1
|
Celine G, Thomas M. Temporal characterisation and electrophysiological implications of TBI-induced serine/threonine kinase activity in mouse cortex. Cell Mol Life Sci 2025; 82:102. [PMID: 40045019 PMCID: PMC11883073 DOI: 10.1007/s00018-025-05638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/05/2025] [Accepted: 02/23/2025] [Indexed: 03/09/2025]
Abstract
Traumatic brain injury (TBI) remains the leading cause of death and disability worldwide with no existing effective treatment. The early phase after TBI induction triggers numerous molecular cascades to regulate adaptive processes and cortical network activity. Kinases play a particularly prominent role in modifying peptide substrates, which include ion channels, receptors, transcription factors and inflammatory mediators. This study aimed to better understand the post-injury serine/threonine kinome; (1) Which kinases conduct phosphorylation-induced alterations of target peptides following unilateral TBI in mouse cortex? (2) How do these kinases effectuate pathological network hyperexcitability, which has detrimental long-term outcomes? We used a serine/threonine kinase assay at 4 h, 24 h and 72 h post-TBI to identify hyper-/hypo-active/phosphorylated kinases and peptides in the ipsilateral and contralateral cortical hemispheres relative to sham-operated controls. We pharmacologically mimicked the changes seen in ERK1/2 and PKC kinase activity, and using microelectrode array recordings we explored their significant electrophysiological implications on spontaneous and evoked cortical activity. We then used these findings to manipulate key kinase activity changes at 24 h post-TBI to rescue the hyperexcitability that is seen in the contralateral cortical network at this timepoint back to sham level. The contribution of specific downstream peptide target channel/receptor subunits was also shown. We conclude that volatile kinase activity has potent implications on cortical network activity after the injury and that these kinases and/or their peptide substrates should be more seriously considered as therapeutic targets for the clinical treatment of TBI.
Collapse
Affiliation(s)
- Gallagher Celine
- Institute of Physiology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mittmann Thomas
- Institute of Physiology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Boggs RC, Watts LT, Fox PT, Clarke GD. Metabolic Diaschisis in Mild Traumatic Brain Injury. J Neurotrauma 2024; 41:e1793-e1806. [PMID: 38482809 PMCID: PMC11564852 DOI: 10.1089/neu.2023.0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Neurophysiological diaschisis presents in traumatic brain injury (TBI) as functional impairment distant to the lesion site caused by axonal neuroexcitation and deafferentation. Diaschisis studies in TBI models have evaluated acute phase functional and microstructural changes. Here, in vivo biochemical changes and cerebral blood flow (CBF) dynamics following TBI are studied with magnetic resonance. Behavioral assessments, magnetic resonance spectroscopy (MRS), and CBF measurements on rats followed cortical impact TBI. Data were acquired pre-TBI and 1-3 h, 2-days, 7-days, and 14-days post-TBI. MRS was performed on the ipsilateral and contralateral sides in the cortex, striatum, and thalamus. Metabolites measured by MRS included N-acetyl aspartate (NAA), aspartate (Asp), lactate (Lac), glutathione (GSH), and glutamate (Glu). Lesion volume expanded for 2 days post-TBI and then decreased. Ipsilateral CBF dropped acutely versus baseline on both sides (-62% ipsilateral, -48% contralateral, p < 0.05) but then recovered in cortex, with similar changes in ipsilateral striatum. Metabolic changes versus baseline included increased Asp (+640% by Day 7 post-TBI, p < 0.05) and Lac (+140% on Day 2 post-TBI, p < 0.05) in ipsilateral cortex, while GSH (-67% acutely, p < 0.05) and NAA decreased (-50% on Day 2, p < 0.05). In contralateral cortex Lac decreased (-73% acutely, p < 0.05). Analysis of variance showed significance for Side (p < 0.05), Time after TBI (p < 0.05), and interactions (p < 0.005) for Asp, GSH, Lac, and NAA. Transient decreases of GSH (-30%, p < 0.05, acutely) and NAA (-23% on Day 2, p < 0.05) occurred in ipsilateral striatum with reduced GSH (-42%, p < 0.005, acutely) in the contralateral striatum. GSH was decreased in ipsilateral thalamus (-59% ipsilateral on Day 2, p < 0.05). Delayed increases of total choline were seen in the contralateral thalamus were noted as well (+21% on Day 7 post-TBI, p < 0.05). Both CBF and neurometabolite concentration changes occurred remotely from the TBI site, both ipsilaterally and contralaterally. Decreased Lac levels on the contralateral cortex following TBI may be indicative of reduced anaerobic metabolism during the acute phase. The timing and locations of the changes suggest excitatory and inhibitory signaling processes are affecting post-TBI metabolic fluctuations.
