1
|
Baghel R, Maan K, Dhariwal S, Kumari M, Sharma A, Manda K, Trivedi R, Rana P. Mild Blast Exposure Dysregulates Metabolic Pathways and Correlation Networking as Evident from LC-MS-Based Plasma Profiling. Mol Neurobiol 2025; 62:3143-3166. [PMID: 39235645 DOI: 10.1007/s12035-024-04429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Blast-induced trauma is emerging as a serious threat due to its wide pathophysiology where not only the brain but also a spectrum of organs is being affected. In the present study, we aim to identify the plasma-based metabolic dysregulations along with the associated temporal changes at 5-6 h, day 1 and day 7 post-injury in a preclinical animal model for blast exposure, through liquid chromatography-mass spectrometry (LC-MS). Using significantly advanced metabolomic and statistical bioinformatic platforms, we were able to elucidate better and unravel the complex networks of blast-induced neurotrauma (BINT) and its interlinked systemic effects. Significant changes were evident at 5-6 h with maximal changes at day 1. Temporal analysis also depicted progressive changes which continued till day 7. Significant associations of metabolic markers belonging to the class of amino acids, energy-related molecules, lipids, vitamin, hormone, phenolic acid, keto and histidine derivatives, nucleic acid molecules, uremic toxins, and uronic acids were observed. Also, the present study is the first of its kind where comprehensive, detailed pathway dysregulations of amino acid metabolism and biosynthesis, perturbed nucleotides, lipid peroxidation, and nucleic acid damage followed by correlation networking and multiomics networking were explored on preclinical animal models exposed to mild blast trauma. In addition, markers for systemic changes (renal dysfunction) were also observed. Global pathway predictions of unannotated peaks also presented important insights into BINT pathophysiology. Conclusively, the present study depicts important findings that might help underpin the biological mechanisms of blast-induced brain or systemic trauma.
Collapse
Affiliation(s)
- Ruchi Baghel
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
- Department of Health Research (DHR), IRCS Building, 2 FloorRed Cross Road, New Delhi, 110001, India
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India
| | - Kiran Maan
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India
| | - Seema Dhariwal
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India
| | - Megha Kumari
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
| | - Apoorva Sharma
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India
| | - Kailash Manda
- Department of Neurobehavioral Sciences, Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
| | - Richa Trivedi
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
| | - Poonam Rana
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India.
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India.
| |
Collapse
|
2
|
Ritter K, Somnuke P, Hu L, Griemert EV, Schäfer MKE. Current state of neuroprotective therapy using antibiotics in human traumatic brain injury and animal models. BMC Neurosci 2024; 25:10. [PMID: 38424488 PMCID: PMC10905838 DOI: 10.1186/s12868-024-00851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
TBI is a leading cause of death and disability in young people and older adults worldwide. There is no gold standard treatment for TBI besides surgical interventions and symptomatic relief. Post-injury infections, such as lower respiratory tract and surgical site infections or meningitis are frequent complications following TBI. Whether the use of preventive and/or symptomatic antibiotic therapy improves patient mortality and outcome is an ongoing matter of debate. In contrast, results from animal models of TBI suggest translational perspectives and support the hypothesis that antibiotics, independent of their anti-microbial activity, alleviate secondary injury and improve neurological outcomes. These beneficial effects were largely attributed to the inhibition of neuroinflammation and neuronal cell death. In this review, we briefly outline current treatment options, including antibiotic therapy, for patients with TBI. We then summarize the therapeutic effects of the most commonly tested antibiotics in TBI animal models, highlight studies identifying molecular targets of antibiotics, and discuss similarities and differences in their mechanistic modes of action.
Collapse
Affiliation(s)
- Katharina Ritter
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
| | - Pawit Somnuke
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Lingjiao Hu
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
- Department of Gastroenterology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Eva-Verena Griemert
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany.
- Focus Program Translational Neurosciences (FTN, Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg- University Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Armstrong PA, Venugopal N, Wright TJ, Randolph KM, Batson RD, Yuen KCJ, Masel BE, Sheffield-Moore M, Urban RJ, Pyles RB. Traumatic brain injury, abnormal growth hormone secretion, and gut dysbiosis. Best Pract Res Clin Endocrinol Metab 2023; 37:101841. [PMID: 38000973 DOI: 10.1016/j.beem.2023.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
The gut microbiome has been implicated in a variety of neuropathologies with recent data suggesting direct effects of the microbiome on host metabolism, hormonal regulation, and pathophysiology. Studies have shown that gut bacteria impact host growth, partially mediated through the growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis. However, no study to date has examined the specific role of GH on the fecal microbiome (FMB) or the changes in this relationship following a traumatic brain injury (TBI). Current literature has demonstrated that TBI can lead to either temporary or sustained abnormal GH secretion (aGHS). More recent literature has suggested that gut dysbiosis may contribute to aGHS leading to long-term sequelae now known as brain injury associated fatigue and cognition (BIAFAC). The aGHS observed in some TBI patients presents with a symptom complex including profound fatigue and cognitive dysfunction that improves significantly with exogenous recombinant human GH treatment. Notably, GH treatment is not curative as fatigue and cognitive decline typically recur upon treatment cessation, indicating the need for additional studies to address the underlying mechanistic cause.
