1
|
Huang S, Shen Q, Watts LT, Long JA, O'Boyle M, Nguyen T, Muir E, Duong TQ. Resting-State Functional Magnetic Resonance Imaging of Interhemispheric Functional Connectivity in Experimental Traumatic Brain Injury. Neurotrauma Rep 2021; 2:526-540. [PMID: 34901946 PMCID: PMC8655818 DOI: 10.1089/neur.2021.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although resting-state functional magnetic resonance imaging (rsfMRI) has the potential to offer insights into changes in functional connectivity networks after traumatic brain injury (TBI), there are few studies that examine the effects of moderate TBI for monitoring functional recovery in experimental TBI, and thus the neural correlates of brain recovery from moderate TBI remain incompletely understood. Non-invasive rsfMRI was used to longitudinally investigate changes in interhemispheric functional connectivity (IFC) after a moderate TBI to the unilateral sensorimotor cortex in rats (n = 9) up to 14 days. Independent component analysis of the rsfMRI data was performed. Correlations of rsfMRI sensorimotor networks were made with changes in behavioral scores, lesion volume, and T2- and diffusion-weighted images across time. TBI animals showed less localized rsfMRI patterns in the sensorimotor network compared to sham (n = 6) and normal (n = 5) animals. rsfMRI clusters in the sensorimotor network showed less bilateral symmetry compared to sham and normal animals, indicative of IFC disruption. With time after injury, many of the rsfMRI patterns in the sensorimotor network showed more bilateral symmetry, indicative of IFC recovery. The disrupted IFC in the sensorimotor and subsequent partial recovery showed a positive correlation with changes in behavioral scores. Overall, rsfMRI detected widespread disruption and subsequent recovery of IFC within the sensorimotor networks post-TBI, which correlated with behavioral changes. Therefore, rsfMRI offers the means to probe functional brain reorganization and thus has the potential to serve as an imaging marker to longitudinally stage TBI and monitor for novel treatments.
Collapse
Affiliation(s)
- Shiliang Huang
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Qiang Shen
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA.,Department of Radiology, UT Health San Antonio, San Antonio, Texas, USA
| | - Lora Talley Watts
- Department of Clinical and Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, Texas, USA
| | - Justin A Long
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Michael O'Boyle
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Tony Nguyen
- Department of Radiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, New York, USA
| | - Eric Muir
- Department of Radiology, Stony Brook Medicine, Stony Brook, New York, USA
| | - Timothy Q Duong
- Department of Radiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, New York, USA
| |
Collapse
|
2
|
Yang Z, Zhu T, Pompilus M, Fu Y, Zhu J, Arjona K, Arja RD, Grudny MM, Plant HD, Bose P, Wang KK, Febo M. Compensatory functional connectome changes in a rat model of traumatic brain injury. Brain Commun 2021; 3:fcab244. [PMID: 34729482 PMCID: PMC8557657 DOI: 10.1093/braincomms/fcab244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Penetrating cortical impact injuries alter neuronal communication beyond the injury epicentre, across regions involved in affective, sensorimotor and cognitive processing. Understanding how traumatic brain injury reorganizes local and brain wide nodal interactions may provide valuable quantitative parameters for monitoring pathological progression and recovery. To this end, we investigated spontaneous fluctuations in the functional MRI signal obtained at 11.1 T in rats sustaining controlled cortical impact and imaged at 2- and 30-days post-injury. Graph theory-based calculations were applied to weighted undirected matrices constructed from 12 879 pairwise correlations between functional MRI signals from 162 regions. Our data indicate that on Days 2 and 30 post-controlled cortical impact there is a significant increase in connectivity strength in nodes located in contralesional cortical, thalamic and basal forebrain areas. Rats imaged on Day 2 post-injury had significantly greater network modularity than controls, with influential nodes (with high eigenvector centrality) contained within the contralesional module and participating less in cross-modular interactions. By Day 30, modularity and cross-modular interactions recover, although a cluster of nodes with low strength and low eigenvector centrality remain in the ipsilateral cortex. Our results suggest that changes in node strength, modularity, eigenvector centrality and participation coefficient track early and late traumatic brain injury effects on brain functional connectivity. We propose that the observed compensatory functional connectivity reorganization in response to controlled cortical impact may be unfavourable to brain wide communication in the early post-injury period.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Tian Zhu
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - Yueqiang Fu
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jiepei Zhu