Collapse
Affiliation(s)
- Robert C. Boggs
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Radiology and Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lora T. Watts
- Department of Radiology and Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Anatomy, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, Texas, USA
| | - Peter T. Fox
- Department of Radiology and Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Geoffrey D. Clarke
- Department of Radiology and Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Sarton B, Tauber C, Fridman E, Péran P, Riu B, Vinour H, David A, Geeraerts T, Bounes F, Minville V, Delmas C, Salabert AS, Albucher JF, Bataille B, Olivot JM, Cariou A, Naccache L, Payoux P, Schiff N, Silva S. Neuroimmune activation is associated with neurological outcome in anoxic and traumatic coma. Brain 2024; 147:1321-1330. [PMID: 38412555 PMCID: PMC10994537 DOI: 10.1093/brain/awae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/29/2024] Open
Abstract
The pathophysiological underpinnings of critically disrupted brain connectomes resulting in coma are poorly understood. Inflammation is potentially an important but still undervalued factor. Here, we present a first-in-human prospective study using the 18-kDa translocator protein (TSPO) radioligand 18F-DPA714 for PET imaging to allow in vivo neuroimmune activation quantification in patients with coma (n = 17) following either anoxia or traumatic brain injuries in comparison with age- and sex-matched controls. Our findings yielded novel evidence of an early inflammatory component predominantly located within key cortical and subcortical brain structures that are putatively implicated in consciousness emergence and maintenance after severe brain injury (i.e. mesocircuit and frontoparietal networks). We observed that traumatic and anoxic patients with coma have distinct neuroimmune activation profiles, both in terms of intensity and spatial distribution. Finally, we demonstrated that both the total amount and specific distribution of PET-measurable neuroinflammation within the brain mesocircuit were associated with the patient's recovery potential. We suggest that our results can be developed for use both as a new neuroprognostication tool and as a promising biometric to guide future clinical trials targeting glial activity very early after severe brain injury.
Collapse
Affiliation(s)
- Benjamine Sarton
- Critical Care Unit, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
- Toulouse NeuroImaging Center, Toulouse University, Inserm 1214, UPS, F-31300 Toulouse, France
| | - Clovis Tauber
- Imaging and Brain laboratory, UMRS Inserm U930, Université de Tours, F-37000 Tours, France
| | - Estéban Fridman
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Patrice Péran
- Toulouse NeuroImaging Center, Toulouse University, Inserm 1214, UPS, F-31300 Toulouse, France
| | - Beatrice Riu
- Critical Care Unit, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
| | - Hélène Vinour
- Critical Care Unit, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
| | - Adrian David
- Critical Care Unit, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
| | - Thomas Geeraerts
- Neurocritical Care Unit, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
| | - Fanny Bounes
- Critical Care Unit, University Teaching Hospital of Rangueil, F-31400 Toulouse Cedex 9, France
| | - Vincent Minville
- Critical Care Unit, University Teaching Hospital of Rangueil, F-31400 Toulouse Cedex 9, France
| | - Clément Delmas
- Cardiology Department, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
| | - Anne-Sophie Salabert
- Toulouse NeuroImaging Center, Toulouse University, Inserm 1214, UPS, F-31300 Toulouse, France
| | - Jean François Albucher
- Neurology Department, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
| | - Benoit Bataille
- Critical Care Unit, Hôtel Dieu Hospital, F-11100 Narbonne, France
| | - Jean Marc Olivot
- Neurology Department, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
| | - Alain Cariou
- Critical Care Unit, APHP, Cochin Hospital, F-75014 Paris, France
| | - Lionel Naccache
- Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013 Paris, France
| | - Pierre Payoux
- Toulouse NeuroImaging Center, Toulouse University, Inserm 1214, UPS, F-31300 Toulouse, France
| | - Nicholas Schiff
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Stein Silva
- Critical Care Unit, University Teaching Hospital of Purpan, F-31059 Toulouse Cedex 9, France
- Toulouse NeuroImaging Center, Toulouse University, Inserm 1214, UPS, F-31300 Toulouse, France
| |
Collapse
|
4
|
Witkin JM, Shafique H, Cerne R, Smith JL, Marini AM, Lipsky RH, Delery E. Mechanistic and therapeutic relationships of traumatic brain injury and γ-amino-butyric acid (GABA). Pharmacol Ther 2024; 256:108609. [PMID: 38369062 DOI: 10.1016/j.pharmthera.2024.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Traumatic brain injury (TBI) is a highly prevalent medical condition for which no medications specific for the prophylaxis or treatment of the condition as a whole exist. The spectrum of symptoms includes coma, headache, seizures, cognitive impairment, depression, and anxiety. Although it has been known for years that the inhibitory neurotransmitter γ-amino-butyric acid (GABA) is involved in TBI, no novel therapeutics based upon this mechanism have been introduced into clinical practice. We review the neuroanatomical, neurophysiological, neurochemical, and neuropharmacological relationships of GABA neurotransmission to TBI with a view toward new potential GABA-based medicines. The long-standing idea that excitatory and inhibitory (GABA and others) balances are disrupted by TBI is supported by the experimental data but has failed to invent novel methods of restoring this balance. The slow progress in advancing new treatments is due to the complexity of the disorder that encompasses multiple dynamically interacting biological processes including hemodynamic and metabolic systems, neurodegeneration and neurogenesis, major disruptions in neural networks and axons, frank brain lesions, and a multitude of symptoms that have differential neuronal and neurohormonal regulatory mechanisms. Although the current and ongoing clinical studies include GABAergic drugs, no novel GABA compounds are being explored. It is suggested that filling the gap in understanding the roles played by specific GABAA receptor configurations within specific neuronal circuits could help define new therapeutic approaches. Further research into the temporal and spatial delivery of GABA modulators should also be useful. Along with GABA modulation, research into the sequencing of GABA and non-GABA treatments will be needed.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | | | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA; Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| | - Ann M Marini
- Department of Neurology, Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert H Lipsky
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Elizabeth Delery
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA.
