1
|
Zhou LY, Wang XB, Chen XQ, Li R, Yu BB, Pan MX, Fang L, Li J, Cui XJ, Yao M, Lu X. Neuroprotective effect and possible mechanism of edaravone in rat models of spinal cord injury: a systematic review and network meta-analysis. Front Pharmacol 2025; 16:1538879. [PMID: 40260386 PMCID: PMC12009846 DOI: 10.3389/fphar.2025.1538879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/06/2025] [Indexed: 04/23/2025] Open
Abstract
Objective The present review was developed to critically evaluate the neuroprotective effects of edaravone for experimental rat models of spinal cord injury (SCI) and generalize the possible mechanisms. Methods Systematic searches were carried out on databases including PubMed, Embase, Web of Science, Scopus, and Cochrane Library from their inception to March 2024. Controlled studies that assessed the neurological roles of edaravone on rats following SCI were selected. The Basso, Beattie, and Bresnahan (BBB) locomotor rating scale, residual white matter area, and malondialdehyde (MDA) level of the SCI rats were systematically searched by two reviewers. Results Ten eligible publications were included. Meta-analyses showed increased BBB scores in edaravone-treated rats compared with control ones. The effect size gradually increased from day 7 (seven studies, n = 246, weighted mean difference (WMD) = 1.96, 95% confidence interval (CI) = 1.23 to 2.68, P < 0.00001) to day 28 (seven studies, n = 222, WMD = 4.41, 95% CI = 3.19 to 5.63, P < 0.00001) after injury and then maintained stably in the following time. Meanwhile, edaravone treatment was associated with an amendment in the spared area of white matter and a lowering in the MDA expression in the lesion area. The subgroup analyses revealed that rats treated with edaravone exhibited superior locomotor recovery in compression injury models than contusion ones. In network analyses, the surface under the cumulative ranking curve gradually increased up to a dose of 5-6 mg/(kg·d) of edaravone, after which it plateaued. Mechanism analysis suggested edaravone can ameliorate oxidative stress, mitigate neuroinflammation, and counteract neuron apoptosis and ferroptosis via multiple signaling pathways to exert its neuroprotective effects. Conclusion Collectively, with a protective effect and a systematic action mechanism, edaravone warrants further investigation in SCI research and treatment. Nonetheless, in light of the limitations in the included studies, the findings in this review should be interpreted with caution. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42022374914.
Collapse
Affiliation(s)
- Long-yun Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiao-bo Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-qing Chen
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ran Li
- Department of Rehabilitation Medicine, Traditional Chinese Medicine Hospital of LuAn, Luan, China
| | - Bin-bin Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Meng-xiao Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lu Fang
- Department of Rehabilitation Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jian Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xue-jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Mili B, Choudhary OP. Advancements and mechanisms of stem cell-based therapies for spinal cord injury in animals. Int J Surg 2024; 110:6182-6197. [PMID: 38265419 PMCID: PMC11486964 DOI: 10.1097/js9.0000000000001074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/24/2023] [Indexed: 01/25/2024]
Abstract
Spinal cord injury (SCI) is a neurodegenerative disorder of the central nervous system that can lead to permanent loss of sensation and voluntary movement beyond the affected area. Extensive preclinical and clinical trials have been conducted to evaluate the safety and effectiveness of stem cells for the treatment of various central nervous system diseases or disorders, including SCI. However, several challenges hinder nerve cell regeneration in the injured spinal cord, such as extensive cell loss, limited neural cell regeneration capacity, axonal disruption, and the presence of growth-inhibiting molecules, particularly astroglial scarring or glial scars at the injury site in chronic cases. These obstacles pose significant challenges for physicians in restoring normal motor and sensory nerve function in both humans and animals following SCI. This review focuses on SCI pathogenesis, the mechanisms underlying the therapeutic potential of mesenchymal stem cells in SCI, and the potential of stem cell-based therapies as promising avenues for treatment. This review article also included relevant preclinical and clinical data from animal studies.
Collapse
Affiliation(s)
- Bhabesh Mili
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Jalukie, Peren, Nagaland
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| |
Collapse
|
3
|
Zhou LY, Wu ZM, Chen XQ, Yu BB, Pan MX, Fang L, Li J, Cui XJ, Yao M, Lu X. Astaxanthin promotes locomotor function recovery and attenuates tissue damage in rats following spinal cord injury: a systematic review and trial sequential analysis. Front Neurosci 2023; 17:1255755. [PMID: 37881327 PMCID: PMC10595034 DOI: 10.3389/fnins.2023.1255755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition with few therapeutic options. Astaxanthin (AST), a natural nutritional supplement with powerful antioxidant activities, is finding its new application in the field of SCI. Here, we performed a systematic review to assess the neurological roles of AST in rats following SCI, and assessed the potential for clinical translation. Searches were conducted on PubMed, Embase, Cochrane Library, the Web of Science, China National Knowledge Infrastructure, WanFang data, Vip Journal Integration Platform, and SinoMed databases. Animal studies that evaluated the neurobiological roles of AST in a rat model of SCI were included. A total of 10 articles were included; most of them had moderate-to-high methodological quality, while the overall quality of evidence was not high. Generally, the meta-analyses revealed that rats treated with AST exhibited an increased Basso, Beattie, and Bresnahan (BBB) score compared with the controls, and the weighted mean differences (WMDs) between those two groups showed a gradual upward trend from days 7 (six studies, n = 88, WMD = 2.85, 95% CI = 1.83 to 3.87, p < 0.00001) to days 28 (five studies, n = 76, WMD = 6.42, 95% CI = 4.29 to 8.55, p < 0.00001) after treatment. AST treatment was associated with improved outcomes in spared white matter area, motor neuron survival, and SOD and MDA levels. Subgroup analyses indicated there were differences in the improvement of BBB scores between distinct injury types. The trial sequential analysis then firmly proved that AST could facilitate the locomotor recovery of rats following SCI. In addition, this review suggested that AST could modulate oxidative stress, neuroinflammation, neuron loss, and autophagy via multiple signaling pathways for treating SCI. Collectively, with a protective effect, good safety, and a systematic action mechanism, AST is a promising candidate for future clinical trials of SCI. Nonetheless, in light of the limitations of the included studies, larger and high-quality studies are needed for verification.
Collapse
Affiliation(s)
- Long-yun Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi-ming Wu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-qing Chen
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Bin-bin Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng-xiao Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Fang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue-jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Huang LY, Sun X, Pan HX, Wang L, He CQ, Wei Q. Cell transplantation therapies for spinal cord injury focusing on bone marrow mesenchymal stem cells: Advances and challenges. World J Stem Cells 2023; 15:385-399. [PMID: 37342219 PMCID: PMC10277963 DOI: 10.4252/wjsc.v15.i5.385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 05/26/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with complex pathological mechanisms that lead to sensory, motor, and autonomic dysfunction below the site of injury. To date, no effective therapy is available for the treatment of SCI. Recently, bone marrow-derived mesenchymal stem cells (BMMSCs) have been considered to be the most promising source for cellular therapies following SCI. The objective of the present review is to summarize the most recent insights into the cellular and molecular mechanism using BMMSC therapy to treat SCI. In this work, we review the specific mechanism of BMMSCs in SCI repair mainly from the following aspects: Neuroprotection, axon sprouting and/or regeneration, myelin regeneration, inhibitory microenvironments, glial scar formation, immunomodulation, and angiogenesis. Additionally, we summarize the latest evidence on the application of BMMSCs in clinical trials and further discuss the challenges and future directions for stem cell therapy in SCI models.