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
| | - Kefren Arjona
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rawad Daniel Arja
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Matteo M Grudny
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - H Daniel Plant
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
| | - Prodip Bose
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
- Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - Kevin K Wang
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility (AMRIS), University of Florida, Gainesville, FL 32611, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Ustaoglu SG, Ali MHM, Rakib F, Blezer ELA, Van Heijningen CL, Dijkhuizen RM, Severcan F. Biomolecular changes and subsequent time-dependent recovery in hippocampal tissue after experimental mild traumatic brain injury. Sci Rep 2021; 11:12468. [PMID: 34127773 PMCID: PMC8203626 DOI: 10.1038/s41598-021-92015-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury (TBI) is the main cause of disability and mortality in individuals under the age of 45 years. Elucidation of the molecular and structural alterations in brain tissue due to TBI is crucial to understand secondary and long-term effects after traumatic brain injury, and to develop and apply the correct therapies. In the current study, the molecular effects of TBI were investigated in rat brain at 24 h and 1 month after the injury to determine acute and chronic effects, respectively by Fourier transform infrared imaging. This study reports the time-dependent contextual and structural effects of TBI on hippocampal brain tissue. A mild form of TBI was induced in 11-week old male Sprague Dawley rats by weight drop. Band area and intensity ratios, band frequency and bandwidth values of specific spectral bands showed that TBI causes significant structural and contextual global changes including decrease in carbonyl content, unsaturated lipid content, lipid acyl chain length, membrane lipid order, total protein content, lipid/protein ratio, besides increase in membrane fluidity with an altered protein secondary structure and metabolic activity in hippocampus 24 h after injury. However, improvement and/or recovery effects in these parameters were observed at one month after TBI.
Collapse
Affiliation(s)
- Sebnem Garip Ustaoglu
- Department of Medical Biochemistry, Faculty of Medicine, Altinbas University, Bakirkoy, Istanbul, Turkey.
| | - Mohamed H M Ali
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar.
| | - Fazle Rakib
- Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar
| | - Erwin L A Blezer
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline L Van Heijningen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Feride Severcan
- Department of Biophysics, Faculty of Medicine, Altinbas University, Bakirkoy, Istanbul, Turkey.,Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
4
|
Sinke MRT, Otte WM, Meerwaldt AE, Franx BAA, Ali MHM, Rakib F, van der Toorn A, van Heijningen CL, Smeele C, Ahmed T, Blezer ELA, Dijkhuizen RM. Imaging Markers for the Characterization of Gray and White Matter Changes from Acute to Chronic Stages after Experimental Traumatic Brain Injury. J Neurotrauma 2021; 38:1642-1653. [PMID: 33198560 DOI: 10.1089/neu.2020.7151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite clinical symptoms, a large majority of people with mild traumatic brain injury (TBI) have normal computed tomography (CT) and magnetic resonance imaging (MRI) scans. Therefore, present-day neuroimaging tools are insufficient to diagnose or classify low grades of TBI. Advanced neuroimaging techniques, such as diffusion-weighted and functional MRI, may yield novel biomarkers that may aid in the diagnosis of TBI. Therefore, the present study had two aims: first, to characterize the development of MRI-based measures of structural and functional changes in gray and white matter regions from acute to chronic stages after mild and moderate TBI; and second, to identify the imaging markers that can most accurately predict outcome after TBI. To these aims, 52 rats underwent serial functional (resting-state) and structural (T1-, T2-, and diffusion-weighted) MRI before and 1 h, 1 day, 1 week, 1 month and 3-4 months after mild or moderate experimental TBI. All rats underwent behavioral testing. Histology was performed in subgroups of rats at different time points. Early after moderate TBI, axial and radial diffusivities were increased, and fractional anisotropy was reduced in the corpus callosum and bilateral hippocampi, which normalized over time and was paralleled by recovery of sensorimotor function. Correspondingly, histology revealed decreased myelin staining early after TBI, which was not detected at chronic stages. No significant changes in individual outcome measures were detected after mild TBI. However, multivariate analysis showed a significant additive contribution of diffusion parameters in the distinction between control and different grades of TBI-affected brains. Therefore, combining multiple imaging markers may increase the sensitivity for TBI-related pathology.