| |
Collapse
|
5
|
To XV, Mohamed AZ, Cumming P, Nasrallah FA. Diffusion tensor imaging and plasma immunological biomarker panel in a rat traumatic brain injury (TBI) model and in human clinical TBI. Front Immunol 2024; 14:1293471. [PMID: 38259455 PMCID: PMC10800599 DOI: 10.3389/fimmu.2023.1293471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Neuroinflammatory reactions play a significant role in the pathology and long-term consequences of traumatic brain injury (TBI) and may mediate salutogenic processes that white matter integrity. This study aimed to investigate the relationship between inflammatory markers and white matter integrity following TBI in both a rat TBI model and clinical TBI cases. Methods In the rat model, blood samples were collected following a controlled cortical impact (CCI) to assess a panel of inflammatory markers; MR-based diffusion tensor imaging (DTI) was employed to evaluate white matter integrity 60 days post-injury. 15 clinical TBI patients were similarly assessed for a panel of inflammatory markers and DTI post-intensive care unit discharge. Blood samples from healthy controls were used for comparison of the inflammatory markers. Results Time-dependent elevations in immunological markers were observed in TBI rats, with a correlation to preserved fractional anisotropy (FA) in white matter. Specifically, TBI-induced increased plasma levels of IL-1β, IL-6, G-CSF, CCL3, CCL5, and TNF-α were associated with higher white matter integrity, as measured by FA. Clinical cases had similar findings: elevated inflammatory markers (relative to controls) were associated with preservation of FA in vulnerable white matter regions. Discussion Inflammatory markers in post-TBI plasma samples are ambivalent with respect to prediction of favourable outcome versus a progression to more pervasive pathology and morbidity.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Abdalla Z. Mohamed
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Fatima A. Nasrallah
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia
- The Centre for Advanced Imaging, The University of Queensland, Queensland, Australia
| |
Collapse
|
6
|
Ueberbach T, Simacek CA, Tegeder I, Kirischuk S, Mittmann T. Tonic activation of GABA B receptors via GAT-3 mediated GABA release reduces network activity in the developing somatosensory cortex in GAD67-GFP mice. Front Synaptic Neurosci 2023; 15:1198159. [PMID: 37325697 PMCID: PMC10267986 DOI: 10.3389/fnsyn.2023.1198159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
The efficiency of neocortical information processing critically depends on the balance between the glutamatergic (excitatory, E) and GABAergic (inhibitory, I) synaptic transmission. A transient imbalance of the E/I-ratio during early development might lead to neuropsychiatric disorders later in life. The transgenic glutamic acid decarboxylase 67-green fluorescent protein (GAD67-GFP) mouse line (KI) was developed to selectively visualize GABAergic interneurons in the CNS. However, haplodeficiency of the GAD67 enzyme, the main GABA synthetizing enzyme in the brain, temporarily leads to a low GABA level in the developing brain of these animals. However, KI mice did not demonstrate any epileptic activity and only few and mild behavioral deficits. In the present study we investigated how the developing somatosensory cortex of KI-mice compensates the reduced GABA level to prevent brain hyperexcitability. Whole-cell patch clamp recordings from layer 2/3 pyramidal neurons at P14 and at P21 revealed a reduced frequency of miniature inhibitory postsynaptic currents (mIPSCs) in KI mice without any change in amplitude or kinetics. Interestingly, mEPSC frequencies were also decreased, while the E/I-ratio was nevertheless shifted toward excitation. Surprisingly, multi-electrode-recordings (MEA) from acute slices revealed a decreased spontaneous neuronal network activity in KI mice compared to wild-type (WT) littermates, pointing to a compensatory mechanism that prevents hyperexcitability. Blockade of GABAB receptors (GABABRs) with CGP55845 strongly increased the frequency of mEPSCs in KI, but failed to affect mIPSCs in any genotype or age. It also induced a membrane depolarization in P14 KI, but not in P21 KI or WT mice. MEA recordings in presence of CGP55845 revealed comparable levels of network activity in both genotypes, indicating that tonically activated GABABRs balance neuronal activity in P14 KI cortex despite the reduced GABA levels. Blockade of GABA transporter 3 (GAT-3) reproduced the CGP55845 effects suggesting that tonic activation of GABABRs is mediated by ambient GABA released via GAT-3 operating in reverse mode. We conclude that GAT-3-mediated GABA release leads to tonic activation of both pre- and postsynaptic GABABRs and restricts neuronal excitability in the developing cortex to compensate for reduced neuronal GABA synthesis. Since GAT-3 is predominantly located in astrocytes, GAD67 haplodeficiency may potentially stimulate astrocytic GABA synthesis through GAD67-independent pathways.