Collapse
Affiliation(s)
- Li-Yi Huang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Xin Sun
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Hong-Xia Pan
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Lu Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Cheng-Qi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| |
Collapse
|
5
|
Liu F, Huang Y, Wang H. Rodent Models of Spinal Cord Injury: From Pathology to Application. Neurochem Res 2023; 48:340-361. [PMID: 36303082 DOI: 10.1007/s11064-022-03794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) often has devastating consequences for the patient's physical, mental and occupational health. At present, there is no effective treatment for SCI, and appropriate animal models are very important for studying the pathological manifestations, injury mechanisms, and corresponding treatment. However, the pathological changes in each injury model are different, which creates difficulties in selecting appropriate models for different research purposes. In this article, we analyze various SCI models and introduce their pathological features, including inflammation, glial scar formation, axon regeneration, ischemia-reperfusion injury, and oxidative stress, and evaluate the advantages and disadvantages of each model, which is convenient for selecting suitable models for different injury mechanisms to study therapeutic methods.
Collapse
Affiliation(s)
- Fuze Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Yue Huang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Hai Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
6
|
Ahmed RU, Knibbe CA, Wilkins F, Sherwood LC, Howland DR, Boakye M. Porcine spinal cord injury model for translational research across multiple functional systems. Exp Neurol 2023; 359:114267. [PMID: 36356636 DOI: 10.1016/j.expneurol.2022.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Animal models are necessary to identify pathological changes and help assess therapeutic outcomes following spinal cord injury (SCI). Small animal models offer value in research in terms of their easily managed size, minimal maintenance requirements, lower cost, well-characterized genomes, and ability to power research studies. However, despite these benefits, small animal models have neurologic and anatomical differences that may influence translation of results to humans and thus limiting the success of their use in preclinical studies as a direct pipeline to clinical studies. Large animal models, offer an attractive intermediary translation model that may be more successful in translating to the clinic for SCI research. This is largely due to their greater neurologic and anatomical similarities to humans. The physical characteristics of pig spinal cord, gut microbiome, metabolism, proportions of white to grey matter, bowel anatomy and function, and urinary system are strikingly similar and provide great insight into human SCI conditions. In this review, we address the variety of existing porcine injury models and their translational relevance, benefits, and drawbacks in modeling human systems and functions for neurophysiology, cardiovascular, gastrointestinal and urodynamic functions.
Collapse
Affiliation(s)
- Rakib Uddin Ahmed
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
| | - Chase A Knibbe
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Felicia Wilkins
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Leslie C Sherwood
- Comparative Medicine Research Unit, University of Louisville, Louisville, KY, USA
| | - Dena R Howland
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Robley Rex VA Medical Center, Louisville, KY 40202, USA
| | - Maxwell Boakye
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
7
|
Hu CK, Chen MH, Wang YH, Sun JS, Wu CY. Integration of multiple prognostic predictors in a porcine spinal cord injury model: A further step closer to reality. Front Neurol 2023; 14:1136267. [PMID: 36970513 PMCID: PMC10030512 DOI: 10.3389/fneur.2023.1136267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Spinal cord injury (SCI) is a devastating neurological disorder with an enormous impact on individual's life and society. A reliable and reproducible animal model of SCI is crucial to have a deeper understanding of SCI. We have developed a large-animal model of spinal cord compression injury (SCI) with integration of multiple prognostic factors that would have applications in humans. Methods Fourteen human-like sized pigs underwent compression at T8 by implantation of an inflatable balloon catheter. In addition to basic neurophysiological recording of somatosensory and motor evoked potentials, we introduced spine-to-spine evoked spinal cord potentials (SP-EPs) by direct stimulation and measured them just above and below the affected segment. A novel intraspinal pressure monitoring technique was utilized to measure the actual pressure on the cord. The gait and spinal MRI findings were assessed in each animal postoperatively to quantify the severity of injury. Results We found a strong negative correlation between the intensity of pressure applied to the spinal cord and the functional outcome (P < 0.0001). SP-EPs showed high sensitivity for real time monitoring of intraoperative cord damage. On MRI, the ratio of the high-intensity area to the cross-sectional of the cord was a good predictor of recovery (P < 0.0001). Conclusion Our balloon compression SCI model is reliable, predictable, and easy to implement. By integrating SP-EPs, cord pressure, and findings on MRI, we can build a real-time warning and prediction system for early detection of impending or iatrogenic SCI and improve outcomes.
Collapse
Affiliation(s)
- Chao-Kai Hu
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Hong Chen
- Graduate Institute of Nanomedical and Medical Engineering, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Horng Wang
- Department of Pet Healthcare, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Jui-Sheng Sun
- Trauma and Emergency Center, China Medical University Hospital, Taichung City, Taiwan
- College of Medicine, China Medical University, Yingcai Campus, Taichung City, Taiwan
- College of Biomedical Engineering, China Medical University, Yingcai Campus, Taichung City, Taiwan
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Yu Wu
- Department of Electronics Engineering and Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- *Correspondence: Chung-Yu Wu
| |
Collapse
|
8
|
Weber-Levine C, Hersh AM, Jiang K, Routkevitch D, Tsehay Y, Perdomo-Pantoja A, Judy BF, Kerensky M, Liu A, Adams M, Izzi J, Doloff JC, Manbachi A, Theodore N. Porcine Model of Spinal Cord Injury: A Systematic Review. Neurotrauma Rep 2022; 3:352-368. [PMID: 36204385 PMCID: PMC9531891 DOI: 10.1089/neur.2022.0038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disease with limited effective treatment options. Animal paradigms are vital for understanding the pathogenesis of SCI and testing potential therapeutics. The porcine model of SCI is increasingly favored because of its greater similarity to humans. However, its adoption is limited by the complexities of care and range of testing parameters. Researchers need to consider swine selection, injury method, post-operative care, rehabilitation, behavioral outcomes, and histology metrics. Therefore, we systematically reviewed full-text English-language articles to evaluate study characteristics used in developing a porcine model and summarize the interventions that have been tested using this paradigm. A total of 63 studies were included, with 33 examining SCI pathogenesis and 30 testing interventions. Studies had an average sample size of 15 pigs with an average weight of 26 kg, and most used female swine with injury to the thoracic cord. Injury was most commonly induced by weight drop with compression. The porcine model is amenable to testing various interventions, including mean arterial pressure augmentation (n = 7), electrical stimulation (n = 6), stem cell therapy (n = 5), hypothermia (n = 2), biomaterials (n = 2), gene therapy (n = 2), steroids (n = 1), and nanoparticles (n = 1). It is also notable for its clinical translatability and is emerging as a valuable pre-clinical study tool. This systematic review can serve as a guideline for researchers implementing and testing the porcine SCI model.
Collapse
Affiliation(s)
- Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Denis Routkevitch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yohannes Tsehay
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Brendan F. Judy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Max Kerensky
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melanie Adams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica Izzi
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua C. Doloff
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Jing Y, Bai F, Wang L, Yang D, Yan Y, Wang Q, Zhu Y, Yu Y, Chen Z. Fecal Microbiota Transplantation Exerts Neuroprotective Effects in a Mouse Spinal Cord Injury Model by Modulating the Microenvironment at the Lesion Site. Microbiol Spectr 2022; 10:e0017722. [PMID: 35467388 PMCID: PMC9241636 DOI: 10.1128/spectrum.00177-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/03/2022] [Indexed: 12/21/2022] Open
Abstract
The primary traumatic event that causes spinal cord injury (SCI) is followed by a progressive secondary injury featured by vascular disruption and ischemia, inflammatory responses and the release of cytotoxic debris, which collectively add to the hostile microenvironment of the lesioned cord and inhibit tissue regeneration and functional recovery. In a previous study, we reported that fecal microbiota transplantation (FMT) promotes functional recovery in a contusion SCI mouse model; yet whether and how FMT treatment may impact the microenvironment at the injury site are not well known. In the current study, we examined individual niche components and investigated the effects of FMT on microcirculation, inflammation and trophic factor secretion in the spinal cord of SCI mice. FMT treatment significantly improved spinal cord tissue sparing, vascular perfusion and pericyte coverage and blood-spinal cord-barrier (BSCB) integrity, suppressed the activation of microglia and astrocytes, and enhanced the secretion of neurotrophic factors. Suppression of inflammation and upregulation of trophic factors, jointly, may rebalance the niche homeostasis at the injury site and render it favorable for reparative and regenerative processes, eventually leading to functional recovery. Furthermore, microbiota metabolic profiling revealed that amino acids including β-alanine constituted a major part of the differentially detected metabolites between the groups. Supplementation of β-alanine in SCI mice reduced BSCB permeability and increased the number of surviving neurons, suggesting that β-alanine may be one of the mediators of FMT that participates in the modulation and rebalancing of the microenvironment at the injured spinal cord. IMPORTANCE FMT treatment shows a profound impact on the microenvironment that involves microcirculation, blood-spinal cord-barrier, activation of immune cells, and secretion of neurotrophic factors. Analysis of metabolic profiles reveals around 22 differentially detected metabolites between the groups, and β-alanine was further chosen for functional validation experiments. Supplementation of SCI mice with β-alanine significantly improves neuronal survival, and the integrity of blood-spinal cord-barrier at the lesion site, suggesting that β-alanine might be one of the mediators following FMT that has contributed to the recovery.