Collapse
Affiliation(s)
- Michel R T Sinke
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Willem M Otte
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078.,UMC Utrecht Brain Center, Department of Child Neurology, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Anu E Meerwaldt
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Bart A A Franx
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Mohamed H M Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Fazle Rakib
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Caroline L van Heijningen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Christel Smeele
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Tariq Ahmed
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Erwin L A Blezer
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| |
Collapse
|
5
|
Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019; 36:1683-1706. [PMID: 30661454 PMCID: PMC6555186 DOI: 10.1089/neu.2018.6127] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
6
|
de la Tremblaye PB, O'Neil DA, LaPorte MJ, Cheng JP, Beitchman JA, Thomas TC, Bondi CO, Kline AE. Elucidating opportunities and pitfalls in the treatment of experimental traumatic brain injury to optimize and facilitate clinical translation. Neurosci Biobehav Rev 2018; 85:160-175. [PMID: 28576511 PMCID: PMC5709241 DOI: 10.1016/j.neubiorev.2017.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
The aim of this review is to discuss the research presented in a symposium entitled "Current progress in characterizing therapeutic strategies and challenges in experimental CNS injury" which was presented at the 2016 International Behavioral Neuroscience Society annual meeting. Herein we discuss diffuse and focal traumatic brain injury (TBI) and ensuing chronic behavioral deficits as well as potential rehabilitative approaches. We also discuss the effects of stress on executive function after TBI as well as the response of the endocrine system and regulatory feedback mechanisms. The role of the endocannabinoids after CNS injury is also discussed. Finally, we conclude with a discussion of antipsychotic and antiepileptic drugs, which are provided to control TBI-induced agitation and seizures, respectively. The review consists predominantly of published data.
Collapse
Affiliation(s)
- Patricia B de la Tremblaye
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Darik A O'Neil
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Megan J LaPorte
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jeffrey P Cheng
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joshua A Beitchman
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Midwestern University, Glendale, AZ, United States
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Phoenix VA Healthcare System, Phoenix, AZ, United States
| | - Corina O Bondi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony E Kline
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
7
|
Guley NH, Rogers JT, Del Mar NA, Deng Y, Islam RM, D'Surney L, Ferrell J, Deng B, Hines-Beard J, Bu W, Ren H, Elberger AJ, Marchetta JG, Rex TS, Honig MG, Reiner A. A Novel Closed-Head Model of Mild Traumatic Brain Injury Using Focal Primary Overpressure Blast to the Cranium in Mice. J Neurotrauma 2016; 33:403-22. [PMID: 26414413 PMCID: PMC4761824 DOI: 10.1089/neu.2015.3886] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mild traumatic brain injury (TBI) from focal head impact is the most common form of TBI in humans. Animal models, however, typically use direct impact to the exposed dura or skull, or blast to the entire head. We present a detailed characterization of a novel overpressure blast system to create focal closed-head mild TBI in mice. A high-pressure air pulse limited to a 7.5 mm diameter area on the left side of the head overlying the forebrain is delivered to anesthetized mice. The mouse eyes and ears are shielded, and its head and body are cushioned to minimize movement. This approach creates mild TBI by a pressure wave that acts on the brain, with minimal accompanying head acceleration-deceleration. A single 20-psi blast yields no functional deficits or brain injury, while a single 25-40 psi blast yields only slight motor deficits and brain damage. By contrast, a single 50-60 psi blast produces significant visual, motor, and neuropsychiatric impairments and axonal damage and microglial activation in major fiber tracts, but no contusive brain injury. This model thus reproduces the widespread axonal injury and functional impairments characteristic of closed-head mild TBI, without the complications of systemic or ocular blast effects or head acceleration that typically occur in other blast or impact models of closed-skull mild TBI. Accordingly, our model provides a simple way to examine the biomechanics, pathophysiology, and functional deficits that result from TBI and can serve as a reliable platform for testing therapies that reduce brain pathology and deficits.
