1
|
Balakin E, Yurku K, Fomina T, Butkova T, Nakhod V, Izotov A, Kaysheva A, Pustovoyt V. A Systematic Review of Traumatic Brain Injury in Modern Rodent Models: Current Status and Future Prospects. BIOLOGY 2024; 13:813. [PMID: 39452122 PMCID: PMC11504108 DOI: 10.3390/biology13100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
According to the Centers for Disease Control and Prevention (CDC), the national public health agency of the United States, traumatic brain injury is among the leading causes of mortality and disability worldwide. The consequences of TBI include diffuse brain atrophy, local post-traumatic atrophy, arachnoiditis, pachymeningitis, meningocerebral cicatrices, cranial nerve lesions, and cranial defects. In 2019, the economic cost of injuries in the USA alone was USD 4.2 trillion, which included USD 327 billion for medical care, USD 69 billion for work loss, and USD 3.8 trillion for the value of statistical life and quality of life losses. More than half of this cost (USD 2.4 trillion) was among working-age adults (25-64 years old). Currently, the development of new diagnostic approaches and the improvement of treatment techniques require further experimental studies focused on modeling TBI of varying severity.
Collapse
Affiliation(s)
- Evgenii Balakin
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Ksenia Yurku
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Tatiana Fomina
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | | | | | | | - Anna Kaysheva
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Vasiliy Pustovoyt
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| |
Collapse
|
2
|
Szczygielski J, Hubertus V, Kruchten E, Müller A, Albrecht LF, Schwerdtfeger K, Oertel J. Prolonged course of brain edema and neurological recovery in a translational model of decompressive craniectomy after closed head injury in mice. Front Neurol 2023; 14:1308683. [PMID: 38053795 PMCID: PMC10694459 DOI: 10.3389/fneur.2023.1308683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Background The use of decompressive craniectomy in traumatic brain injury (TBI) remains a matter of debate. According to the DECRA trial, craniectomy may have a negative impact on functional outcome, while the RescueICP trial revealed a positive effect of surgical decompression, which is evolving over time. This ambivalence of craniectomy has not been studied extensively in controlled laboratory experiments. Objective The goal of the current study was to investigate the prolonged effects of decompressive craniectomy (both positive and negative) in an animal model. Methods Male mice were assigned to the following groups: sham, decompressive craniectomy, TBI and TBI followed by craniectomy. The analysis of functional outcome was performed at time points 3d, 7d, 14d and 28d post trauma according to the Neurological Severity Score and Beam Balance Score. At the same time points, magnetic resonance imaging was performed, and brain edema was analyzed. Results Animals subjected to both trauma and craniectomy presented the exacerbation of the neurological impairment that was apparent mostly in the early course (up to 7d) after injury. Decompressive craniectomy also caused a significant increase in brain edema volume (initially cytotoxic with a secondary shift to vasogenic edema and gliosis). Notably, delayed edema plus gliosis appeared also after decompression even without preceding trauma. Conclusion In prolonged outcomes, craniectomy applied after closed head injury in mice aggravates posttraumatic brain edema, leading to additional functional impairment. This effect is, however, transient. Treatment options that reduce brain swelling after decompression may accelerate neurological recovery and should be explored in future experiments.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Instutute of Neuropathology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Institute of Medical Sciences, University of Rzeszów, Rzeszow, Poland
| | - Vanessa Hubertus
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Department of Neurosurgery, Charité University Medicine, Berlin, Germany
- Berlin Institute of Health at Charité, Berlin, Germany
| | - Eduard Kruchten
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Institute of Interventional and Diagnostic Radiology, Karlsruhe, Germany
| | - Andreas Müller
- Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Lisa Franziska Albrecht
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| |
Collapse
|
3
|
Liu Y, Liu X, Chen Z, Wang Y, Li J, Gong J, He A, Zhao M, Yang C, Yang W, Wang Z. Evaluation of decompressive craniectomy in mice after severe traumatic brain injury. Front Neurol 2022; 13:898813. [PMID: 35959411 PMCID: PMC9360741 DOI: 10.3389/fneur.2022.898813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Decompressive craniectomy (DC) is of great significance for relieving acute intracranial hypertension and saving lives after traumatic brain injury (TBI). In this study, a severe TBI mouse model was created using controlled cortical impact (CCI), and a surgical model of DC was established. Furthermore, a series of neurological function assessments were performed to better understand the pathophysiological changes after DC. In this study, mice were randomly allocated into three groups, namely, CCI group, CCI+DC group, and Sham group. The mice in the CCI and CCI+DC groups received CCI after opening a bone window, and after brain injury, immediately returned the bone window to simulate skull condition after a TBI. The CCI+DC group underwent DC and contused tissue removal 6 h after CCI. The mice in the CCI group underwent the same anesthesia process; however, no further treatment of the bone window and trauma