Collapse
Affiliation(s)
- Yingli Jing
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Fan Bai
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Limiao Wang
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Degang Yang
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Yitong Yan
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Qiuying Wang
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Yanbing Zhu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, People's Republic of China
| | - Yan Yu
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Zhiguo Chen
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, Xicheng District, Beijing, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Xicheng District, Beijing, People's Republic of China
| |
Collapse
|
10
|
Xie JL, Wang XR, Li MM, Tao ZH, Teng WW, Saijilafu. Mesenchymal Stromal Cell Therapy in Spinal Cord Injury: Mechanisms and Prospects. Front Cell Neurosci 2022; 16:862673. [PMID: 35722621 PMCID: PMC9204037 DOI: 10.3389/fncel.2022.862673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) often leads to severe motor, sensory, and autonomic dysfunction in patients and imposes a huge economic cost to individuals and society. Due to its complicated pathophysiological mechanism, there is not yet an optimal treatment available for SCI. Mesenchymal stromal cells (MSCs) are promising candidate transplant cells for use in SCI treatment. The multipotency of MSCs, as well as their rich trophic and immunomodulatory abilities through paracrine signaling, are expected to play an important role in neural repair. At the same time, the simplicity of MSCs isolation and culture and the bypassing of ethical barriers to stem cell transplantation make them more attractive. However, the MSCs concept has evolved in a specific research context to encompass different populations of cells with a variety of biological characteristics, and failure to understand this can undermine the quality of research in the field. Here, we review the development of the concept of MSCs in order to clarify misconceptions and discuss the controversy in MSCs neural differentiation. We also summarize a potential role of MSCs in SCI treatment, including their migration and trophic and immunomodulatory effects, and their ability to relieve neuropathic pain, and we also highlight directions for future research.
Collapse
Affiliation(s)
- Ji-Le Xie
- Department of Orthopaedics, The First Affiliated Hospital, Soochow University, Suzhou, China,Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Xing-Ran Wang
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Mei-Mei Li
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Zi-Han Tao
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Wen-Wen Teng
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Saijilafu
- Department of Orthopaedics, The First Affiliated Hospital, Soochow University, Suzhou, China,Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China,*Correspondence: Saijilafu,
| |
Collapse
|
11
|
Shinozaki M, Nagoshi N, Nakamura M, Okano H. Mechanisms of Stem Cell Therapy in Spinal Cord Injuries. Cells 2021; 10:cells10102676. [PMID: 34685655 PMCID: PMC8534136 DOI: 10.3390/cells10102676] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Every year, 0.93 million people worldwide suffer from spinal cord injury (SCI) with irretrievable sequelae. Rehabilitation, currently the only available treatment, does not restore damaged tissues; therefore, the functional recovery of patients remains limited. The pathophysiology of spinal cord injuries is heterogeneous, implying that potential therapeutic targets differ depending on the time of injury onset, the degree of injury, or the spinal level of injury. In recent years, despite a significant number of clinical trials based on various types of stem cells, these aspects of injury have not been effectively considered, resulting in difficult outcomes of trials. In a specialty such as cancerology, precision medicine based on a patient’s characteristics has brought indisputable therapeutic advances. The objective of the present review is to promote the development of precision medicine in the field of SCI. Here, we first describe the multifaceted pathophysiology of SCI, with the temporal changes after injury, the characteristics of the chronic phase, and the subtypes of complete injury. We then detail the appropriate targets and related mechanisms of the different types of stem cell therapy for each pathological condition. Finally, we highlight the great potential of stem cell therapy in cervical SCI.
Collapse
Affiliation(s)
- Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.N.)
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.N.)
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Correspondence:
| |
Collapse
|
12
|
Züchner M, Escalona MJ, Teige LH, Balafas E, Zhang L, Kostomitsopoulos N, Boulland JL. How to generate graded spinal cord injuries in swine - tools and procedures. Dis Model Mech 2021; 14:dmm049053. [PMID: 34464444 PMCID: PMC8419714 DOI: 10.1242/dmm.049053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a medically, psychologically and socially disabling condition. A large body of our knowledge on the basic mechanisms of SCI has been gathered in rodents. For preclinical validation of promising therapies, the use of animal models that are closer to humans has several advantages. This has promoted the more-intensive development of large-animal models for SCI during the past decade. We recently developed a multimodal SCI apparatus for large animals that generated biomechanically reproducible impacts in vivo. It is composed of a spring-load impactor and support systems for the spinal cord and the vertebral column. We now present the functional outcome of farm pigs and minipigs injured with different lesion strengths. There was a correlation between the biomechanical characteristics of the impact, the functional outcome and the tissue damage observed several weeks after injury. We also provide a detailed description of the procedure to generate such a SCI in both farm pigs and minipigs, in the hope to ease the adoption of the swine model by other research groups.
Collapse
Affiliation(s)
- Mark Züchner
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Manuel J. Escalona
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Lena Hammerlund Teige
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Evangelos Balafas
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Nikolaos Kostomitsopoulos
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Jean-Luc Boulland
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| |
Collapse
|
13
|
Zinc Regulates Glucose Metabolism of the Spinal Cord and Neurons and Promotes Functional Recovery after Spinal Cord Injury through the AMPK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4331625. [PMID: 34373765 PMCID: PMC8349299 DOI: 10.1155/2021/4331625] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a traumatic disease that can cause severe nervous system dysfunction. SCI often causes spinal cord mitochondrial dysfunction and produces glucose metabolism disorders, which affect neuronal survival. Zinc is an essential trace element in the human body and plays multiple roles in the nervous system. This experiment is intended to evaluate whether zinc can regulate the spinal cord and neuronal glucose metabolism and promote motor functional recovery after SCI. Then we explore its molecular mechanism. We evaluated the function of zinc from the aspects of glucose uptake and the protection of the mitochondria in vivo and in vitro. The results showed that zinc elevated the expression level of GLUT4 and promoted glucose uptake. Zinc enhanced the expression of proteins such as PGC-1α and NRF2, reduced oxidative stress, and promoted mitochondrial production. In addition, zinc decreased neuronal apoptosis and promoted the recovery of motor function in SCI mice. After administration of AMPK inhibitor, the therapeutic effect of zinc was reversed. Therefore, we concluded that zinc regulated the glucose metabolism of the spinal cord and neurons and promoted functional recovery after SCI through the AMPK pathway, which is expected to become a potential treatment strategy for SCI.
Collapse
|
14
|
Shu J, Cheng F, Gong Z, Ying L, Wang C, Yu C, Zhou X, Xiao M, Wang J, Xia K, Huang X, Tao Y, Shi K, Liu Y, Liang C, Chen Q, Feng X, Li F. Transplantation Strategies for Spinal Cord Injury Based on Microenvironment Modulation. Curr Stem Cell Res Ther 2021; 15:522-530. [PMID: 32316901 DOI: 10.2174/1574888x15666200421112622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is different from peripheral nerve injury; it results in devastating and permanent damage to the spine, leading to severe motor, sensory and autonomic dysfunction. SCI produces a complex microenvironment that can result in hemorrhage, inflammation and scar formation. Not only does it significantly limit regeneration, but it also challenges a multitude of transplantation strategies. In order to promote regeneration, researchers have recently begun to focus their attention on strategies that manipulate the complicated microenvironment produced by SCI. And some have achieved great therapeutic effects. Hence, reconstructing an appropriate microenvironment after transplantation could be a potential therapeutic solution for SCI. In this review, first, we aim to summarize the influential compositions of the microenvironment and their different effects on regeneration. Second, we highlight recent research that used various transplantation strategies to modulate different microenvironments produced by SCI in order to improve regeneration. Finally, we discuss future transplantation strategies regarding SCI.