Collapse
Affiliation(s)
- Natalie H. Guley
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Joshua T. Rogers
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Nobel A. Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yunping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Rafiqul M. Islam
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Lauren D'Surney
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jessica Ferrell
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Bowei Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jessica Hines-Beard
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee
| | - Wei Bu
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Huiling Ren
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Andrea J. Elberger
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Tonia S. Rex
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee
| | - Marcia G. Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
8
|
Gozzi A, Schwarz AJ. Large-scale functional connectivity networks in the rodent brain. Neuroimage 2015; 127:496-509. [PMID: 26706448 DOI: 10.1016/j.neuroimage.2015.12.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 02/08/2023] Open
Abstract
Resting-state functional Magnetic Resonance Imaging (rsfMRI) of the human brain has revealed multiple large-scale neural networks within a hierarchical and complex structure of coordinated functional activity. These distributed neuroanatomical systems provide a sensitive window on brain function and its disruption in a variety of neuropathological conditions. The study of macroscale intrinsic connectivity networks in preclinical species, where genetic and environmental conditions can be controlled and manipulated with high specificity, offers the opportunity to elucidate the biological determinants of these alterations. While rsfMRI methods are now widely used in human connectivity research, these approaches have only relatively recently been back-translated into laboratory animals. Here we review recent progress in the study of functional connectivity in rodent species, emphasising the ability of this approach to resolve large-scale brain networks that recapitulate neuroanatomical features of known functional systems in the human brain. These include, but are not limited to, a distributed set of regions identified in rats and mice that may represent a putative evolutionary precursor of the human default mode network (DMN). The impact and control of potential experimental and methodological confounds are also critically discussed. Finally, we highlight the enormous potential and some initial application of connectivity mapping in transgenic models as a tool to investigate the neuropathological underpinnings of the large-scale connectional alterations associated with human neuropsychiatric and neurological conditions. We conclude by discussing the translational potential of these methods in basic and applied neuroscience.
Collapse
Affiliation(s)
- Alessandro Gozzi
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems at UniTn, Rovereto, Italy.
| | - Adam J Schwarz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Matthews M, Fair DA. Research review: Functional brain connectivity and child psychopathology--overview and methodological considerations for investigators new to the field. J Child Psychol Psychiatry 2015; 56:400-14. [PMID: 25307115 DOI: 10.1111/jcpp.12335] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND Functional connectivity MRI is an emerging technique that can be used to investigate typical and atypical brain function in developing and aging populations. Despite some of the current confounds in the field of functional connectivity MRI, the translational potential of the technique available to investigators may eventually be used to improve diagnosis, early disease detection, and therapy monitoring. METHOD AND SCOPE Based on a comprehensive survey of the literature, this review offers an introduction of resting-state functional connectivity for new investigators to the field of resting-state functional connectivity. We discuss a brief history of the technique, various methods of analysis, the relationship of functional networks to behavior, as well as the translational potential of functional connectivity MRI to investigate neuropsychiatric disorders. We also address some considerations and limitations with data analysis and interpretation. CONCLUSIONS The information provided in this review should serve as a foundation for investigators new to the field of resting-state functional connectivity. The discussion provides a means to better understand functional connectivity and its application to typical and atypical brain function.
Collapse
Affiliation(s)
- Marguerite Matthews
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
10
|
Mayer AR, Ling JM, Allen EA, Klimaj SD, Yeo RA, Hanlon FM. Static and Dynamic Intrinsic Connectivity following Mild Traumatic Brain Injury. J Neurotrauma 2015; 32:1046-55. [PMID: 25318005 DOI: 10.1089/neu.2014.3542] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common neurological disorder and is typically characterized by temporally limited cognitive impairment and emotional symptoms. Previous examinations of intrinsic resting state networks in mTBI have primarily focused on abnormalities in static functional connectivity, and deficits in dynamic functional connectivity have yet to be explored in this population. Resting-state data was collected on 48 semi-acute (mean = 14 days post-injury) mTBI patients and 48 matched healthy controls. A high-dimensional independent component analysis (N = 100) was utilized to parcellate intrinsic connectivity networks (ICN), with a priori hypotheses focusing on the default-mode network (DMN) and sub-cortical structures. Dynamic connectivity was characterized using a sliding window approach over 126 temporal epochs, with standard deviation serving as the primary outcome measure. Finally, distribution-corrected z-scores (DisCo-Z) were calculated to investigate changes in connectivity in a spatially invariant manner on a per-subject basis. Following appropriate correction for multiple comparisons, no significant group differences were evident on measures of static or dynamic connectivity within a priori ICN. Reduced (HC > mTBI patients) static connectivity was observed in the DMN at uncorrected (p < 0.005) thresholds. Finally, a trend (p = 0.07) for decreased dynamic connectivity in patients across all ICN was observed during spatially invariant analyses (DisCo-Z). In the semi-acute phase of recovery, mTBI was not reliably associated with abnormalities in static or dynamic functional connectivity within the DMN or sub-cortical structures.