Collapse
Affiliation(s)
- Timo Ueberbach
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Clara A. Simacek
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Sergei Kirischuk
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Mittmann
- Institute for Physiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
7
|
Muellerleile J, Vnencak M, Sethi MVA, Jungenitz T, Schwarzacher SW, Jedlicka P. Increased Network Inhibition in the Dentate Gyrus of Adult Neuroligin-4 Knock-Out Mice. eNeuro 2023; 10:10/4/ENEURO.0471-22.2023. [PMID: 37080762 PMCID: PMC10121080 DOI: 10.1523/eneuro.0471-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 04/22/2023] Open
Abstract
Loss-of-function mutations in neuroligin-4 (Nlgn4), a member of the neuroligin family of postsynaptic adhesion proteins, cause autism spectrum disorder in humans. Nlgn4 knockout (KO) in mice leads to social behavior deficits and complex alterations of synaptic inhibition or excitation, depending on the brain region. In the present work, we comprehensively analyzed synaptic function and plasticity at the cellular and network levels in hippocampal dentate gyrus of Nlgn4 KO mice. Compared with wild-type littermates, adult Nlgn4 KO mice exhibited increased paired-pulse inhibition of dentate granule cell population spikes, but no impairments in excitatory synaptic transmission or short-term and long-term plasticity in vivo In vitro patch-clamp recordings in neonatal organotypic entorhino-hippocampal slice cultures from Nlgn4 KO and wild-type littermates revealed no significant differences in excitatory or inhibitory synaptic transmission, homeostatic synaptic plasticity, and passive electrotonic properties in dentate granule cells, suggesting that the increased inhibition in vivo is the result of altered network activity in the adult Nlgn4 KO. A comparison with prior studies on Nlgn 1-3 knock-out mice reveals that each of the four neuroligins exerts a characteristic effect on both intrinsic cellular and network activity in the dentate gyrus in vivo.
Collapse
Affiliation(s)
- Julia Muellerleile
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Faculty of Biosciences, Goethe University Frankfurt, 60439 Frankfurt am Main, Germany
| | - Matej Vnencak
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Mohammad Valeed Ahmed Sethi
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Tassilo Jungenitz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Stephan W Schwarzacher
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Faculty of Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| |
Collapse
|
8
|
White MR, VandeVord PJ. Regional variances depict a unique glial-specific inflammatory response following closed-head injury. Front Cell Neurosci 2023; 17:1076851. [PMID: 36909284 PMCID: PMC9996631 DOI: 10.3389/fncel.2023.1076851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Mild traumatic brain injuries (mTBI) constitute a significant health concern with clinical symptoms ranging from headaches to cognitive deficits. Despite the myriad of symptoms commonly reported following this injury, there is still a lack of knowledge on the various pathophysiological changes that occur. Preclinical studies are at the forefront of discovery delineating the changes that occur within this heterogeneous injury, with the emergence of translational models such as closed-head impact models allowing for further exploration of this injury mechanism. In the current study, male rats were subjected to a closed-head controlled cortical impact (cCCI), producing a concussion (mTBI). The pathological effects of this injury were then evaluated using immunoflourescence seven days following. The results exhibited a unique glial-specific inflammatory response, with both the ipsilateral and contralateral sides of the cortex and hippocampus showing pathological changes following impact. Overall these findings are consistent with glial changes reported following concussions and may contribute to subsequent symptoms.
Collapse
Affiliation(s)
- Michelle R. White
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Pamela J. VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
- Salem VA Medical Center, Salem, VA, United States
| |
Collapse
|
9
|
Meyer S, Hummel R, Neulen A, Hirnet T, Thal SC. Influence of traumatic brain injury on ipsilateral and contralateral cortical perfusion in mice. Neurosci Lett 2023; 795:137047. [PMID: 36603737 DOI: 10.1016/j.neulet.2023.137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/28/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Traumatic brain injury (TBI) is one of the most important causes of death in young adults. After brain injury cortical perfusion is impaired by cortical spreading depression, cerebral microvasospasm or microvascular thrombosis and contributes to secondary expansion of lesion into surrounding healthy brain tissue. The present study was designed to determine the regional cortical perfusion pattern after experimental TBI induced by controlled cortical impact (CCI) in male C57/BL6N mice. We performed a longitudinal time series analysis by Laser speckle contrast imaging (LSCI). Measurements were carried out before, immediately and 24 h after trauma. Immediately after CCI cortical perfusion in the lesion core dropped to 10 % of before injury (baseline; %BL) and to 21-24 %BL in the cortical area surrounding the core. Interestingly, cortical perfusion was also significantly reduced in the contralateral non-injured hemisphere (41-58 %BL) matching the corresponding brain region of the injured hemisphere. 24 h after CCI perfusion of the contralateral hemisphere returned to baseline level in the area corresponding to the lesion core, whereas the lateral area of the parietal cortex was hyperperfused (125 %BL). The lesion core region itself remained severely hypoperfused (18 to 26 %BL) during the observation period. TBI causes a maldistribution of both ipsi- and contralateral cerebral perfusion immediately after trauma, which persist for at least 24 h. Higher perfusion levels in the lesion core 24 h after trauma were associated with increased tissue damage, which supports the role of reperfusion injury for secondary brain damage after TBI.