was performed. The mice in the Sham group underwent anesthesia and the process of opening the skin and bone window, but not in the CCI group. Changes in Modified Neurological Severity Score, rotarod performance, Morris water maze, intracranial pressure (ICP), cerebral blood flow (CBF), brain edema, blood–brain barrier (BBB), inflammatory factors, neuronal apoptosis, and glial cell expression were evaluated. Compared with the CCI group, the CCI+DC group had significantly lower ICP, superior neurological and motor function at 24 h after injury, and less severe BBB damage after injury. Most inflammatory cytokine expressions and the number of apoptotic cells in the brain tissue of mice in the CCI+DC group were lower than in the CCI group at 3 days after injury, with markedly reduced astrocyte and microglia expression. However, the degree of brain edema in the CCI+DC group was greater than in the CCI group, and neurological and motor functions, as well as spatial cognitive and learning ability, were significantly poorer at 14 days after injury.
Collapse
Affiliation(s)
- Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanzhi Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Junjie Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Anqi He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chen Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Weidong Yang
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- *Correspondence: Zengguang Wang
| |
Collapse
|
4
|
Zheng S, Mu S, Li J, Zhang S, Wei L, Wang M, Xu Y, Wang S. Cerebral venous hemodynamic responses in a mouse model of traumatic brain injury. Brain Res 2022; 1792:148014. [PMID: 35839929 DOI: 10.1016/j.brainres.2022.148014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/28/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022]
Abstract
Traumatic brain injury (TBI) is a serious public health problem that endangers human health and is divided into primary and secondary injuries. Previous work has confirmed that changes in cerebral blood flow (CBF) are related to the progression of secondary injury, although clinical studies have shown that CBF monitoring cannot fully and accurately evaluate disease progression. These studies have almost ignored the monitoring of venous blood flow; however, as an outflow channel of the cerebral circulation, it warrants discussion. To explore the regulation of venous blood flow after TBI, the present study established TBI mouse models of different severities, observed changes in cerebral venous blood flow by laser speckle flow imaging, and recorded intracranial pressure (ICP) after brain injury to evaluate the correlation between venous blood flow and ICP. Behavioral and histopathological assessments were performed after the intervention. The results showed that there was a significant negative correlation between ICP and venous blood flow (r = -0.795, P < 0.01), and both recovered to varying degrees in the later stages of observation. The blood flow changes in regional microvessels were similar to those in venous, and the expression of angiogenesis proteins around the impact area was significantly increased. In conclusion, this study based on the TBI mouse model, recorded the changes in venous blood flow and ICP and revealed that venous blood flow can be used as an indicator of the progression of secondary brain injury.
Collapse
Affiliation(s)
- Shaorui Zheng
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Department of Neurosurgery, Affiliated Hospital of Putian University, Putian 351100, China
| | - Shuwen Mu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China
| | - Jun Li
- Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Shangming Zhang
- Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Liangfeng Wei
- Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Mingyue Wang
- Department of Pathology, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Yongjun Xu
- Laboratory of Basic Medicine, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China.
| | - Shousen Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China.
| |
Collapse
|
5
|
Animal models of traumatic brain injury: a review of pathophysiology to biomarkers and treatments. Exp Brain Res 2021; 239:2939-2950. [PMID: 34324019 DOI: 10.1007/s00221-021-06178-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Traumatic brain injury (TBI) is one of the main causes of death and disability in both civilian and military population. TBI may occur via a variety of etiologies, all of which involve trauma to the head. However, the neuroprotective drugs which were found to be very effective in animal TBI models failed in phase II or phase III clinical trials, emphasizing a compelling need to review the current status of animal TBI models and therapeutic strategies. No single animal model can adequately mimic all aspects of human TBI owing to the heterogeneity of clinical TBI. However, due to the ethical limitations, it is difficult to precisely emulate the TBI mechanisms that occur in humans. Therefore, many animal models with varying severity and mechanisms of brain injury have been developed, and each model has its own pros and cons in its implementation for TBI research. These challenges pose a need for study of continued TBI mechanisms, brain injury severity, duration, treatment strategies, and optimization of animal models across the neurotrauma research community. The aim of this review is to discuss (1) causes of TBI, (2) its prevalence in military and civilian population, (3) classification and pathophysiology of TBI, (4) biomarkers and detection methods, (5) animal models of TBI, and (6) the advantages and disadvantages of each model and the species used, as well as possible treatments.