Collapse
Affiliation(s)
- Andrew R Mayer
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico.,2 Department of Neurology, University of New Mexico School of Medicine , Albuquerque, New Mexico.,3 Department of Psychology, University of New Mexico , Albuquerque, New Mexico
| | - Josef M Ling
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Elena A Allen
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Stefan D Klimaj
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Ronald A Yeo
- 3 Department of Psychology, University of New Mexico , Albuquerque, New Mexico
| | - Faith M Hanlon
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| |
Collapse
|
11
|
|
12
|
Liang Z, Liu X, Zhang N. Dynamic resting state functional connectivity in awake and anesthetized rodents. Neuroimage 2014; 104:89-99. [PMID: 25315787 DOI: 10.1016/j.neuroimage.2014.10.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/27/2014] [Accepted: 10/04/2014] [Indexed: 01/01/2023] Open
Abstract
Since its introduction, resting-state functional magnetic resonance imaging (rsfMRI) has been a powerful tool for investigating functional neural networks in both normal and pathological conditions. When measuring resting-state functional connectivity (RSFC), most rsfMRI approaches do not consider its temporal variations and thus only provide the averaged RSFC over the scan time. Recently, there has been a surge of interest to investigate the dynamic characteristics of RSFC in humans, and promising results have been yielded. However, our knowledge regarding the dynamic RSFC in animals remains sparse. In the present study we utilized the single-volume co-activation method to systematically study the dynamic properties of RSFC within the networks of infralimbic cortex (IL) and primary somatosensory cortex (S1) in both awake and anesthetized rats. Our data showed that both IL and S1 networks could be decomposed into several spatially reproducible but temporally changing co-activation patterns (CAPs), suggesting that dynamic RSFC was indeed a characteristic feature in rodents. In addition, we demonstrated that anesthesia profoundly impacted the dynamic RSFC of neural circuits subserving cognitive and emotional functions but had less effects on sensorimotor systems. Finally, we examined the temporal characteristics of each CAP, and found that individual CAPs exhibited consistent temporal evolution patterns. Together, these results suggest that dynamic RSFC might be a general phenomenon in vertebrate animals. In addition, this study has paved the way for further understanding the alterations of dynamic RSFC in animal models of brain disorders.
Collapse
Affiliation(s)
- Zhifeng Liang
- Department of Biomedical Engineering, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiao Liu
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
13
|
Liang Z, King J, Zhang N. Neuroplasticity to a single-episode traumatic stress revealed by resting-state fMRI in awake rats. Neuroimage 2014; 103:485-491. [PMID: 25193500 DOI: 10.1016/j.neuroimage.2014.08.050] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022] Open
Abstract
Substantial evidence has suggested that the brain structures of the medial prefrontal cortex (mPFC) and amygdala (AMYG) are implicated in the pathophysiology of stress-related disorders. However, little is known with respect to the system-level adaptation of their neural circuitries to the perturbations of traumatic stressors. By utilizing behavioral tests and an awake animal imaging approach, in the present study we non-invasively investigated the impact of single-episode predator odor exposure in an inescapable environment on behaviors and neural circuits in rodents. We found that predator odor exposure significantly increased the freezing behavior. In addition, animals exhibited heightened anxiety levels seven days after the exposure. Intriguingly, we also found that the intrinsic functional connectivity within the AMYG-mPFC circuit was considerably compromised seven days after the traumatic event. Our data provide neuroimaging evidence suggesting that prolonged neuroadaptation induced by a single episode of traumatic stress can be non-invasively detected in rodents. These results also support the face validity and construction validity of using the paradigm of single trauma exposure in an inescapable environment as an animal model for post-traumatic stress disorder. Taken together, the present study has opened a new avenue to investigating animal models of stress-related mental disorders by going beyond static neuroanatomy, and ultimately bridging the gap between basic biomedical and human imaging research.