Collapse
Affiliation(s)
- Peyton A Armstrong
- John Sealy School of Medicine, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States.
| | - Navneet Venugopal
- John Sealy School of Medicine, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States.
| | - Traver J Wright
- Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States.
| | - Kathleen M Randolph
- Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States.
| | | | - Kevin C J Yuen
- Department of Neuroendocrinology, Barrow Pituitary Center and Barrow Neuroendocrinology Clinic, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013 United States.
| | - Brent E Masel
- Department of Neurology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Centre for Neuro Skills, Bakersfield, CA 93313, United States.
| | - Melinda Sheffield-Moore
- Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States.
| | - Randall J Urban
- Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States.
| | - Richard B Pyles
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States.
| |
Collapse
|
4
|
Sun Y, Wang S, Liu B, Hu W, Zhu Y. Host-Microbiome Interactions: Tryptophan Metabolism and Aromatic Hydrocarbon Receptors after Traumatic Brain Injury. Int J Mol Sci 2023; 24:10820. [PMID: 37445997 DOI: 10.3390/ijms241310820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Traumatic brain injury refers to the damage caused to intracranial tissues by an external force acting on the head, leading to both immediate and prolonged harmful effects. Neuroinflammatory responses play a critical role in exacerbating the primary injury during the acute and chronic phases of TBI. Research has demonstrated that numerous neuroinflammatory responses are mediated through the "microbiota-gut-brain axis," which signifies the functional connection between the gut microbiota and the brain. The aryl hydrocarbon receptor (AhR) plays a vital role in facilitating communication between the host and microbiota through recognizing specific ligands produced directly or indirectly by the microbiota. Tryptophan (trp), an indispensable amino acid in animals and humans, represents one of the key endogenous ligands for AhR. The metabolites of trp have significant effects on the functioning of the central nervous system (CNS) through activating AHR signalling, thereby establishing bidirectional communication between the gut microbiota and the brain. These interactions are mediated through immune, metabolic, and neural signalling mechanisms. In this review, we emphasize the co-metabolism of tryptophan in the gut microbiota and the signalling pathway mediated by AHR following TBI. Furthermore, we discuss the impact of these mechanisms on the underlying processes involved in traumatic brain injury, while also addressing potential future targets for intervention.
Collapse
Affiliation(s)
- Yanming Sun
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuai Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Bingwei Liu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ying Zhu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
5
|
Su Q, Chen Q, Li Z, Zhao J, Li L, Xu L, Yang B, Liu C. Multi-omics analysis reveals GABAergic dysfunction after traumatic brainstem injury in rats. Front Neurosci 2022; 16:1003300. [PMID: 36507346 PMCID: PMC9726735 DOI: 10.3389/fnins.2022.1003300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background Traumatic brainstem injury (TBSI) is one of the forms of brain injury and has a very high mortality rate. Understanding the molecular mechanism of injury can provide additional information for clinical treatment. Materials and methods In this study, we detected transcriptome, proteomics, and metabolome expression changes in the brainstem of TBSI rats, and comprehensively analyzed the underlying mechanisms of TBSI. Results After TBSI, there was significant diffuse axonal injury (DAI) in the brainstem of rats. A total of 579 genes, 70 proteins, and 183 metabolites showed significant changes in brainstem tissue. Through molecular function and pathway analysis, the differentially expressed genes, proteins, and metabolites of TBSI were mainly attributed to neural signal regulation, inflammation, neuroprotection, and immune system. In addition, a comprehensive analysis of transcripts, proteins, and metabolites showed that the genes, proteins, and metabolic pathways regulated in the brainstem after TBSI were involved in neuroactive ligand-receptor interaction. A variety of GCPR-regulated pathways were affected, especially GAGA's corresponding receptors GABAA, GABAB, GABAC, and transporter GAT that were inhibited to varying degrees. Conclusion This study provides insights into the development of a rapid diagnostic kit and making treatment strategies for TBSI.