Collapse
Affiliation(s)
- Jiawei Shu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Feng Cheng
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Zhe Gong
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Liwei Ying
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Chenggui Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Xiaopeng Zhou
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Mu Xiao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingkai Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Xianpeng Huang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Yiqing Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Kesi Shi
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Yuemei Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Qixin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Xinhua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
15
|
Keung MS, Streijger F, Herrity A, Ethridge J, Dougherty SM, Aslan S, Webster M, Fisk S, Deegan EG, Tessier-Cloutier B, Chen KYN, Morrison C, Okon EB, Tigchelaar S, Manouchehri N, Kim KT, Shortt K, So K, Damaser MS, Sherwood LC, Howland DR, Boakye M, Hubscher C, Stothers L, Kavanagh A, Kwon BK. Characterization of Lower Urinary Tract Dysfunction after Thoracic Spinal Cord Injury in Yucatan Minipigs. J Neurotrauma 2021; 38:1306-1326. [PMID: 33499736 DOI: 10.1089/neu.2020.7404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
There is an increasing need to develop approaches that will not only improve the clinical management of neurogenic lower urinary tract dysfunction (NLUTD) after spinal cord injury (SCI), but also advance therapeutic interventions aimed at recovering bladder function. Although pre-clinical research frequently employs rodent SCI models, large animals such as the pig may play an important translational role in facilitating the development of devices or treatments. Therefore, the objective of this study was to develop a urodynamics protocol to characterize NLUTD in a porcine model of SCI. An iterative process to develop the protocol to perform urodynamics in female Yucatan minipigs began with a group of spinally intact, anesthetized pigs. Subsequently, urodynamic studies were performed in a group of awake, lightly restrained pigs, before and after a contusion-compression SCI at the T2 or T9-T11 spinal cord level. Bladder tissue was obtained for histological analysis at the end of the study. All anesthetized pigs had bladders that were acontractile, which resulted in overflow incontinence once capacity was reached. Uninjured, conscious pigs demonstrated appropriate relaxation and contraction of the external urethral sphincter during the voiding phase. SCI pigs demonstrated neurogenic detrusor overactivity and a significantly elevated post-void residual volume. Relative to the control, SCI bladders were heavier and thicker. The developed urodynamics protocol allows for repetitive evaluation of lower urinary tract function in pigs at different time points post-SCI. This technique manifests the potential for using the pig as an intermediary, large animal model for translational studies in NLUTD.
Collapse
Affiliation(s)
- Martin S Keung
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Neuroscience, Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - April Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Jay Ethridge
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Susan M Dougherty
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Sevda Aslan
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Megan Webster
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shera Fisk
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emily G Deegan
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Basile Tessier-Cloutier
- Pathology and Laboratory Medicine, and Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kuan-Yin N Chen
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte Morrison
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elena B Okon
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyoung-Tae Kim
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Neurosurgery, School of Medicine, Kyungpook National University, National University Hospital, Daegu, South Korea
| | - Katelyn Shortt
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kitty So
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Margot S Damaser
- Biomedical Engineering Department, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Advanced Platform Technology Center, Louis Stokes Cleveland U.S. Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Leslie C Sherwood
- Comparative Medicine Research Unit, and University of Louisville, Louisville, Kentucky, USA
| | - Dena R Howland
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA.,Research Service, Robley Rex U.S. Department of Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Max Boakye
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Charles Hubscher
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Lynn Stothers
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Urologic Sciences, and Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alex Kavanagh
- Urologic Sciences, and Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Khaing ZZ, Cates LN, Dewees DM, Hyde JE, Gaing A, Birjandian Z, Hofstetter CP. Effect of Durotomy versus Myelotomy on Tissue Sparing and Functional Outcome after Spinal Cord Injury. J Neurotrauma 2020; 38:746-755. [PMID: 33121382 DOI: 10.1089/neu.2020.7297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Various surgical strategies have been developed to alleviate elevated intraspinal pressure (ISP) following acute traumatic spinal cord injury (tSCI). Surgical decompression of either the dural (durotomy) or the dural and pial (myelotomy) lining of the spinal cord has been proposed. However, a direct comparison of these two strategies is lacking. Here, we compare the histological and functional effects of durotomy alone and durotomy plus myelotomy in a rodent model of acute thoracic tSCI. Our results indicate that tSCI causes local tissue edema and significantly elevates ISP (7.4 ± 0.3 mmHg) compared with physiological ISP (1.7 ± 0.4 mmHg; p < 0.001). Both durotomy alone and durotomy plus myelotomy effectively mitigate elevated local ISP (p < 0.001). Histological examination at 10 weeks after tSCI revealed that durotomy plus myelotomy promoted spinal tissue sparing by 13.7% compared with durotomy alone, and by 25.9% compared with tSCI-only (p < 0.0001). Both types of decompression surgeries elicited a significant beneficial impact on gray matter sparing (p < 0.01). Impressively, durotomy plus myelotomy surgery increased preservation of motor neurons by 174.3% compared with tSCI-only (p < 0.05). Durotomy plus myelotomy surgery also significantly promoted recovery of hindlimb locomotor function in an open-field test (p < 0.001). Interestingly, only durotomy alone resulted in favorable recovery of bladder and Ladder Walk performance. Combined, our data suggest that durotomy plus myelotomy following acute tSCI facilitates tissue sparing and recovery of locomotor function. In the future, biomarkers identifying spinal cord injuries that can benefit from either durotomy alone or durotomy plus myelotomy need to be developed.
Collapse
Affiliation(s)
- Zin Z Khaing
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Lindsay N Cates
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Dane M Dewees
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Jeffrey E Hyde
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Ashley Gaing
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Zeinab Birjandian
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Christoph P Hofstetter
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Cheung A, Streijger F, So K, Okon EB, Manouchehri N, Shortt K, Kim KT, Keung MSM, Chan RM, Fong A, Sun J, Griesdale DE, Sehkon MS, Kwon BK. Relationship between Early Vasopressor Administration and Spinal Cord Hemorrhage in a Porcine Model of Acute Traumatic Spinal Cord Injury. J Neurotrauma 2020; 37:1696-1707. [PMID: 32233727 DOI: 10.1089/neu.2019.6781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Current practice guidelines for acute spinal cord injury (SCI) recommend augmenting mean arterial blood pressure (MAP) for the first 7 days post-injury. After SCI, the cord may be compressed by the bone/ligaments of the spinal column, limiting regional spinal cord blood flow. Following surgical decompression, blood flow may be restored, and can potentially promote a "reperfusion" injury. The effects of MAP augmentation on the injured cord during the compressed and decompressed conditions have not been previously characterized. Here, we used our porcine model of SCI to examine the impact of MAP augmentation on blood flow, oxygenation, hydrostatic pressure, metabolism, and intraparenchymal (IP) hemorrhage within the compressed and then subsequently decompressed spinal cord. Yucatan mini-pigs underwent a T10 contusion injury followed by 2 h of sustained compression. MAP augmentation of ∼20 mm Hg was achieved with norepinephrine (NE). Animals received MAP augmentation either during the period of cord compression (CP), after decompression (DCP), or during both periods (CP-DCP). Probes to monitor spinal cord blood flow (SCBF), oxygenation, pressure, and metabolic responses were inserted into the cord parenchyma adjacent to the injury site to measure these responses. The cord was harvested for histological evaluation. MAP augmentation increased SCBF and oxygenation in all groups. In the CP-DCP group, spinal cord pressure steadily increased and histological analysis showed significantly increased hemorrhage in the spinal cord at and near the injury site. MAP augmentation with vasopressors may improve blood flow and reduce ischemia in the injured cord but may also induce undesirable increases in IP pressure and hemorrhage.