Collapse
Affiliation(s)
- Zhifeng Liang
- Department of Biomedical Engineering, Center for Neural Engineering, The Huck Institutes of the Life Sciences, The Pennsylvania State University, USA
| | - Jean King
- Department of Psychiatry, The University of Massachusetts Medical School, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, Center for Neural Engineering, The Huck Institutes of the Life Sciences, The Pennsylvania State University, USA; Department of Psychiatry, The University of Massachusetts Medical School, USA.
| |
Collapse
|
14
|
Ng TS, Lin AP, Koerte IK, Pasternak O, Liao H, Merugumala S, Bouix S, Shenton ME. Neuroimaging in repetitive brain trauma. ALZHEIMERS RESEARCH & THERAPY 2014; 6:10. [PMID: 25031630 PMCID: PMC3978843 DOI: 10.1186/alzrt239] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sports-related concussions are one of the major causes of mild traumatic brain injury. Although most patients recover completely within days to weeks, those who experience repetitive brain trauma (RBT) may be at risk for developing a condition known as chronic traumatic encephalopathy (CTE). While this condition is most commonly observed in athletes who experience repetitive concussive and/or subconcussive blows to the head, such as boxers, football players, or hockey players, CTE may also affect soldiers on active duty. Currently, the only means by which to diagnose CTE is by the presence of phosphorylated tau aggregations post-mortem. Non-invasive neuroimaging, however, may allow early diagnosis as well as improve our understanding of the underlying pathophysiology of RBT. The purpose of this article is to review advanced neuroimaging methods used to investigate RBT, including diffusion tensor imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, susceptibility weighted imaging, and positron emission tomography. While there is a considerable literature using these methods in brain injury in general, the focus of this review is on RBT and those subject populations currently known to be susceptible to RBT, namely athletes and soldiers. Further, while direct detection of CTE in vivo has not yet been achieved, all of the methods described in this review provide insight into RBT and will likely lead to a better characterization (diagnosis), in vivo, of CTE than measures of self-report.
Collapse
Affiliation(s)
- Thomas Sc Ng
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA ; Keck School of Medicine of the University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA ; Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA
| | - Inga K Koerte
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA ; Institute for Clinical Radiology, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377 Munich, Germany
| | - Ofer Pasternak
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA
| | - Huijun Liao
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Sai Merugumala
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Sylvain Bouix
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA
| | - Martha E Shenton
- Psychiatric Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA 02215, USA ; Research and Development, VA Boston Healthcare System, 850 Belmont Street, Brockton, MA 02130, USA
| |
Collapse
|
15
|
Enhancement in cognitive function recovery by granulocyte-colony stimulating factor in a rodent model of traumatic brain injury. Behav Brain Res 2013; 259:354-6. [PMID: 24239694 DOI: 10.1016/j.bbr.2013.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/11/2013] [Accepted: 11/06/2013] [Indexed: 11/22/2022]
Abstract
Traumatic brain injury (TBI) is characterized by neuronal damage and commonly, secondary cell death, leading to functional and neurological dysfunction. Despite the recent focus of TBI research on developing therapies, affective therapeutic strategies targeting neuronal death associated with TBI remain underexplored. This study explored the efficacy of granulocyte-colony stimulating factor (G-CSF) as an intervention for improving cognitive deficits commonly associated with TBI. Although G-CSF has been studied with histological techniques, to date, its effects on functional outcome remain unknown. To this end, we used a closed head injury (CHI) model in Wistar rats that were randomly assigned to one of four groups (untreated TBI, G-CSF treated TBI, G-CSF treated Control, Control). The treatment groups were administered subcutaneous injections of G-CSF 30 min (120 μg/kg) and 12 h (60 μg/kg) post-trauma. The Morris Water Maze test was used to measure any treatment-associated changes in cognitive deficits observed in TBI animals at days 2-6 post-injury. Our findings demonstrate a significant improvement in cognitive performance in the G-CSF treated TBI animals within a week of injury, compared to untreated TBI, indicative of immediate and beneficial effect of G-CSF on cognitive performance post CHI. Our model suggests that early G-CSF exposure may be a promising therapeutic approach in recovery of cognitive deficits due to TBI.
Collapse
|