Collapse
Affiliation(s)
- Simon Meyer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Regina Hummel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Axel Neulen
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Tobias Hirnet
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz, Germany; Department of Anesthesiology, HELIOS University Hospital Wuppertal, University Witten/Herdecke, Heusnerstraße 40, 42283 Wuppertal, Germany.
| |
Collapse
|
10
|
Zhuang Y, Dong J, Ge Q, Zhang B, Yang M, Lu S, Li H, Niu F, Xu X, Liu B. Contralateral synaptic changes following severe unilateral brain injury. Brain Res Bull 2022; 188:21-29. [PMID: 35868500 DOI: 10.1016/j.brainresbull.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 11/02/2022]
Abstract
The brain is highly integrated and thus unilateral injury can impact the contralateral hemisphere. However, further research is needed to clarify the changes in the response of the contralateral homotopic area to ipsilateral injury. We hypothesized that severe unilateral brain injury would be accompanied by contralateral synaptic changes that are related to functional recovery. To test this, we divided rats into sham and experimental groups. In the experimental group, we performed right motor cortex resection. These rats were further divided into three subgroups according to post-injury time: 7 days, 14 days, and 30 days post-injury. Rats in each group were evaluated using a beam walking test to quantify the recovery of motor function, and all rats received an injection of adeno-associated virus-containing green fluorescent protein (GFP). Finally, we conducted morphological and histological analyses to identify synaptic changes. Over time, the behavior of the rats that underwent right motor cortex resection recovered. Furthermore, in contrast to the sham group, the experimental groups exhibited an increase in the spine density and expression of synaptic proteins in layer V of the contralateral motor cortex, which was consistent with the GFP-labeled neurons. Moreover, more immature spines were observed 7 days post-injury. Notably, spine morphology matured from 7 to 30 days, and the increase in Synapsin-1 intensity in layer V peaked 14 days after the resection, whereas PSD-95 intensity continued to increase until day 30. Our findings suggested that following motor function recovery from unilateral brain injury, spine morphology and synaptic proteins change dynamically in the contralateral hemisphere.
Collapse
Affiliation(s)
- Yuan Zhuang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinqian Dong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mengshi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shenghua Lu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaojian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Center for Nerve Injury and Repair, Beijing Institute of Brain Disorders, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
11
|
Vinh To X, Mohamed AZ, Cumming P, Nasrallah FA. Subacute cytokine changes after a traumatic brain injury predict chronic brain microstructural alterations on advanced diffusion imaging in the male rat. Brain Behav Immun 2022; 102:137-150. [PMID: 35183698 DOI: 10.1016/j.bbi.2022.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The process of neuroinflammation occurring after traumatic brain injury (TBI) has received significant attention as a potential prognostic indicator and interventional target to improve patients' outcomes. Indeed, many of the secondary consequences of TBI have been attributed to neuroinflammation and peripheral inflammatory changes. However, inflammatory biomarkers in blood have not yet emerged as a clinical tool for diagnosis of TBI and predicting outcome. The controlled cortical impact model of TBI in the rodent gives reliable readouts of the dynamics of post-TBI neuroinflammation. We now extend this model to include a panel of plasma cytokine biomarkers measured at different time points post-injury, to test the hypothesis that these markers can predict brain microstructural outcome as quantified by advanced diffusion-weighted magnetic resonance imaging (MRI). METHODS Fourteen 8-10-week-old male rats were randomly assigned to sham surgery (n = 6) and TBI (n = 8) treatment with a single moderate-severe controlled cortical impact. We collected blood samples for cytokine analysis at days 1, 3, 7, and 60 post-surgery, and carried out standard structural and advanced diffusion-weighted MRI at day 60. We then utilized principal component regression to build an equation predicting different aspects of microstructural changes from the plasma inflammatory marker concentrations measured at different time points. RESULTS The TBI group had elevated plasma levels of IL-1β and several neuroprotective cytokines and chemokines (IL-7, CCL3, and GM-CSF) compared to the sham group from days 3 to 60 post-injury. The plasma marker panels obtained at day 7 were significantly associated with the outcome at day 60 of the trans-hemispheric cortical map transfer process that is a frequent finding in unilateral TBI models. DISCUSSION These results confirm and extend prior studies showing that day 7 post-injury is a critical temporal window for the reorganisation process following TBI. High plasma level of IL-1β and low plasma levels of the neuroprotective IL-7, CCL3, and GM-CSF of TBI animals at day 60 were associated with greater TBI pathology.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Abdalla Z Mohamed
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia; Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Queensland, Australia; The Centre for Advanced Imaging, The University of Queensland, Queensland, Australia.