Collapse
Affiliation(s)
- Amanda Cheung
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kitty So
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elena B Okon
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katelyn Shortt
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyoung-Tae Kim
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Neurosurgery, Kyungpook National University Hospital, Kyungpook National University, Daegu, South Korea
| | - Martin Sheung Man Keung
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan M Chan
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Allan Fong
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenny Sun
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald E Griesdale
- Department of Anesthesiology, Division of Critical Care Medicine, Vancouver General Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mypinder S Sehkon
- Department of Medicine, Division of Critical Care Medicine, Vancouver General Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Zhang Y, Hou G, Ji W, Rao F, Zhou R, Gao S, Mao L, Zhou F. Persistent oppression and simple decompression both exacerbate spinal cord ascorbate levels. Int J Med Sci 2020; 17:1167-1176. [PMID: 32547312 PMCID: PMC7294922 DOI: 10.7150/ijms.41289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/08/2020] [Indexed: 12/01/2022] Open
Abstract
Background: Surgical decompression after acute spinal cord injury has become the consensus of orthopaedic surgeons. However, the choice of surgical decompression time window after acute spinal cord injury has been one of the most controversial topics in orthopaedics. Objective: We apply an online electrochemical system (OECS) for continuously monitoring the ascorbate of the rats' spinal cord to determine the extent to which ascorbate levels were influenced by contusion or sustained compression. Methods: Adult Sprague-Dawley rats (n=10) were instrumented for ascorbate concentration recording and received T11 drop spinal cord injury (SCI). The Group A (n=5) were treated with immediately decompression after SCI. The Group B (n=5) were contused and oppressed until 1 h after the injury to decompress. Results: The ascorbate level of spinal cord increased immediately by contusion injury and reached to 1.62 μmol/L ± 0.61 μmol/L (217.30% ± 95.09% of the basal level) at the time point of 60 min after the injury. Compared with the Group A, the ascorbate level in Group B increased more significantly at 1 h after the injury, reaching to 3.76 μmol/L ± 1.75 μmol/L (430.25% ± 101.30% of the basal level). Meanwhile, we also found that the decompression after 1 hour of continuous compression will cause delayed peaks of ascorbate reaching to 5.71 μmol/L ± 2.69 μmol/L (627.73% ± 188.11% of the basal level). Conclusion: Our study provides first-hand direct experimental evidence indicating ascorbate is directly involved in secondary spinal cord injury and exhibits the dynamic time course of microenvironment changes after continuous compression injury of the spinal cord.
Collapse
Affiliation(s)
- Yawen Zhang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing, China
| | - Guojin Hou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Wenliang Ji
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing, China
| | - Feng Rao
- Trauma Medicine Centre, Peking University People's Hospital, Beijing, China
| | - Rubing Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Shan Gao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing, China
| | - Fang Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
19
|
Ha XQ, Yang B, Hou HJ, Cai XL, Xiong WY, Wei XP. Protective effect of rhodioloside and bone marrow mesenchymal stem cells infected with HIF-1-expressing adenovirus on acute spinal cord injury. Neural Regen Res 2020; 15:690-696. [PMID: 31638093 PMCID: PMC6975151 DOI: 10.4103/1673-5374.266920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rhodioloside has been shown to protect cells from hypoxia injury, and bone marrow mesenchymal stem cells have a good effect on tissue repair. To study the effects of rhodioloside and bone marrow mesenchymal stem cells on spinal cord injury, a rat model of spinal cord injury was established using the Infinite Horizons method. After establishing the model, the rats were randomly divided into five groups. Rats in the control group were intragastrically injected with phosphate buffered saline (PBS) (5 μL). PBS was injected at 6 equidistant points around 5 mm from the injury site and at a depth of 5 mm. Rats in the rhodioloside group were intragastrically injected with rhodioloside (5 g/kg) and intramuscularly injected with PBS. Rats in the mesenchymal stem cell (MSC) group were intramuscularly injected with PBS and intramuscularly with MSCs (8 × 106/mL in a 50-μL cell suspension). Rats in the Ad-HIF-MSC group were intragastrically injected with PBS and intramuscularly injected with HIF-1 adenovirus-infected MSCs. Rats in the rhodioloside + Ad-HIF-MSC group were intramuscularly injected with MSCs infected with the HIF-1 adenovirus and intragastrically injected with rhodioloside. One week after treatment, exercise recovery was evaluated with a modified combined behavioral score scale. Hematoxylin-eosin staining and Pischingert’s methylene blue staining were used to detect any histological or pathological changes in spinal cord tissue. Levels of adenovirus IX and Sry mRNA were detected by real-time quantitative polymerase chain reaction and used to determine the number of adenovirus and mesenchymal stem cells that were transfected into the spinal cord. Immunohistochemical staining was applied to detect HIF-1 protein levels in the spinal cord. The results showed that: (1) compared with the other groups, the rhodioloside + Ad-HIF-MSC group exhibited the highest combined behavioral score (P < 0.05), the most recovered tissue, and the greatest number of neurons, as indicated by Pischingert’s methylene blue staining. (2) Compared with the PBS group, HIF-1 protein expression was greater in the rhodioloside group (P < 0.05). (3) Compared with the Ad-HIF-MSC group, Sry mRNA levels were higher in the rhodioloside + Ad-HIF-MSC group (P < 0.05). These results confirm that rhodioloside combined with bone marrow mesenchymal stem cells can promote the recovery of spinal cord injury and activate the HIF-1 pathway to promote the survival of bone marrow mesenchymal stem cells and repair damaged neurons within spinal cord tissue. This experiment was approved by the Animal Ethics Committee of Gansu University of Traditional Chinese Medicine, China (approval No. 2015KYLL029) in June 2015.
Collapse
Affiliation(s)
- Xiao-Qin Ha
- Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Bo Yang
- Department of Clinical Laboratory, Lanzhou General Hospital of Lanzhou Military Area Command; School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| | - Huai-Jing Hou
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| | - Xiao-Ling Cai
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu Province, China
| | - Wan-Yuan Xiong
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| | - Xu-Pan Wei
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| |
Collapse
|
20
|
Differences in Morphometric Measures of the Uninjured Porcine Spinal Cord and Dural Sac Predict Histological and Behavioral Outcomes after Traumatic Spinal Cord Injury. J Neurotrauma 2019; 36:3005-3017. [DOI: 10.1089/neu.2018.5930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
21
|
Shadgan B, Macnab A, Fong A, Manouchehri N, So K, Shortt K, Streijger F, Cripton PA, Sayre EC, Dumont GA, Pagano R, Kim KT, Kwon BK. Optical Assessment of Spinal Cord Tissue Oxygenation Using a Miniaturized Near Infrared Spectroscopy Sensor. J Neurotrauma 2019; 36:3034-3043. [PMID: 31044642 DOI: 10.1089/neu.2018.6208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Despite advances in the treatment of acute spinal cord injury (SCI), measures to mitigate permanent neurological deficits in affected patients are limited. Immediate post-trauma hemodynamic management of patients, to maintain blood supply and improve oxygenation to the injured spinal cord, is currently one aspect of critical care which clinicians can utilize to improve neurological outcomes. However, without a way to monitor the response of spinal cord hemodynamics and oxygenation in real time, optimizing hemodynamic management is challenging and limited in scope. This study aims to investigate the feasibility and validity of using a miniaturized multi-wavelength near-infrared spectroscopy (NIRS) sensor for direct transdural monitoring of spinal cord oxygenation in an animal model of acute SCI. Nine Yorkshire pigs underwent a weight-drop T10 contusion-compression injury and received episodes of ventilatory hypoxia and alterations in mean arterial pressure (MAP). Spinal cord hemodynamics and oxygenation were monitored throughout by a non-invasive transdural NIRS sensor, as well as an invasive intraparenchymal sensor as a comparison. NIRS parameters of tissue oxygenation were highly correlated with intraparenchymal measures of tissue oxygenation. In particular, during periods of hypoxia and MAP alterations, changes of NIRS-derived spinal cord oxygenated hemoglobin and tissue oxygenation percentage corresponded well with the changes in spinal cord oxygen partial pressures measured by the intraparenchymal sensor. Our data confirm that during hypoxic episodes and as changes occur in the MAP, non-invasive NIRS can detect and measure real-time changes in spinal cord oxygenation with a high degree of sensitivity and specificity.
