discussion is expanded to give emphasis on additional functionalities offered to related biomedical applications and the use of structural colours in new sustainable strategies that could meet the needs of technological development.
Collapse
Affiliation(s)
- Raquel Vaz
- BioMark Sensor Research/UC, Faculty of Sciences and Technology, Coimbra University Coimbra Portugal
- BioMark Sensor Research/ISEP, School of Engineering, Polytechnic Institute of Porto Porto Portugal
- CEB, Centre of Biological Engineering, Minho University Braga Portugal
| | - Manuela F Frasco
- BioMark Sensor Research/UC, Faculty of Sciences and Technology, Coimbra University Coimbra Portugal
- BioMark Sensor Research/ISEP, School of Engineering, Polytechnic Institute of Porto Porto Portugal
- CEB, Centre of Biological Engineering, Minho University Braga Portugal
| | - M Goreti F Sales
- BioMark Sensor Research/UC, Faculty of Sciences and Technology, Coimbra University Coimbra Portugal
- BioMark Sensor Research/ISEP, School of Engineering, Polytechnic Institute of Porto Porto Portugal
- CEB, Centre of Biological Engineering, Minho University Braga Portugal
| |
Collapse
|
4
|
Song H, Cui J, Simonyi A, Johnson CE, Hubler GK, DePalma RG, Gu Z. Linking blast physics to biological outcomes in mild traumatic brain injury: Narrative review and preliminary report of an open-field blast model. Behav Brain Res 2018; 340:147-158. [DOI: 10.1016/j.bbr.2016.08.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/13/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022]
|
5
|
Inan H, Poyraz M, Inci F, Lifson MA, Baday M, Cunningham BT, Demirci U. Photonic crystals: emerging biosensors and their promise for point-of-care applications. Chem Soc Rev 2017; 46:366-388. [PMID: 27841420 PMCID: PMC5529146 DOI: 10.1039/c6cs00206d] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biosensors are extensively employed for diagnosing a broad array of diseases and disorders in clinical settings worldwide. The implementation of biosensors at the point-of-care (POC), such as at primary clinics or the bedside, faces impediments because they may require highly trained personnel, have long assay times, large sizes, and high instrumental cost. Thus, there exists a need to develop inexpensive, reliable, user-friendly, and compact biosensing systems at the POC. Biosensors incorporated with photonic crystal (PC) structures hold promise to address many of the aforementioned challenges facing the development of new POC diagnostics. Currently, PC-based biosensors have been employed for detecting a variety of biotargets, such as cells, pathogens, proteins, antibodies, and nucleic acids, with high efficiency and selectivity. In this review, we provide a broad overview of PCs by explaining their structures, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-based biosensors incorporated with emerging technologies, including telemedicine, flexible and wearable sensing, smart materials and metamaterials. Finally, we discuss current challenges associated with existing biosensors, and provide an outlook for PC-based biosensors and their promise at the POC.
Collapse
Affiliation(s)
- Hakan Inan
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Muhammet Poyraz
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA. and Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Fatih Inci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Mark A Lifson
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Murat Baday
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Brian T Cunningham
- Department of Electrical and Computer Engineering, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA. and Department of Electrical Engineering (by courtesy), Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Smith DH, Hicks RR, Johnson VE, Bergstrom DA, Cummings DM, Noble LJ, Hovda D, Whalen M, Ahlers ST, LaPlaca M, Tortella FC, Duhaime AC, Dixon CE. Pre-Clinical Traumatic Brain Injury Common Data Elements: Toward a Common Language Across Laboratories. J Neurotrauma 2015; 32:1725-35. [PMID: 26058402 DOI: 10.1089/neu.2014.3861] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a major public health issue exacting a substantial personal and economic burden globally. With the advent of "big data" approaches to understanding complex systems, there is the potential to greatly accelerate knowledge about mechanisms of injury and how to detect and modify them to improve patient outcomes. High quality, well-defined data are critical to the success of bioinformatics platforms, and a data dictionary of "common data elements" (CDEs), as well as "unique data elements" has been created for clinical TBI research. There is no data dictionary, however, for preclinical TBI research despite similar opportunities to accelerate knowledge. To address this gap, a committee of experts was tasked with creating a defined set of data elements to further collaboration across laboratories and enable the merging of data for meta-analysis. The CDEs were subdivided into a Core module for data elements relevant to most, if not all, studies, and Injury-Model-Specific modules for non-generalizable data elements. The purpose of this article is to provide both an overview of TBI models and the CDEs pertinent to these models to facilitate a common language for preclinical TBI research.