Collapse
|
6
|
Andrews BT, Barbay S, Townsend J, Detamore M, Harris J, Tuchek C, Nudo RJ. Unrepaired decompressive craniectomy worsens motor performance in a rat traumatic brain injury model. Sci Rep 2020; 10:22242. [PMID: 33335178 PMCID: PMC7747615 DOI: 10.1038/s41598-020-79155-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023] Open
Abstract
Decompressive craniectomy (DC) is often required to manage rising intracranial pressure after traumatic brain injury (TBI). Syndrome of the trephine (SoT) is a reversible neurologic condition that often occurs following DC as a result of the unrepaired skull. The purpose of the present study is to characterize neurological impairment following TBI in rats with an unrepaired craniectomy versus rats with a closed cranium. Long Evans male rats received a controlled cortical impact (CCI) over the caudal forelimb area (CFA) of the motor cortex. Immediately after CCI, rats received either a hemi-craniectomy (TBI Open Skull Group) or an immediate acrylic cranioplasty restoring cranial anatomy (TBI Closed Skull Group). Motor performance was assessed on a skilled reaching task on post-CCI weeks 1—4, 8, 12, and 16. Three weeks after the CCI injury, the TBI Closed Skull Group demonstrated improved motor performance compared to TBI Open Skull Group. The TBI Closed Skull Group continued to perform better than the TBI Open Skull Group throughout weeks 4, 8, 12 and 16. The protracted recovery of CFA motor performance demonstrated in rats with unrepaired skulls following TBI suggests this model may be beneficial for testing new therapeutic approaches to prevent SoT.
Collapse
Affiliation(s)
- Brian T Andrews
- Department of Plastic and Reconstructive Surgery, University of Kansas Medical Center, Sutherland Institute, MS 3015, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| | - Scott Barbay
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jakob Townsend
- School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Michael Detamore
- School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Janna Harris
- Department of Anatomy and Cell Biology, University of Kansas, Kansas City, KS, USA
| | - Chad Tuchek
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Randolph J Nudo
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
7
|
Formoterol, a β 2-adrenoreceptor agonist, induces mitochondrial biogenesis and promotes cognitive recovery after traumatic brain injury. Neurobiol Dis 2020; 140:104866. [PMID: 32289370 DOI: 10.1016/j.nbd.2020.104866] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/12/2020] [Accepted: 04/05/2020] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) leads to acute necrosis at the site of injury followed by a sequence of secondary events lasting from hours to weeks and often years. Targeting mitochondrial impairment following TBI has shown improvements in brain mitochondrial bioenergetics and neuronal function. Recently formoterol, a highly selective β2-adrenoreceptor agonist, was found to induce mitochondrial biogenesis (MB) via Gβγ-Akt-eNOS-sGC pathway. Activation of MB is a novel approach that has been shown to restore mitochondrial function in several disease and injury models. We hypothesized that activation of MB as a target of formoterol after TBI would mitigate mitochondrial dysfunction, enhance neuronal function and improve behavioral outcomes. TBI-injured C57BL/6 male mice were injected (i.p.) with vehicle (normal saline) or formoterol (0.3 mg/kg) at 15 min, 8 h, 16 h, 24 h and then daily after controlled cortical impact (CCI) until euthanasia. After CCI, mitochondrial copy number and bioenergetic function were decreased in the ipsilateral cortex of the CCI-vehicle group. Compared to CCI-vehicle, cortical and hippocampal mitochondrial respiration rates as well as cortical mitochondrial DNA copy number were increased in the CCI-formoterol group. Mitochondrial Ca2+ buffering capacity in the hippocampus was higher in the CCI-formoterol group compared to CCI-vehicle group. Both assessments of cognitive performance, novel object recognition (NOR) and Morris water maze (MWM), decreased following CCI and were restored in the CCI-formoterol group. Although no changes were seen in the amount of cortical tissue spared between CCI-formoterol and CCI-vehicle groups, elevated levels of hippocampal neurons and improved white matter sparing in the corpus callosum were observed in CCI-formoterol group. Collectively, these results indicate that formoterol-mediated MB activation may be a potential therapeutic target to restore mitochondrial bioenergetics and promote functional recovery after TBI.