Collapse
Affiliation(s)
- Babak Shadgan
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Andrew Macnab
- Stellenbosch Institute for Advanced Study, Wallenberg Research Centre, Stellenbosch, South Africa
| | - Allan Fong
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Kitty So
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Katelyn Shortt
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Peter A Cripton
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Orthopaedic and Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and School of Biomedical Engineering, UBC, Vancouver, British Columbia, Canada
| | - Eric C Sayre
- Arthritis Research Canada, Richmond, British Columbia, Canada
| | - Guy A Dumont
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roberto Pagano
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyoung-Tae Kim
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Brian K Kwon
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Kim KT, Streijger F, Manouchehri N, So K, Shortt K, Okon EB, Tigchelaar S, Cripton P, Kwon BK. Review of the UBC Porcine Model of Traumatic Spinal Cord Injury. J Korean Neurosurg Soc 2018; 61:539-547. [PMID: 30196652 PMCID: PMC6129752 DOI: 10.3340/jkns.2017.0276] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/28/2018] [Indexed: 02/01/2023] Open
Abstract
Traumatic spinal cord injury (SCI) research has recently focused on the use of rat and mouse models for in vivo SCI experiments. Such small rodent SCI models are invaluable for the field, and much has been discovered about the biologic and physiologic aspects of SCI from these models. It has been difficult, however, to reproduce the efficacy of treatments found to produce neurologic benefits in rodent SCI models when these treatments are tested in human clinical trials. A large animal model may have advantages for translational research where anatomical, physiological, or genetic similarities to humans may be more relevant for pre-clinically evaluating novel therapies. Here, we review the work carried out at the University of British Columbia (UBC) on a large animal model of SCI that utilizes Yucatan miniature pigs. The UBC porcine model of SCI may be a useful intermediary in the pre-clinical testing of novel pharmacological treatments, cell-based therapies, and the “bedside back to bench” translation of human clinical observations, which require preclinical testing in an applicable animal model.
Collapse
Affiliation(s)
- Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu, Korea.,Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Kitty So
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Katelyn Shortt
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Elena B Okon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Peter Cripton
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
23
|
Abstract
Abstract
Spinal cord injuries (SCI) in dogs are not frequent, but they are serious pathological conditions accompanied with high morbidity and mortality. The pathophysiology of SCI involves a primary insult, disrupting axons, blood vessels, and cell membranes by mechanical force, or causes tissue necrosis by ischemia and reperfusion. The primary injury is followed by a cascade of secondary events, involving vascular dysfunction, edema formation, continuing ischemia, excitotoxicity, electrolyte shifts, free radical production, inflammation, and delayed apoptotic cell death. The most frequent cause of SCI in dogs is an acute intervertebral disc extrusion, exogenous trauma or ischemia. Neurological symptomatology depends on the location, size and the type of spinal cord lesions. It is characterized by transient or permanent, incomplete or complete loss of motor, sensory, autonomic, and reflex functions caudal to the site of the lesion. In a case of partial spinal cord (SC) damage, one of the typical syndromes develops (e. g. Brown-Séquard syndrome, central SC syndrome, ventral SC syndrome, dorsal SC syndrome, conus medullaris syndrome, or traumatic cauda equina syndrome). The severe transversal spinal cord lesion in the cervical region causes paresis or plegia of all four extremities (tetraparesis, tetraplegia); in thoracic or lumbosacral region, paresis or plegia of the pelvic extremities (paraparesis, paraplegia), i. e. sensory-motor deficit, urinary and foecal incontinence and sexual incompetence. The central nervous system in mammals does not regenerate, so the neurological deficit in dogs following severe SCI persists for the rest of their lives and animals display an image of permanent suffering. The research strategy presented here involved a PubMed, Medline (Ovid) and ISI Web of Science literature search from Januray 2001 to December 2017 using the term “canine spinal cord injury” in the English language; also references from selected papers were scanned and relevant articles included.
Collapse
|
24
|
Streijger F, So K, Manouchehri N, Tigchelaar S, Lee JHT, Okon EB, Shortt K, Kim SE, McInnes K, Cripton P, Kwon BK. Changes in Pressure, Hemodynamics, and Metabolism within the Spinal Cord during the First 7 Days after Injury Using a Porcine Model. J Neurotrauma 2017; 34:3336-3350. [PMID: 28844181 DOI: 10.1089/neu.2017.5034] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Traumatic spinal cord injury (SCI) triggers many perturbations within the injured cord, such as decreased perfusion, reduced tissue oxygenation, increased hydrostatic pressure, and disrupted bioenergetics. While much attention is directed to neuroprotective interventions that might alleviate these early pathophysiologic responses to traumatic injury, the temporo-spatial characteristics of these responses within the injured cord are not well documented. In this study, we utilized our Yucatan mini-pig model of traumatic SCI to characterize intraparenchymal hemodynamic and metabolic changes within the spinal cord for 1 week post-injury. Animals were subjected to a contusion/compression SCI at T10. Prior to injury, probes for microdialysis and the measurement of spinal cord blood flow (SCBF), oxygenation (in partial pressure of oxygen; PaPO2), and hydrostatic pressure were inserted into the spinal cord 0.2 and 2.2 cm from the injury site. Measurements occurred under anesthesia for 4 h post-injury, after which the animals were recovered and measurements continued for 7 days. Close to the lesion (0.2 cm), SCBF levels decreased immediately after SCI, followed by an increase in the subsequent days. Similarly, PaPO2 plummeted, where levels remained diminished for up to 7 days post-injury. Lactate/pyruvate (L/P) ratio increased within minutes. Further away from the injury site (2.2 cm), L/P ratio also gradually increased. Hydrostatic pressure remained consistently elevated for days and negatively correlated with changes in SCBF. An imbalance between SCBF and tissue metabolism also was observed, resulting in metabolic stress and insufficient oxygen levels. Taken together, traumatic SCI resulted in an expanding area of ischemia/hypoxia, with ongoing physiological perturbations sustained out to 7 days post-injury. This suggests that our clinical practice of hemodynamically supporting patients out to 7 days post-injury may fail to address persistent ischemia within the injured cord. A detailed understanding of these pathophysiological mechanisms after SCI is essential to promote best practices for acute SCI patients.