| |
Collapse
|
12
|
GABA A Receptor-Stabilizing Protein Ubqln1 Affects Hyperexcitability and Epileptogenesis after Traumatic Brain Injury and in a Model of In Vitro Epilepsy in Mice. Int J Mol Sci 2022; 23:ijms23073902. [PMID: 35409261 PMCID: PMC8999075 DOI: 10.3390/ijms23073902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Posttraumatic epilepsy (PTE) is a major public health concern and strongly contributes to human epilepsy cases worldwide. However, an effective treatment and prevention remains a matter of intense research. The present study provides new insights into the gamma aminobutyric acid A (GABAA)-stabilizing protein ubiquilin-1 (ubqln1) and its regulation in mouse models of traumatic brain injury (TBI) and in vitro epilepsy. We performed label-free quantification on isolated cortical GABAergic interneurons from GAD67-GFP mice that received unilateral TBI and discovered reduced expression of ubqln1 24 h post-TBI. To investigate the link between this regulation and the development of epileptiform activity, we further studied ubqln1 expression in hippocampal and cortical slices. Epileptiform events were evoked pharmacologically in acute brain slices by administration of picrotoxin (PTX, 50 μM) and kainic acid (KA, 500 nM) and recorded in the hippocampal CA1 subfield using Multi-electrode Arrays (MEA). Interestingly, quantitative Western blots revealed significant decreases in ubqln1 expression 1–7 h after seizure induction that could be restored by application of the non-selective monoamine oxidase inhibitor nialamide (NM, 10 μM). In picrotoxin-dependent dose–response relationships, NM administration alleviated the frequency and peak amplitude of seizure-like events (SLEs). These findings indicate a role of the monoamine transmitter systems and ubqln1 for cortical network activity during posttraumatic epileptogenesis.
Collapse
|
13
|
Kunadia A, Aughtman S, Hoffmann M, Rossi F. Superlative Artistic Abilities in a Patient With Post-traumatic Brain Injury. Cureus 2021; 13:e16697. [PMID: 34462704 PMCID: PMC8389864 DOI: 10.7759/cureus.16697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/28/2021] [Indexed: 12/05/2022] Open
Abstract
This case describes a patient who exhibits newfound superlative abilities in painting, music, philosophy, culinary, and performing arts after a traumatic brain injury (TBI) involving the frontal and temporal lobes. Such a dramatic change in de novo artistic behavior after brain injury is rare but has been reported in other patients with frontotemporal dementia, as well as other neurological diseases. Previous studies have shown that mild frontal cortical dysfunction likely plays a role in facilitating creative endeavors and that artistic circuitry is distributed throughout the brain. The neuronal reorganization which occurs after injuries enhances synapse formation and neural plasticity, which may contribute to the acceleration of artistic output after brain injury. This is likely an underdiagnosed phenomenon and a deeper understanding is required to allow clinicians to more effectively recognize and nurture newfound creativity in the setting of brain damage.
Collapse
Affiliation(s)
- Anuj Kunadia
- Internal Medicine, University of Central Florida College of Medicine, Orlando, USA
| | - Shelby Aughtman
- Internal Medicine, University of Central Florida College of Medicine, Orlando, USA
| | - Michael Hoffmann
- Internal Medicine and Neurology, University of Central Florida College of Medicine, Orlando, USA
| | - Fabian Rossi
- Clinical Neurophysiology Laboratory, Orlando Veterans Affairs Medical Center, Orlando, USA
| |
Collapse
|
14
|
Faillot M, Chaillet A, Palfi S, Senova S. Rodent models used in preclinical studies of deep brain stimulation to rescue memory deficits. Neurosci Biobehav Rev 2021; 130:410-432. [PMID: 34437937 DOI: 10.1016/j.neubiorev.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation paradigms might be used to treat memory disorders in patients with stroke or traumatic brain injury. However, proof of concept studies in animal models are needed before clinical translation. We propose here a comprehensive review of rodent models for Traumatic Brain Injury and Stroke. We systematically review the histological, behavioral and electrophysiological features of each model and identify those that are the most relevant for translational research.
Collapse
Affiliation(s)
- Matthieu Faillot
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes (L2S-UMR8506) - CentraleSupélec, Université Paris Saclay, Institut Universitaire de France, France
| | - Stéphane Palfi
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Suhan Senova
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France.