Collapse
Affiliation(s)
- Douglas H Smith
- 1 Department of Neurosurgery, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Ramona R Hicks
- 2 One Mind, Seattle, Washington.,3 National Institutes of Health, National Institute of Neurological Disorders and Stroke , Bethesda, Maryland
| | - Victoria E Johnson
- 1 Department of Neurosurgery, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Debra A Bergstrom
- 3 National Institutes of Health, National Institute of Neurological Disorders and Stroke , Bethesda, Maryland
| | - Diana M Cummings
- 3 National Institutes of Health, National Institute of Neurological Disorders and Stroke , Bethesda, Maryland
| | - Linda J Noble
- 4 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California
| | - David Hovda
- 5 Department of Neurosurgery, University of California Los Angeles , Los Angeles, California
| | - Michael Whalen
- 6 Department of Pediatrics, Neuroscience Center at Massachusetts General Hospital , Charlestown, Massachusetts
| | - Stephen T Ahlers
- 7 Operational & Undersea Medicine Directorate, Naval Medical Research Center , Silver Spring, Maryland
| | - Michelle LaPlaca
- 8 Department of Biomedical Engineering, Georgia Tech and Emory University , Atlanta, Georgia
| | - Frank C Tortella
- 9 Walter Reed Army Institute of Research , Silver Spring, Maryland
| | | | - C Edward Dixon
- 11 Department of Neurological Surgery, University of Pittsburgh , Pittsburgh, Pennsyvania
| |
Collapse
|
7
|
Johnson VE, Meaney DF, Cullen DK, Smith DH. Animal models of traumatic brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:115-28. [PMID: 25702213 DOI: 10.1016/b978-0-444-52892-6.00008-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) is a major health issue comprising a heterogeneous and complex array of pathologies. Over the last several decades, numerous animal models have been developed to address the diverse nature of human TBI. The clinical relevance of these models has been a major point of reflection given the poor translation of pharmacologic TBI interventions to the clinic. While previously characterized broadly as either focal or diffuse, this classification is falling out of favor with increased awareness of the overlap in pathologic outcomes between models and an emerging consensus that no one model is sufficient. Moreover, an appreciation of injury biomechanics is essential in recapitulating and interpreting the spectrum of TBI neuropathology observed in various established models of dynamic closed-head TBI. While these models have replicated many specific features of human TBI, an enhanced context with clinical relevancy will facilitate the further elucidation of the mechanisms and treatment of injury.
Collapse
Affiliation(s)
- Victoria E Johnson
- Penn Center for Brain Injury and Repair and Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - David F Meaney
- Departments of Bioengineering and Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - D Kacy Cullen
- Penn Center for Brain Injury and Repair and Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair and Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Bhat DI, Shukla D, Mahadevan A, Sharath N, Reddy K. Validation of a blast induced neurotrauma model using modified Reddy tube in rats: A pilot study. INDIAN JOURNAL OF NEUROTRAUMA 2014. [DOI: 10.1016/j.ijnt.2014.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Meaney DF, Morrison B, Dale Bass C. The mechanics of traumatic brain injury: a review of what we know and what we need to know for reducing its societal burden. J Biomech Eng 2014; 136:021008. [PMID: 24384610 PMCID: PMC4023660 DOI: 10.1115/1.4026364] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/20/2013] [Accepted: 12/27/2013] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury (TBI) is a significant public health problem, on pace to become the third leading cause of death worldwide by 2020. Moreover, emerging evidence linking repeated mild traumatic brain injury to long-term neurodegenerative disorders points out that TBI can be both an acute disorder and a chronic disease. We are at an important transition point in our understanding of TBI, as past work has generated significant advances in better protecting us against some forms of moderate and severe TBI. However, we still lack a clear understanding of how to study milder forms of injury, such as concussion, or new forms of TBI that can occur from primary blast loading. In this review, we highlight the major advances made in understanding the biomechanical basis of TBI. We point out opportunities to generate significant new advances in our understanding of TBI biomechanics, especially as it appears across the molecular, cellular, and whole organ scale.