Collapse
|
8
|
Newell EA, Todd BP, Luo Z, Evans LP, Ferguson PJ, Bassuk AG. A Mouse Model for Juvenile, Lateral Fluid Percussion Brain Injury Reveals Sex-Dependent Differences in Neuroinflammation and Functional Recovery. J Neurotrauma 2019; 37:635-646. [PMID: 31621484 PMCID: PMC7045348 DOI: 10.1089/neu.2019.6675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability that lacks targeted therapies. Successful translation of promising neuroprotective therapies will likely require more precise identification of target populations through greater study of crucial biological factors like age and sex. A growing body of work supports the impact of these factors on response to and recovery from TBI. However, age and sex are understudied in TBI animal models. The first aim of this study was to demonstrate the feasibility of lateral fluid percussion injury (FPI) in juvenile mice as a model of pediatric TBI. Subsequently, we were interested in examining the impact of young age and sex on TBI outcome. After adapting the lateral FPI model to 21-day-old male and female mice, we characterized the molecular, histological, and functional outcomes. Whereas similar tissue injury was observed in male and female juvenile mice exposed to TBI, we observed differences in neuroinflammation and neurobehavioral function. Overall, our findings revealed less acute inflammatory cytokine expression, greater subacute microglial/macrophage accumulation, and greater neurological recovery in juvenile male mice after TBI. Given that ongoing brain development may affect progression of and recovery from TBI, juvenile models are of critical importance. The sex-dependent differences we discovered after FPI support the necessity of also including this biological variable in future TBI studies. Understanding the mechanisms underlying age- and sex-dependent differences may result in the discovery of novel therapeutic targets for TBI.
Collapse
Affiliation(s)
| | - Brittany P Todd
- Department of Pediatrics and University of Iowa, Iowa City, Iowa
| | - Zili Luo
- Department of Pediatrics and University of Iowa, Iowa City, Iowa
| | - Lucy P Evans
- Department of Pediatrics and University of Iowa, Iowa City, Iowa.,Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
| | - Polly J Ferguson
- Department of Pediatrics and University of Iowa, Iowa City, Iowa
| | - Alexander G Bassuk
- Department of Pediatrics and University of Iowa, Iowa City, Iowa.,Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
| |
Collapse
|
9
|
Glushakova OY, Glushakov AV, Yang L, Hayes RL, Valadka AB. Intracranial Pressure Monitoring in Experimental Traumatic Brain Injury: Implications for Clinical Management. J Neurotrauma 2019; 37:2401-2413. [PMID: 30595079 DOI: 10.1089/neu.2018.6145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is often associated with long-term disability and chronic neurological sequelae. One common contributor to unfavorable outcomes is secondary brain injury, which is potentially treatable and preventable through appropriate management of patients in the neurosurgical intensive care unit. Intracranial pressure (ICP) is currently the predominant neurological-specific physiological parameter used to direct the care of severe TBI (sTBI) patients. However, recent clinical evidence has called into question the association of ICP monitoring with improved clinical outcome. The detailed cellular and molecular derangements associated with intracranial hypertension (IC-HTN) and their relationship to injury phenotype and neurological outcomes are not completely understood. Various animal models of TBI have been developed, but the clinical applicability of ICP monitoring in the pre-clinical setting has not been well-characterized. Linking basic mechanistic studies in translational TBI models with investigation of ICP monitoring that more faithfully replicates the clinical setting will provide clinical investigators with a more informed understanding of the pathophysiology of IC-HTN, thus facilitating development of improved therapies for sTBI patients.