| |
Collapse
|
15
|
Ihbe N, Le Prieult F, Wang Q, Distler U, Sielaff M, Tenzer S, Thal SC, Mittmann T. Adaptive Mechanisms of Somatostatin-Positive Interneurons after Traumatic Brain Injury through a Switch of α Subunits in L-Type Voltage-Gated Calcium Channels. Cereb Cortex 2021; 32:1093-1109. [PMID: 34411234 DOI: 10.1093/cercor/bhab268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/28/2022] Open
Abstract
Unilateral traumatic brain injury (TBI) causes cortical dysfunctions spreading to the primarily undamaged hemisphere. This phenomenon, called transhemispheric diaschisis, is mediated by an imbalance of glutamatergic versus GABAergic neurotransmission. This study investigated the role of GABAergic, somatostatin-positive (SST) interneurons in the contralateral hemisphere 72 h after unilateral TBI. The brain injury was induced to the primary motor/somatosensory cortex of glutamate decarboxylase 67-green fluorescent protein (GAD67-GFP) knock-in mice at postnatal days 19-21 under anesthesia in vivo. Single GFP+ interneurons of the undamaged, contralateral cortex were isolated by fluorescence-activated cell sorting and analyzed by mass spectrometry. TBI caused a switch of 2 α subunits of pore-forming L-type voltage-gated calcium channels (VGCC) in GABAergic interneurons, an increased expression of CaV1.3, and simultaneous ablation of CaV1.2. This switch was associated with 1) increased excitability of single SST interneurons in patch-clamp recordings and (2) a recovery from early network hyperactivity in the contralateral hemisphere in microelectrode array recordings of acute slices. The electrophysiological changes were sensitive to pharmacological blockade of CaV1.3 (isradipine, 100 nM). These data identify a switch of 2 α subunits of VGCCs in SST interneurons early after TBI as a mechanism to counterbalance post-traumatic hyperexcitability.
Collapse
Affiliation(s)
- Natascha Ihbe
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Florie Le Prieult
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Qi Wang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Malte Sielaff
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Serge C Thal
- Clinic for Anesthesiology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
16
|
Wang Q, Mergia E, Koesling D, Mittmann T. Nitric Oxide/Cyclic Guanosine Monophosphate Signaling via Guanylyl Cyclase Isoform 1 Mediates Early Changes in Synaptic Transmission and Brain Edema Formation after Traumatic Brain Injury. J Neurotrauma 2021; 38:1689-1701. [PMID: 33427032 DOI: 10.1089/neu.2020.7364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) often induces structural damage, disruption of the blood-brain barrier (BBB), neurodegeneration, and dysfunctions of surviving neuronal networks. Nitric oxide (NO) signaling has been suggested to affect brain functions after TBI. The NO exhibits most of its biological effects by activation of the primary targets-guanylyl cyclases (NO-GCs), which exists in two isoforms (NO-GC1 and NO-GC2), and the subsequently produced cyclic guanosine monophosphate (cGMP). However, the specific function of the NO-NO-GCs-cGMP pathway in the context of brain injury is not fully understood. To investigate the specific role of the isoform NO-GC1 early after brain injuries, we performed an in vivo unilateral controlled cortical impact (CCI) in the somatosensory cortex of knockout mice lacking NO-GC1 and their wild-type (WT) littermates. Morphological and electrophysiological changes of cortical neurons located 500 μm distant from the lesion border were studied early (24 h) after TBI. The CCI-operated WT mice exhibited significant BBB disruption, an impairment of dendritic spine morphology, a reduced pre-synaptic glutamate release, and less neuronal activity in the ipsilateral cortical network. The impaired ipsilateral neuronal excitability was associated with increased A-type K+ currents (IA) in the WT mice early after TBI. Interestingly, NO-GC1 KO mice revealed relatively less BBB rupture and a weaker brain edema formation early after TBI. Further, lack of NO-GC1 also prevented the impaired synaptic transmission and network function that were observed in TBI-treated WT mice. These data suggest that NO-GC1 signaling mediates early brain damage and the strength of ipsilateral cortical network in the early phase after TBI.
Collapse
Affiliation(s)
- Qi Wang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Evanthia Mergia
- Institute of Pharmacology, Ruhr-University Bochum, Bochum, Germany
| | - Doris Koesling
- Institute of Pharmacology, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
17
|
Vu PA, McNamara EH, Liu J, Tucker LB, Fu AH, McCabe JT. Behavioral responses following repeated bilateral frontal region closed head impacts and fear conditioning in male and female mice. Brain Res 2020; 1750:147147. [PMID: 33091394 DOI: 10.1016/j.brainres.2020.147147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 02/01/2023]
Abstract
The frontal lobes are among the most vulnerable sites in traumatic brain injuries. In the current study, a balanced 2 × 2 × 2 design (n = 18 mice/group), female and male C57Bl/6J mice received repeated bilateral frontal concussive brain injury (frCBI) and underwent fear conditioning (FC) to assess how injured mice respond to adverse conditions. Shocks received during FC impacted behavior on all subsequent tests except the tail suspension test. FC resulted in more freezing behavior in all mice that received foot shocks when evaluated in subsequent context and cue tests and induced hypoactivity in the open field (OF) and elevated zero maze (EZM). Mice that sustained frCBI learned the FC association between tone and shock. Injured mice froze less than sham controls during context and cue tests, which could indicate memory impairment, but could also suggest that frCBI resulted in hyperactivity that overrode the rodent's natural freezing response to threat, as injured mice were also more active in the OF and EZM. There were notable sex differences, where female mice exhibited more freezing behavior than male mice during FC context and cue tests. The findings suggest frCBI impaired, but did not eliminate, FC retention and resulted in an overall increase in general activity. The injury was characterized pathologically by increased inflammation (CD11b staining) in cortical regions underlying the injury site and in the optic tracts. The performance of male and female mice after injury suggested the complexity of possible sex differences for neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Patricia A Vu
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States; Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States
| | - Eileen H McNamara
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States; Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States
| | - Jiong Liu
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States
| | - Laura B Tucker
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States
| | - Amanda H Fu
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States
| | - Joseph T McCabe
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States; Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, United States.