Collapse
Affiliation(s)
- David F. Meaney
- Departments of Bioengineeringand Neurosurgery,University of Pennsylvania,Philadelphia, PA 19104-6392e-mail:
| | - Barclay Morrison
- Department of Biomedical Engineering,Columbia University,New York, NY 10027
| | - Cameron Dale Bass
- Department of Biomedical Engineering,Duke University,Durham, NC 27708-0281
| |
Collapse
|
10
|
Lee JH, Koh CY, Singer JP, Jeon SJ, Maldovan M, Stein O, Thomas EL. 25th anniversary article: ordered polymer structures for the engineering of photons and phonons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:532-69. [PMID: 24338738 PMCID: PMC4227607 DOI: 10.1002/adma.201303456] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 05/21/2023]
Abstract
The engineering of optical and acoustic material functionalities via construction of ordered local and global architectures on various length scales commensurate with and well below the characteristic length scales of photons and phonons in the material is an indispensable and powerful means to develop novel materials. In the current mature status of photonics, polymers hold a pivotal role in various application areas such as light-emission, sensing, energy, and displays, with exclusive advantages despite their relatively low dielectric constants. Moreover, in the nascent field of phononics, polymers are expected to be a superior material platform due to the ability for readily fabricated complex polymer structures possessing a wide range of mechanical behaviors, complete phononic bandgaps, and resonant architectures. In this review, polymer-centric photonic and phononic crystals and metamaterials are highlighted, and basic concepts, fabrication techniques, selected functional polymers, applications, and emerging ideas are introduced.
Collapse
Affiliation(s)
- Jae-Hwang Lee
- Department of Materials Science and Nanoengineering Rice UniversityHouston, TX, 77005, USA E-mail: ;
| | | | - Jonathan P Singer
- Department of Materials Science and Engineering, MITCambridge, MA, 02139, USA
| | - Seog-Jin Jeon
- Department of Materials Science and Nanoengineering Rice UniversityHouston, TX, 77005, USA E-mail: ;
| | - Martin Maldovan
- Department of Materials Science and Engineering, MITCambridge, MA, 02139, USA
| | - Ori Stein
- Department of Materials Science and Nanoengineering Rice UniversityHouston, TX, 77005, USA E-mail: ;
| | - Edwin L Thomas
- Department of Materials Science and Nanoengineering Rice UniversityHouston, TX, 77005, USA E-mail: ;
| |
Collapse
|
11
|
Park E, Eisen R, Kinio A, Baker AJ. Electrophysiological white matter dysfunction and association with neurobehavioral deficits following low-level primary blast trauma. Neurobiol Dis 2013; 52:150-9. [PMID: 23238347 DOI: 10.1016/j.nbd.2012.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/02/2012] [Accepted: 12/03/2012] [Indexed: 01/31/2023] Open
Affiliation(s)
- Eugene Park
- Keenan Research Centre in the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, ON, Canada.
| | | | | | | |
Collapse
|
12
|
Kim J, Choi SE, Lee H, Kwon S. Magnetochromatic microactuators for a micropixellated color-changing surface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:1415-1419. [PMID: 23299981 DOI: 10.1002/adma.201203810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/06/2012] [Indexed: 06/01/2023]
Abstract
A magnetically tunable chromatic nanocomposite microactuator is proposed, which utilizes the optical and magnetic behaviors of self-assembled super-paramagnetic nanoparticles fixed in a polymeric microstructure. The original color can be programmed during a simple photolithography process, and the color can be changed just by applying and changing an external magnetic field. These microactuators are capable of acting as pixels in a color-changing pattern.