Collapse
Affiliation(s)
- Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Likun Yang
- Department of Neurosurgery, The 101st Hospital of Chinese People's Liberation Army, Xuxi, Jiangsu, China
| | - Ronald L Hayes
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA.,Banyan Biomarkers, Inc., Alachua, Florida, USA
| | - Alex B Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
10
|
Corne R, Leconte C, Ouradou M, Fassina V, Zhu Y, Déou E, Besson V, Plotkine M, Marchand-Leroux C, Mongeau R. Spontaneous resurgence of conditioned fear weeks after successful extinction in brain injured mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:276-286. [PMID: 30096331 DOI: 10.1016/j.pnpbp.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/28/2018] [Accepted: 07/29/2018] [Indexed: 12/25/2022]
Abstract
Mild traumatic brain injury (TBI) is a major risk factor for post-traumatic stress disorder (PTSD), and both disorders share common symptoms and neurobiological defects. Relapse after successful treatment, known as long-term fear resurgence, is common in PTSD patients and a major therapeutic hurdle. We induced a mild focal TBI by controlled cortical impact (CCI) in male C57BL/6 J mice and used fear conditioning to assess PTSD-like behaviors and concomitant alterations in the fear circuitry. We found for the first time that mild TBI, and to a lesser extent sham (craniotomy), mice displayed a spontaneous resurgence of conditioned fear when tested for fear extinction memory recall, despite having effectively acquired and extinguished conditioned fear 6 weeks earlier in the same context. Other characteristic symptoms of PTSD are risk-taking behaviors and cognitive deficits. CCI mice displayed risk-taking behaviors, behavioral inflexibility and reductions in processing speed compared to naïve mice. In conjunction with these changes there were alterations in amygdala morphology 3 months post-trauma, and decreased myelin basic protein density at the primary lesion site and in distant secondary sites such as the hippocampus, thalamus, and amygdala, compared to sham mice. Furthermore, activity-dependent brain-derived neurotrophic factor (BDNF) transcripts were decreased in the prefrontal cortex, a key region for fear extinction consolidation, following fear extinction training in both TBI and, to a lesser extent, sham mice. This study shows for the first time that a mild brain injury can generate a spontaneous resurgence of conditioned fear associated with defective BDNF signalling in the prefrontal cortex, PTSD-like behaviors, and have enduring effects on the brain.
Collapse
Affiliation(s)
- R Corne
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - C Leconte
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - M Ouradou
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - V Fassina
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Y Zhu
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - E Déou
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - V Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - M Plotkine
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - C Marchand-Leroux
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - R Mongeau
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France.
| |
Collapse
|
11
|
Siebold L, Obenaus A, Goyal R. Criteria to define mild, moderate, and severe traumatic brain injury in the mouse controlled cortical impact model. Exp Neurol 2018; 310:48-57. [DOI: 10.1016/j.expneurol.2018.07.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/05/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
|
12
|
Pang J, Peng J, Yang P, Kuai L, Chen L, Zhang JH, Jiang Y. White Matter Injury in Early Brain Injury after Subarachnoid Hemorrhage. Cell Transplant 2018; 28:26-35. [PMID: 30442028 PMCID: PMC6322133 DOI: 10.1177/0963689718812054] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a major cause of high morbidity, disability, and mortality in the field of neurovascular disease. Most previous SAH studies have focused on improving cerebral blood flow, reducing cerebral vasospasm, reducing neuronal calcium overload, and other treatments. While these studies showed exciting findings in basic science, therapeutic strategies based on the findings have not significantly improved neurological outcomes in patients with SAH. Currently, the only drug proven to effectively reduce the neurological defects of SAH patients is nimodipine. Current advances in imaging technologies in the field of stroke have confirmed that white matter injury (WMI) plays an important role in the prognosis of types of stroke, and suggests that WMI protection is essential for functional recovery and poststroke rehabilitation. However, WMI injury in relation to SAH has remained obscure until recently. An increasing number of studies suggest that the current limitations for SAH treatment are probably linked to overlooked WMI in previous studies that focused only on neurons and gray matter. In this review, we discuss the biology and functions of white matter in the normal brain, and discuss the potential pathophysiology and mechanisms of early brain injury after SAH. Our review demonstrates that WMI encompasses multiple substrates, and, therefore, more than one pharmacological approach is necessary to preserve WMI and prevent neurobehavioral impairment after SAH. Strategies targeting both neuronal injury and WMI may potentially provide a novel future for SAH knowledge and treatment.