Collapse
Affiliation(s)
- Qin Su
- Guangzhou Forensic Science Institute, Guangzhou, China,Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qianling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Zhigang Li
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Jian Zhao
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Lingyue Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Luyao Xu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bin Yang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou, China,*Correspondence: Chao Liu,
| |
Collapse
|
6
|
Li T, Zhang W, Hu E, Sun Z, Li P, Yu Z, Zhu X, Zheng F, Xing Z, Xia Z, He F, Luo J, Tang T, Wang Y. Integrated metabolomics and network pharmacology to reveal the mechanisms of hydroxysafflor yellow A against acute traumatic brain injury. Comput Struct Biotechnol J 2021; 19:1002-1013. [PMID: 33613866 PMCID: PMC7868816 DOI: 10.1016/j.csbj.2021.01.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/02/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) has become a leading cause of mortality, morbidity and disability worldwide. Hydroxysafflor yellow A (HSYA) is effective in treating TBI, but the potential mechanisms require further exploration. We aimed to reveal the mechanisms of HSYA against acute TBI by an integrated strategy combining metabolomics with network pharmacology. A controlled cortical impact (CCI) rat model was established, and neurological functions were evaluated. Metabolomics of brain tissues was used to identify differential metabolites, and the metabolic pathways were enriched by MetaboAnalyst. Then, network pharmacology was applied to dig out the potential targets against TBI induced by HSYA. The integrated network of metabolomics and network pharmacology was constructed based on Cytoscape. Finally, the obtained key targets were verified by molecular docking. HSYA alleviated the neurological deficits of TBI. Fifteen potentially significant metabolites were found to be involved in the therapeutic effects of HSYA against acute TBI. Most of these metabolites were regulated to recover after HSYA treatment. We found 10 hub genes according to network pharmacology, which was partly consistent with the metabolomics findings. Further integrated analysis focused on 4 key targets, including NOS1, ACHE, PTGS2 and XDH, as well as their related core metabolites and pathways. Molecular docking showed high affinities between key targets and HSYA. Region-specific metabolic alterations in the cortex and hippocampus were illuminated. This study reveals the complicated mechanisms of HSYA against acute TBI. Our work provides a novel paradigm to identify the potential mechanisms of pharmacological effects derived from a natural compound.
Collapse
Affiliation(s)
- Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhengji Sun
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Pengfei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaofei Zhu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhihua Xing
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zian Xia
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Feng He
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiekun Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
7
|
Blanke EN, Holmes GM, Besecker EM. Altered physiology of gastrointestinal vagal afferents following neurotrauma. Neural Regen Res 2021; 16:254-263. [PMID: 32859772 PMCID: PMC7896240 DOI: 10.4103/1673-5374.290883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The adaptability of the central nervous system has been revealed in several model systems. Of particular interest to central nervous system-injured individuals is the ability for neural components to be modified for regain of function. In both types of neurotrauma, traumatic brain injury and spinal cord injury, the primary parasympathetic control to the gastrointestinal tract, the vagus nerve, remains anatomically intact. However, individuals with traumatic brain injury or spinal cord injury are highly susceptible to gastrointestinal dysfunctions. Such gastrointestinal dysfunctions attribute to higher morbidity and mortality following traumatic brain injury and spinal cord injury. While the vagal efferent output remains capable of eliciting motor responses following injury, evidence suggests impairment of the vagal afferents. Since sensory input drives motor output, this review will discuss the normal and altered anatomy and physiology of the gastrointestinal vagal afferents to better understand the contributions of vagal afferent plasticity following neurotrauma.
Collapse
Affiliation(s)
- Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Emily M Besecker
- Department of Health Sciences, Gettysburg College, Gettysburg, PA, USA
| |
Collapse
|
8
|
Li T, Hu E, Li P, Yang Z, Wu Y, Ding R, Zhu X, Tang T, Wang Y. Metabolomics Deciphers Potential Targets of Xuefu Zhuyu Decoction Against Traumatic Brain Injury in Rat. Front Pharmacol 2020; 11:559618. [PMID: 33101022 PMCID: PMC7546399 DOI: 10.3389/fphar.2020.559618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022] Open
Abstract
Xuefu Zhuyu decoction (XFZYD) performs multiple functions for traumatic brain injury (TBI) treatment. However, its clinical application is limited by the incomplete exploration of targets and inadequate discussion of mechanisms. We aimed to investigate the metabolic alterations of XFZYD in acute and chronic stages of TBI. Sprague-Dawley rats were randomly divided into the sham, controlled cortical impact (CCI) and XFZYD group. Behavioral and histopathological tests were used to evaluate the neuroprotective effects. Coagulation assays were performed to assess safety. Moreover, we analyzed the metabolomic profiling of hippocampal samples with different time intervals after CCI by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Differential metabolites were screened by multivariate data analysis. To further uncover the association between candidate metabolites and biological interaction networks, we applied bioinformatics analysis using MetaboAnalyst 4.0, STITCH 5.0 and TCMSP. The potential mechanism was verified by ELISA and Western blot. XFZYD ameliorated neurological deficiencies post-CCI without impairing blood coagulation in the rat’s model. Seventeen and fourteen metabolites were filtered on d 3 and 21, respectively. Eleven of potential metabolites were common at these time points, involving two significant pathways (arginine and proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis). Gamma-aminobutyric acid (GABA) and the related pathways were specifically affected by XFZYD at the acute phase of TBI, while biosynthesis of amino acids was the major pathway influenced at the chronic phase. This study provides broad insights into the therapeutic effects of XFZYD in treating TBI through the whole phases.