Collapse
Affiliation(s)
- Femke Streijger
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Kitty So
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Neda Manouchehri
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Seth Tigchelaar
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Jae H T Lee
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Elena B Okon
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Katelyn Shortt
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - So-Eun Kim
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Kurt McInnes
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada .,2 Departments of Mechanical Engineering and Orthopedics, University of British Columbia , Vancouver, British Columbia, Canada
| | - Peter Cripton
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada .,2 Departments of Mechanical Engineering and Orthopedics, University of British Columbia , Vancouver, British Columbia, Canada
| | - Brian K Kwon
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada .,3 Vancouver Spine Surgery Institute, Department of Orthopedics, University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Orr MB, Simkin J, Bailey WM, Kadambi NS, McVicar AL, Veldhorst AK, Gensel JC. Compression Decreases Anatomical and Functional Recovery and Alters Inflammation after Contusive Spinal Cord Injury. J Neurotrauma 2017; 34:2342-2352. [PMID: 28381129 DOI: 10.1089/neu.2016.4915] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Experimental models of spinal cord injury (SCI) typically utilize contusion or compression injuries. Clinically, however, SCI is heterogeneous and the primary injury mode may affect secondary injury progression and neuroprotective therapeutic efficacy. Specifically, immunomodulatory agents are of therapeutic interest because the activation state of SCI macrophages may facilitate pathology but also improve repair. It is unknown currently how the primary injury biomechanics affect macrophage activation. Therefore, to determine the effects of compression subsequent to spinal contusion, we examined recovery, secondary injury, and macrophage activation in C57/BL6 mice after SCI with or without a 20 sec compression at two contusion impact forces (50 and 75 kdyn). We observed that regardless of the initial impact force, compression increased tissue damage and worsened functional recovery. Interestingly, compression-dependent damage is not evident until one week after SCI. Further, compression limits functional recovery to the first two weeks post-SCI; in the absence of compression, mice receiving contusion SCI recover for four weeks. To determine whether the recovery plateau is indicative of compression-specific inflammatory responses, we examined macrophage activation with immunohistochemical markers of purportedly pathological (CD86 and macrophage receptor with collagenous structure [MARCO]) and reparative macrophages (arginase [Arg1] and CD206). We detected significant increases in macrophages expression of MARCO and decreases in macrophage Arg1 expression with compression, suggesting a biomechanical-dependent shift in SCI macrophage activation. Collectively, compression-induced alterations in tissue and functional recovery and inflammation highlight the need to consider the primary SCI biomechanics in the design and clinical implementation of immunomodulatory therapies.
Collapse
Affiliation(s)
- Michael B Orr
- 1 Spinal Cord and Brain Injury Research Center and the Department of Physiology, the University of Kentucky , Lexington, Kentucky
- 3 Integrated Biomedical Sciences Graduate Program, the University of Kentucky , Lexington, Kentucky
| | - Jennifer Simkin
- 1 Spinal Cord and Brain Injury Research Center and the Department of Physiology, the University of Kentucky , Lexington, Kentucky
- 2 Department of Biology, the University of Kentucky , Lexington, Kentucky
| | - William M Bailey
- 1 Spinal Cord and Brain Injury Research Center and the Department of Physiology, the University of Kentucky , Lexington, Kentucky
| | - Neha S Kadambi
- 4 Math, Science, and Technology Center Program, Dunbar High School , Lexington, Kentucky
| | - Anna Leigh McVicar
- 1 Spinal Cord and Brain Injury Research Center and the Department of Physiology, the University of Kentucky , Lexington, Kentucky
| | - Amy K Veldhorst
- 1 Spinal Cord and Brain Injury Research Center and the Department of Physiology, the University of Kentucky , Lexington, Kentucky
| | - John C Gensel
- 1 Spinal Cord and Brain Injury Research Center and the Department of Physiology, the University of Kentucky , Lexington, Kentucky
| |
Collapse
|
26
|
Cell transplantation therapy for spinal cord injury. Nat Neurosci 2017; 20:637-647. [DOI: 10.1038/nn.4541] [Citation(s) in RCA: 435] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
|
27
|
Giorgi-Coll S, Amaral AI, Hutchinson PJA, Kotter MR, Carpenter KLH. Succinate supplementation improves metabolic performance of mixed glial cell cultures with mitochondrial dysfunction. Sci Rep 2017; 7:1003. [PMID: 28432362 PMCID: PMC5430749 DOI: 10.1038/s41598-017-01149-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial dysfunction, the inability to efficiently utilise metabolic fuels and oxygen, contributes to pathological changes following traumatic spinal cord or traumatic brain injury (TBI). In the present study, we tested the hypothesis that succinate supplementation can improve cellular energy state under metabolically stressed conditions in a robust, reductionist in vitro model of mitochondrial dysfunction in which primary mixed glial cultures (astrocytes, microglia and oligodendrocytes) were exposed to the mitochondrial complex I inhibitor rotenone. Cellular response was determined by measuring intracellular ATP, extracellular metabolites (glucose, lactate, pyruvate), and oxygen consumption rate (OCR). Rotenone produced no significant changes in glial ATP levels. However, it induced metabolic deficits as evidenced by lactate/pyruvate ratio (LPR) elevation (a clinically-established biomarker for poor outcome in TBI) and decrease in OCR. Succinate addition partially ameliorated these metabolic deficits. We conclude that succinate can improve glial oxidative metabolism, consistent our previous findings in TBI patients’ brains. The mixed glial cellular model may be useful in developing therapeutic strategies for conditions involving mitochondrial dysfunction, such as TBI.
Collapse
Affiliation(s)
- Susan Giorgi-Coll
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, CB2 0QQ, UK.
| | - Ana I Amaral
- Anne McLaren Laboratory, Wellcome Trust MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, West Forvie Building, Robinson Way, Cambridge, CB2 0SZ, UK
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, CB2 0QQ, UK
| | - Mark R Kotter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, CB2 0QQ, UK. .,Anne McLaren Laboratory, Wellcome Trust MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, West Forvie Building, Robinson Way, Cambridge, CB2 0SZ, UK.
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, CB2 0QQ, UK.
| |
Collapse
|
28
|
Orr MB, Gensel JC. Interactions of primary insult biomechanics and secondary cascades in spinal cord injury: implications for therapy. Neural Regen Res 2017; 12:1618-1619. [PMID: 29171424 PMCID: PMC5696840 DOI: 10.4103/1673-5374.217332] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Michael B Orr
- Spinal Cord and Brain Injury Research Center and the Department of Physiology, the University of Kentucky, Lexington, KY; Integrated Biomedical Sciences Graduate Program, the University of Kentucky, Lexington, KY, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center and the Department of Physiology, the University of Kentucky, Lexington, KY, USA
| |
Collapse
|
29
|
Wu Y, Streijger F, Wang Y, Lin G, Christie S, Mac-Thiong JM, Parent S, Bailey CS, Paquette S, Boyd MC, Ailon T, Street J, Fisher CG, Dvorak MF, Kwon BK, Li L. Parallel Metabolomic Profiling of Cerebrospinal Fluid and Serum for Identifying Biomarkers of Injury Severity after Acute Human Spinal Cord Injury. Sci Rep 2016; 6:38718. [PMID: 27966539 PMCID: PMC5155264 DOI: 10.1038/srep38718] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/10/2016] [Indexed: 12/28/2022] Open
Abstract
Suffering an acute spinal cord injury (SCI) can result in catastrophic physical and emotional loss. Efforts to translate novel therapies in acute clinical trials are impeded by the SCI community's singular dependence upon functional outcome measures. Therefore, a compelling rationale exists to establish neurochemical biomarkers for the objective classification of injury severity. In this study, CSF and serum samples were obtained at 3 time points (~24, 48, and 72 hours post-injury) from 30 acute SCI patients (10 AIS A, 12 AIS B, and 8 AIS C). A differential chemical isotope labeling liquid chromatography mass spectrometry (CIL LC-MS) with a universal metabolome standard (UMS) was applied to the metabolomic profiling of these samples. This method provided enhanced detection of the amine- and phenol-containing submetabolome. Metabolic pathway analysis revealed dysregulations in arginine-proline metabolism following SCI. Six CSF metabolites were identified as potential biomarkers of baseline injury severity, and good classification performance (AUC > 0.869) was achieved by using combinations of these metabolites in pair-wise comparisons of AIS A, B and C patients. Using the UMS strategy, the current data set can be expanded to a larger cohort for biomarker validation, as well as discovering biomarkers for predicting neurologic outcome.