Collapse
Affiliation(s)
- Jinwei Pang
- 1 Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jianhua Peng
- 1 Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ping Yang
- 2 Department of Vasculocardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Kuai
- 3 Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ligang Chen
- 1 Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - John H Zhang
- 4 Department of Physiology, School of Medicine, Loma Linda University, CA, USA
| | - Yong Jiang
- 1 Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
13
|
Davies M, Jacobs A, Brody DL, Friess SH. Delayed Hypoxemia after Traumatic Brain Injury Exacerbates Long-Term Behavioral Deficits. J Neurotrauma 2018; 35:790-801. [PMID: 29149808 PMCID: PMC5831743 DOI: 10.1089/neu.2017.5354] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hypoxemia during initial stabilization of patients with severe traumatic brain injury (TBI) has been associated with poorer outcomes. However, the effects of delayed hypoxemia occurring during intensive care post-TBI on outcome is unclear. Pre-clinical models of TBI have rarely shown cognitive or behavioral deficits beyond 6 weeks post-injury and commonly have not included modeling of secondary insults. We have previously developed a murine model of TBI followed by delayed hypoxemia to model the secondary insult of hypoxemia and brain hypoxia occurring in the intensive care setting. Understanding long-term effects of delayed hypoxemia post-TBI in our murine model is critical for future testing of candidate therapeutics targeting secondary brain hypoxia. For this study, forty 5-week-old male mice were randomized to controlled cortical impact (CCI; N = 24) or sham surgery (N = 16). One day later, awake animals were randomized to 60 min of hypoxemia or normoxemia. Six months after initial injury, animals underwent behavior testing (Morris water maze, social interaction, and tail suspension) before euthanasia for immunohistochemistry (IHC) assessments. At 6 months post-injury, mice experiencing CCI and hypoxemia (CCI+H) had longer swim distances to the hidden platform (51 cm) compared to CCI alone (26 cm) or sham animals (22 cm). During social interaction assessments, CCI + H mice spent less time interacting with novel stimulus mice (79 sec) than CCI alone (101 sec) or sham animals (139 sec). CCI + H had larger lesion volumes compared to CCI alone (14.0% vs. 9.9%; p < 0.003). Glial fibrillary acidic protein IHC at 6 months post-injury demonstrated increased astrogliosis in the ipsilateral white matter of CCI + H compared to CCI alone. To summarize, this clinically relevant model of delayed hypoxia post-TBI resulted in long-term behavioral deficits and evidence of exacerbated structural injury.
Collapse
Affiliation(s)
- McKenzie Davies
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| | - Addison Jacobs
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| | - David L. Brody
- Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| | - Stuart H. Friess
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| |
Collapse
|
14
|
Rhea EM, Bullock KM, Banks WA. Effect of controlled cortical impact on the passage of pituitary adenylate cyclase activating polypeptide (PACAP) across the blood-brain barrier. Peptides 2018; 99:8-13. [PMID: 29107653 PMCID: PMC5756113 DOI: 10.1016/j.peptides.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 01/20/2023]
Abstract
Injuries to the central nervous system can affect the blood-brain barrier (BBB), including disruption and influencing peptide transport across the BBB. Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) is a potent neurotrophic and neuroprotective peptide currently being investigated for its therapeutic role following injury to the central nervous system and can cross the BBB in a saturable manner. The goal of the current study was to investigate for the first time PACAP38 uptake by the brain following traumatic brain injury (TBI). Using radioactively labeled PACAP38, we measured the levels of PACAP38 present in the injured, ipsilateral cortex in Sham-treated mice compared to mice receiving a controlled cortical impact (CCI), a model of TBI. Experiments were conducted at 6 different time points (from 2h up to 4 weeks) following CCI to determine temporal changes in PACAP38 transport. PACAP38 uptake was increased at 2 and 72h post-CCI compared to Sham. We did not detect changes in PACAP38 uptake in the contralateral cortex and cerebellum between Sham and CCI-treatment. The rate of PACAP38 transport into the ipsilateral cortex following CCI was increased 3.6-fold 72h after compared to 2h post-CCI. In addition, the rate of transport into the cerebellum was greater than that of the cortices. The data presented here shows PACAP38 transport is temporally altered following CCI-treatment and PACAP38 uptake is greater in the cerebellum compared to the cortices.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, United States; Geriatric Research and Education Clinical Center, VA Puget Sound, Seattle, WA, United States
| | - Kristin M Bullock
- Geriatric Research and Education Clinical Center, VA Puget Sound, Seattle, WA, United States
| | - William A Banks
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, United States; Geriatric Research and Education Clinical Center, VA Puget Sound, Seattle, WA, United States
| |
Collapse
|
15
|
Pinkernell S, Becker K, Lindauer U. Severity assessment and scoring for neurosurgical models in rodents. Lab Anim 2016; 50:442-452. [DOI: 10.1177/0023677216675010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The most important acute neurological diseases seen at neurosurgery departments are traumatic brain injuries (TBI) and subarachnoid hemorrhages (SAH). In both diseases the pathophysiological sequela are complex and have not been fully understood up to now, and rodent models using rats and mice are most suitable for the investigation of the pathophysiological details. In both models, surgery is performed under anesthesia, followed by assessment of their functional outcome and behavioral testing before brain tissue analysis after euthanasia. Postoperative analgesia is mandatory, and supplementary care is highly recommended for refinement purposes. Pain and stress assessment is mainly based on clinical and behavioral signs, and further research is needed to improve the evaluation of severity in these models.