Collapse
Affiliation(s)
- Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Zhaoyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yao Wu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ruoqi Ding
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaofei Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Yuen KCJ, Masel BE, Reifschneider KL, Sheffield-Moore M, Urban RJ, Pyles RB. Alterations of the GH/IGF-I Axis and Gut Microbiome after Traumatic Brain Injury: A New Clinical Syndrome? J Clin Endocrinol Metab 2020; 105:5862647. [PMID: 32585029 DOI: 10.1210/clinem/dgaa398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022]
Abstract
CONTEXT Pituitary dysfunction with abnormal growth hormone (GH) secretion and neurocognitive deficits are common consequences of traumatic brain injury (TBI). Recognizing the comorbidity of these symptoms is of clinical importance; however, efficacious treatment is currently lacking. EVIDENCE ACQUISITION A review of studies in PubMed published between January 1980 to March 2020 and ongoing clinical trials was conducted using the search terms "growth hormone," "traumatic brain injury," and "gut microbiome." EVIDENCE SYNTHESIS Increasing evidence has implicated the effects of TBI in promoting an interplay of ischemia, cytotoxicity, and inflammation that renders a subset of patients to develop postinjury hypopituitarism, severe fatigue, and impaired cognition and behavioral processes. Recent data have suggested an association between abnormal GH secretion and altered gut microbiome in TBI patients, thus prompting the description of a hypothesized new clinical syndrome called "brain injury associated fatigue and altered cognition." Notably, these patients demonstrate distinct characteristics from those with GH deficiency from other non-TBI causes in that their symptom complex improves significantly with recombinant human GH treatment, but does not reverse the underlying mechanistic cause as symptoms typically recur upon treatment cessation. CONCLUSION The reviewed data describe the importance of alterations of the GH/insulin-like growth factor I axis and gut microbiome after brain injury and its influence in promoting neurocognitive and behavioral deficits in a bidirectional relationship, and highlight a new clinical syndrome that may exist in a subset of TBI patients in whom recombinant human GH therapy could significantly improve symptomatology. More studies are needed to further characterize this clinical syndrome.
Collapse
Affiliation(s)
- Kevin C J Yuen
- Barrow Pituitary Center, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, Arizona
| | | | - Kent L Reifschneider
- Division of Endocrinology, Children's Specialty Group, Children's Hospital of The King's Daughters, Norfolk, Virginia
| | - Melinda Sheffield-Moore
- Department of Health and Kinesiology, Texas A & M University, College Station, Texas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Randall J Urban
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Richard B Pyles
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
10
|
Urban RJ. A Treatable Syndrome in Patients with Traumatic Brain Injury. J Neurotrauma 2020; 37:1124-1125. [DOI: 10.1089/neu.2019.6689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Urban RJ, Pyles RB, Stewart CJ, Ajami N, Randolph KM, Durham WJ, Danesi CP, Dillon EL, Summons JR, Singh CK, Morrison M, Kreber LA, Masel B, Miller AL, Wright TJ, Sheffield-Moore M. Altered Fecal Microbiome Years after Traumatic Brain Injury. J Neurotrauma 2020; 37:1037-1051. [DOI: 10.1089/neu.2019.6688] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Randall J. Urban
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas
| | - Richard B. Pyles
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas
| | - Christopher J. Stewart
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas
| | - Nadim Ajami
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas
| | - Kathleen M. Randolph
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - William J. Durham
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas
| | - Christopher P. Danesi
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas
| | - E. Lichar Dillon
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | - Brent Masel
- Centre for Neuroskills, Bakersfield, California
- Department of Neurology, The University of Texas Medical Branch, Galveston, Texas
- Brain Injury Association of America, Vienna, Virginia
| | - Aaron L. Miller
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas
| | - Traver J. Wright
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Melinda Sheffield-Moore
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| |
Collapse
|