Collapse
Affiliation(s)
- Yiman Wu
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G2G2, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Blusson Spinal Cord Centre, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Yining Wang
- Department of Computing Science, University of Alberta, Edmonton, AB, T6T 2E8, Canada
| | - Guohui Lin
- Department of Computing Science, University of Alberta, Edmonton, AB, T6T 2E8, Canada
| | - Sean Christie
- Division of Neurosurgery, Dalhousie University, Halifax Infirmary, 1796 Summer Street, Halifax, NS, B3H 3A7, Canada
| | - Jean-Marc Mac-Thiong
- Hôpital du Sacré-Coeur de Montréal, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
| | - Stefan Parent
- Chu Sainte-Justine, Dept. of Surgery, Université de Montréal, PO Box 6128, Station Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - Christopher S Bailey
- Division of Orthopaedic Surgery, Schulich Medicine &Dentistry, Victoria Hospital 800 Commissioners Road East, Room E4 120, London, ON, N6C 5W9, Canada
| | - Scott Paquette
- Division of Neurosurgery, University of British Columbia, Vancouver Spine Surgery Institute, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Michael C Boyd
- Division of Neurosurgery, University of British Columbia, Vancouver Spine Surgery Institute, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Tamir Ailon
- Division of Neurosurgery, University of British Columbia, Vancouver Spine Surgery Institute, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - John Street
- Department of Orthopaedics, University of British Columbia, Vancouver Spine Surgery Institute, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Charles G Fisher
- Department of Orthopaedics, University of British Columbia, Vancouver Spine Surgery Institute, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Marcel F Dvorak
- Department of Orthopaedics, University of British Columbia, Vancouver Spine Surgery Institute, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Blusson Spinal Cord Centre, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G2G2, Canada
| |
Collapse
|
30
|
Phang I, Zoumprouli A, Papadopoulos MC, Saadoun S. Microdialysis to Optimize Cord Perfusion and Drug Delivery in Spinal Cord Injury. Ann Neurol 2016; 80:522-31. [DOI: 10.1002/ana.24750] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 07/16/2016] [Accepted: 07/24/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Isaac Phang
- Academic Neurosurgery Unit, St. George's, University of London; London United Kingdom
| | - Argyro Zoumprouli
- Neurointensive Care Unit, St. George's Hospital; London United Kingdom
| | | | - Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London; London United Kingdom
| |
Collapse
|
31
|
Moghieb A, Bramlett HM, Das JH, Yang Z, Selig T, Yost RA, Wang MS, Dietrich WD, Wang KKW. Differential Neuroproteomic and Systems Biology Analysis of Spinal Cord Injury. Mol Cell Proteomics 2016; 15:2379-95. [PMID: 27150525 PMCID: PMC4937511 DOI: 10.1074/mcp.m116.058115] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/08/2016] [Indexed: 12/13/2022] Open
Abstract
Acute spinal cord injury (SCI) is a devastating condition with many consequences and no known effective treatment. Although it is quite easy to diagnose traumatic SCI, the assessment of injury severity and projection of disease progression or recovery are often challenging, as no consensus biomarkers have been clearly identified. Here rats were subjected to experimental moderate or severe thoracic SCI. At 24h and 7d postinjury, spinal cord segment caudal to injury center versus sham samples was harvested and subjected to differential proteomic analysis. Cationic/anionic-exchange chromatography, followed by 1D polyacrylamide gel electrophoresis, was used to reduce protein complexity. A reverse phase liquid chromatography-tandem mass spectrometry proteomic platform was then utilized to identify proteome changes associated with SCI. Twenty-two and 22 proteins were up-regulated at 24 h and 7 day after SCI, respectively; whereas 19 and 16 proteins are down-regulated at 24 h and 7 day after SCI, respectively, when compared with sham control. A subset of 12 proteins were identified as candidate SCI biomarkers - TF (Transferrin), FASN (Fatty acid synthase), NME1 (Nucleoside diphosphate kinase 1), STMN1 (Stathmin 1), EEF2 (Eukaryotic translation elongation factor 2), CTSD (Cathepsin D), ANXA1 (Annexin A1), ANXA2 (Annexin A2), PGM1 (Phosphoglucomutase 1), PEA15 (Phosphoprotein enriched in astrocytes 15), GOT2 (Glutamic-oxaloacetic transaminase 2), and TPI-1 (Triosephosphate isomerase 1), data are available via ProteomeXchange with identifier PXD003473. In addition, Transferrin, Cathepsin D, and TPI-1 and PEA15 were further verified in rat spinal cord tissue and/or CSF samples after SCI and in human CSF samples from moderate/severe SCI patients. Lastly, a systems biology approach was utilized to determine the critical biochemical pathways and interactome in the pathogenesis of SCI. Thus, SCI candidate biomarkers identified can be used to correlate with disease progression or to identify potential SCI therapeutic targets.
Collapse
Affiliation(s)
- Ahmed Moghieb
- From the ‡Program for Neurotrauma, Neuroproteomics & Biomarkers Research, §The Departments of Psychiatry, and ‖Chemistry, University of Florida, Gainesville, Florida 32611
| | - Helen M Bramlett
- **Department of Neurological Surgery, ‡‡The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace LPLC 3-18, Miami, Florida, 33136
| | - Jyotirmoy H Das
- From the ‡Program for Neurotrauma, Neuroproteomics & Biomarkers Research, §§Washington University School of Medicine, St. Louis, Missouri 63110
| | - Zhihui Yang
- From the ‡Program for Neurotrauma, Neuroproteomics & Biomarkers Research, §The Departments of Psychiatry, and
| | - Tyler Selig
- From the ‡Program for Neurotrauma, Neuroproteomics & Biomarkers Research
| | - Richard A Yost
- ‖Chemistry, University of Florida, Gainesville, Florida 32611
| | - Michael S Wang
- **Department of Neurological Surgery, ‡‡The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace LPLC 3-18, Miami, Florida, 33136
| | - W Dalton Dietrich
- **Department of Neurological Surgery, ‡‡The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace LPLC 3-18, Miami, Florida, 33136
| | - Kevin K W Wang
- From the ‡Program for Neurotrauma, Neuroproteomics & Biomarkers Research, §The Departments of Psychiatry, and ¶Neuroscience,
| |
Collapse
|
32
|
Batchelor PE, Wills TE, Skeers P, Battistuzzo CR, Macleod MR, Howells DW, Sena ES. Meta-analysis of pre-clinical studies of early decompression in acute spinal cord injury: a battle of time and pressure. PLoS One 2013; 8:e72659. [PMID: 24009695 PMCID: PMC3751840 DOI: 10.1371/journal.pone.0072659] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/12/2013] [Indexed: 12/05/2022] Open
Abstract
Background The use of early decompression in the management of acute spinal cord injury (SCI) remains contentious despite many pre-clinical studies demonstrating benefits and a small number of supportive clinical studies. Although the pre-clinical literature favours the concept of early decompression, translation is hindered by uncertainties regarding overall treatment efficacy and timing of decompression. Methods We performed meta-analysis to examine the pre-clinical literature on acute decompression of the injured spinal cord. Three databases were utilised; PubMed, ISI Web of Science and Embase. Our inclusion criteria consisted of (i) the reporting of efficacy of decompression at various time intervals (ii) number of animals and (iii) the mean outcome and variance in each group. Random effects meta-analysis was used and the impact of study design characteristics assessed with meta-regression. Results Overall, decompression improved behavioural outcome by 35.1% (95%CI 27.4-42.8; I2=94%, p<0.001). Measures to minimise bias were not routinely reported with blinding associated with a smaller but still significant benefit. Publication bias likely also contributed to an overestimation of efficacy. Meta-regression demonstrated a number of factors affecting outcome, notably compressive pressure and duration (adjusted r2=0.204, p<0.002), with increased pressure and longer durations of compression associated with smaller treatment effects. Plotting the compressive pressure against the duration of compression resulting in paraplegia in individual studies revealed a power law relationship; high compressive forces quickly resulted in paraplegia, while low compressive forces accompanying canal narrowing resulted in paresis over many hours. Conclusion These data suggest early decompression improves neurobehavioural deficits in animal models of SCI. Although much of the literature had limited internal validity, benefit was maintained across high quality studies. The close relationship of compressive pressure to the rate of development of severe neurological injury suggests that pressure local to the site of injury might be a useful parameter determining the urgency of decompression.
Collapse
Affiliation(s)
- Peter E. Batchelor
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
- * E-mail:
| | - Taryn E. Wills
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| | - Peta Skeers
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| | | | - Malcolm R. Macleod
- Division of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David W. Howells
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - Emily S. Sena
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
- Division of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|