Collapse
Affiliation(s)
- Sarah Pinkernell
- Translational Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Katrin Becker
- Translational Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ute Lindauer
- Translational Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
Osier ND, Dixon CE. The Controlled Cortical Impact Model: Applications, Considerations for Researchers, and Future Directions. Front Neurol 2016; 7:134. [PMID: 27582726 PMCID: PMC4987613 DOI: 10.3389/fneur.2016.00134] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 12/26/2022] Open
Abstract
Controlled cortical impact (CCI) is a mechanical model of traumatic brain injury (TBI) that was developed nearly 30 years ago with the goal of creating a testing platform to determine the biomechanical properties of brain tissue exposed to direct mechanical deformation. Initially used to model TBIs produced by automotive crashes, the CCI model rapidly transformed into a standardized technique to study TBI mechanisms and evaluate therapies. CCI is most commonly produced using a device that rapidly accelerates a rod to impact the surgically exposed cortical dural surface. The tip of the rod can be varied in size and geometry to accommodate scalability to difference species. Typically, the rod is actuated by a pneumatic piston or electromagnetic actuator. With some limits, CCI devices can control the velocity, depth, duration, and site of impact. The CCI model produces morphologic and cerebrovascular injury responses that resemble certain aspects of human TBI. Commonly observed are graded histologic and axonal derangements, disruption of the blood-brain barrier, subdural and intra-parenchymal hematoma, edema, inflammation, and alterations in cerebral blood flow. The CCI model also produces neurobehavioral and cognitive impairments similar to those observed clinically. In contrast to other TBI models, the CCI device induces a significantly pronounced cortical contusion, but is limited in the extent to which it models the diffuse effects of TBI; a related limitation is that not all clinical TBI cases are characterized by a contusion. Another perceived limitation is that a non-clinically relevant craniotomy is performed. Biomechanically, this is irrelevant at the tissue level. However, craniotomies are not atraumatic and the effects of surgery should be controlled by including surgical sham control groups. CCI devices have also been successfully used to impact closed skulls to study mild and repetitive TBI. Future directions for CCI research surround continued refinements to the model through technical improvements in the devices (e.g., minimizing mechanical sources of variation). Like all TBI models, publications should report key injury parameters as outlined in the NIH common data elements (CDEs) for pre-clinical TBI.