Collapse
Affiliation(s)
- Jiyun Kim
- Center for Nanoparticle Research, Institute for Basic Science, Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
13
|
Elder GA, Dorr NP, De Gasperi R, Gama Sosa MA, Shaughness MC, Maudlin-Jeronimo E, Hall AA, McCarron RM, Ahlers ST. Blast exposure induces post-traumatic stress disorder-related traits in a rat model of mild traumatic brain injury. J Neurotrauma 2012; 29:2564-75. [PMID: 22780833 DOI: 10.1089/neu.2012.2510] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Blast related traumatic brain injury (TBI) has been a major cause of injury in the wars in Iraq and Afghanistan. A striking feature of the mild TBI (mTBI) cases has been the prominent association with post-traumatic stress disorder (PTSD). However, because of the overlapping symptoms, distinction between the two disorders has been difficult. We studied a rat model of mTBI in which adult male rats were exposed to repetitive blast injury while under anesthesia. Blast exposure induced a variety of PTSD-related behavioral traits that were present many months after the blast exposure, including increased anxiety, enhanced contextual fear conditioning, and an altered response in a predator scent assay. We also found elevation in the amygdala of the protein stathmin 1, which is known to influence the generation of fear responses. Because the blast overpressure injuries occurred while animals were under general anesthesia, our results suggest that a blast-related mTBI exposure can, in the absence of any psychological stressor, induce PTSD-related traits that are chronic and persistent. These studies have implications for understanding the relationship of PTSD to mTBI in the population of veterans returning from the wars in Iraq and Afghanistan.
Collapse
Affiliation(s)
- Gregory A Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York 10468, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Current world literature. Curr Opin Psychiatry 2012; 25:251-9. [PMID: 22456191 DOI: 10.1097/yco.0b013e328352dd8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Balakathiresan N, Bhomia M, Chandran R, Chavko M, McCarron RM, Maheshwari RK. MicroRNA let-7i is a promising serum biomarker for blast-induced traumatic brain injury. J Neurotrauma 2012; 29:1379-87. [PMID: 22352906 DOI: 10.1089/neu.2011.2146] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blast-induced traumatic brain injury (TBI) is of significant concern in soldiers returning from the current conflicts in Iraq and Afghanistan. Incidents of TBI have increased significantly in the current conflicts compared to previous wars, and a majority of these injuries are caused by improvised explosive devices. Currently, no specific technique or biomarker is available for diagnosing TBI when no obvious clinical symptoms are present. Micro-RNAs are small RNA (~ 22nts) molecules that are expressed endogenously and play an important role in regulating gene expression. MicroRNAs have emerged as novel serum diagnostic biomarkers for various diseases. In this study, we studied the effect of blast overpressure injury on the microRNA signatures in the serum of rats. Rats were exposed to three serial 120-kPa blast overpressure exposures through a shockwave tube. Blood and cerebrospinal fluid were collected at various time points after injury, and microRNA modulation was analyzed using real-time PCR. Five microRNAs were significantly modulated in the serum samples of these animals at three time points post-injury. Further, we also found that the levels of microRNA let-7i are also elevated in cerebrospinal fluid post-blast wave exposure. The presence of microRNA in both serum and cerebrospinal fluid immediately after injury makes microRNA let-7i an ideal candidate for further studies of biomarkers in TBI.
Collapse
Affiliation(s)
- Nagaraja Balakathiresan
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | | | |
Collapse
|