Collapse
Affiliation(s)
- Nicole D. Osier
- Department of Acute and Tertiary Care, University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Lifshitz J, Rowe RK, Griffiths DR, Evilsizor MN, Thomas TC, Adelson PD, McIntosh TK. Clinical relevance of midline fluid percussion brain injury: Acute deficits, chronic morbidities and the utility of biomarkers. Brain Inj 2016; 30:1293-1301. [PMID: 27712117 DOI: 10.1080/02699052.2016.1193628] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND After 30 years of characterisation and implementation, fluid percussion injury (FPI) is firmly recognised as one of the best-characterised reproducible and clinically relevant models of TBI, encompassing concussion through diffuse axonal injury (DAI). Depending on the specific injury parameters (e.g. injury site, mechanical force), FPI can model diffuse TBI with or without a focal component and may be designated as mild-to-severe according to the chosen mechanical forces and resulting acute neurological responses. Among FPI models, midline FPI may best represent clinical diffuse TBI, because of the acute behavioural deficits, the transition to late-onset behavioural morbidities and the absence of gross histopathology. REVIEW The goal here was to review acute and chronic physiological and behavioural deficits and morbidities associated with diffuse TBI induced by midline FPI. In the absence of neurodegenerative sequelae associated with focal injury, there is a need for biomarkers in the diagnostic, prognostic, predictive and therapeutic approaches to evaluate outcomes from TBI. CONCLUSIONS The current literature suggests that midline FPI offers a clinically-relevant, validated model of diffuse TBI to investigators wishing to evaluate novel therapeutic strategies in the treatment of TBI and the utility of biomarkers in the delivery of healthcare to patients with brain injury.
Collapse
Affiliation(s)
- Jonathan Lifshitz
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA.,d Neuroscience Graduate Program , Arizona State University , Tempe , AZ , USA
| | - Rachel K Rowe
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA
| | - Daniel R Griffiths
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Megan N Evilsizor
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Theresa C Thomas
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA.,d Neuroscience Graduate Program , Arizona State University , Tempe , AZ , USA
| | - P David Adelson
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,d Neuroscience Graduate Program , Arizona State University , Tempe , AZ , USA
| | | |
Collapse
|
18
|
Parikh U, Williams M, Jacobs A, Pineda JA, Brody DL, Friess SH. Delayed Hypoxemia Following Traumatic Brain Injury Exacerbates White Matter Injury. J Neuropathol Exp Neurol 2016; 75:731-747. [PMID: 27288907 PMCID: PMC7299434 DOI: 10.1093/jnen/nlw045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/04/2022] Open
Abstract
Hypoxemia immediately following traumatic brain injury (TBI) has been observed to exacerbate injury. However, it remains unclear whether delayed hypoxemia beyond the immediate postinjury period influences white matter injury. In a retrospective clinical cohort of children aged 4-16 years admitted with severe TBI, 28/74 (35%) patients were found to experience delayed normocarbic hypoxemia within 7 days of admission. Based on these clinical findings, we developed a clinically relevant mouse model of TBI with delayed hypoxemia by exposing 5-week old (adolescent) mice to hypoxic conditions for 30 minutes starting 24 hours after moderate controlled cortical impact (CCI). Injured mice with hypoxemia had increased axonal injury using both β-amyloid precursor protein and NF200 immunostaining in peri-contusional white matter compared with CCI alone. Furthermore, we detected increased peri-contusional white matter tissue hypoxia with pimonidazole and augmented astrogliosis with anti-glial fibrillary acidic protein staining in CCI + delayed hypoxemia compared with CCI alone or sham surgery + delayed hypoxemia. Microglial activation as evidenced by Iba1 staining was not significantly altered by delayed hypoxemia. These clinical and experimental data indicate the prevention or amelioration of delayed hypoxemia effects following TBI may provide a unique opportunity for the development of therapeutic interventions to reduce axonal injury and improve clinical outcomes.
Collapse
Affiliation(s)
- Umang Parikh
- From the Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri (UP, MW, AJ, JAP, SHF)Department of Neurology, Washington University School of Medicine, St. Louis, Missouri (DLB)
| | - Melissa Williams
- From the Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri (UP, MW, AJ, JAP, SHF)Department of Neurology, Washington University School of Medicine, St. Louis, Missouri (DLB)
| | - Addison Jacobs
- From the Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri (UP, MW, AJ, JAP, SHF)Department of Neurology, Washington University School of Medicine, St. Louis, Missouri (DLB)
| | - Jose A Pineda
- From the Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri (UP, MW, AJ, JAP, SHF)Department of Neurology, Washington University School of Medicine, St. Louis, Missouri (DLB)
| | - David L Brody
- From the Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri (UP, MW, AJ, JAP, SHF)Department of Neurology, Washington University School of Medicine, St. Louis, Missouri (DLB)
| | - Stuart H Friess
- From the Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri (UP, MW, AJ, JAP, SHF)Department of Neurology, Washington University School of Medicine, St. Louis, Missouri (DLB).
| |
Collapse
|