| |
Collapse
|
18
|
Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD. Global brain inflammation in stroke. Lancet Neurol 2019; 18:1058-1066. [PMID: 31296369 DOI: 10.1016/s1474-4422(19)30078-x] [Citation(s) in RCA: 576] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
Stroke, including acute ischaemic stroke and intracerebral haemorrhage, results in neuronal cell death and the release of factors such as damage-associated molecular patterns (DAMPs) that elicit localised inflammation in the injured brain region. Such focal brain inflammation aggravates secondary brain injury by exacerbating blood-brain barrier damage, microvascular failure, brain oedema, oxidative stress, and by directly inducing neuronal cell death. In addition to inflammation localised to the injured brain region, a growing body of evidence suggests that inflammatory responses after a stroke occur and persist throughout the entire brain. Global brain inflammation might continuously shape the evolving pathology after a stroke and affect the patients' long-term neurological outcome. Future efforts towards understanding the mechanisms governing the emergence of so-called global brain inflammation would facilitate modulation of this inflammation as a potential therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Kaibin Shi
- Tianjin Medical University General Hospital, Tianjin, China; Department of Neurology, and Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - De-Cai Tian
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tianjin Medical University General Hospital, Tianjin, China
| | - Zhi-Guo Li
- Tianjin Medical University General Hospital, Tianjin, China
| | - Andrew F Ducruet
- Department of Neurology, and Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Michael T Lawton
- Department of Neurology, and Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Fu-Dong Shi
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
19
|
Feldmann LK, Le Prieult F, Felzen V, Thal SC, Engelhard K, Behl C, Mittmann T. Proteasome and Autophagy-Mediated Impairment of Late Long-Term Potentiation (l-LTP) after Traumatic Brain Injury in the Somatosensory Cortex of Mice. Int J Mol Sci 2019; 20:ijms20123048. [PMID: 31234472 PMCID: PMC6627835 DOI: 10.3390/ijms20123048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) can lead to impaired cognition and memory consolidation. The acute phase (24–48 h) after TBI is often characterized by neural dysfunction in the vicinity of the lesion, but also in remote areas like the contralateral hemisphere. Protein homeostasis is crucial for synaptic long-term plasticity including the protein degradation systems, proteasome and autophagy. Still, little is known about the acute effects of TBI on synaptic long-term plasticity and protein degradation. Thus, we investigated TBI in a controlled cortical impact (CCI) model in the motor and somatosensory cortex of mice ex vivo-in vitro. Late long-term potentiation (l-LTP) was induced by theta-burst stimulation in acute brain slices after survival times of 1–2 days. Protein levels for the plasticity related protein calcium/calmodulin-dependent protein kinase II (CaMKII) was quantified by Western blots, and the protein degradation activity by enzymatical assays. We observed missing maintenance of l-LTP in the ipsilateral hemisphere, however not in the contralateral hemisphere after TBI. Protein levels of CaMKII were not changed but, interestingly, the protein degradation revealed bidirectional changes with a reduced proteasome activity and an increased autophagic flux in the ipsilateral hemisphere. Finally, LTP recordings in the presence of pharmacologically modified protein degradation systems also led to an impaired synaptic plasticity: bath-applied MG132, a proteasome inhibitor, or rapamycin, an activator of autophagy, both administered during theta burst stimulation, blocked the induction of LTP. These data indicate that alterations in protein degradation pathways likely contribute to cognitive deficits in the acute phase after TBI, which could be interesting for future approaches towards neuroprotective treatments early after traumatic brain injury.
Collapse
Affiliation(s)
- Lucia K Feldmann
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Florie Le Prieult
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Vanessa Felzen
- Institute for Pathobiochemistry, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Serge C Thal
- Clinics for Anaesthesiology, UMC of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Kristin Engelhard
- Clinics for Anaesthesiology, UMC of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Christian Behl
- Institute for Pathobiochemistry, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Thomas Mittmann
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
20
|
Verley DR, Torolira D, Hessell BA, Sutton RL, Harris NG. Cortical Neuromodulation of Remote Regions after Experimental Traumatic Brain Injury Normalizes Forelimb Function but is Temporally Dependent. J Neurotrauma 2019; 36:789-801. [PMID: 30014759 PMCID: PMC6387565 DOI: 10.1089/neu.2018.5769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Traumatic brain injury (TBI) results in well-known, significant alterations in structural and functional connectivity. Although this is especially likely to occur in areas of pathology, deficits in function to and from remotely connected brain areas, or diaschisis, also occur as a consequence to local deficits. As a result, consideration of the network wiring of the brain may be required to design the most efficacious rehabilitation therapy to target specific functional networks to improve outcome. In this work, we model remote connections after controlled cortical impact injury (CCI) in the rat through the effect of callosal deafferentation to the opposite, contralesional cortex. We show rescue of significantly reaching deficits in injury-affected forelimb function if temporary, neuromodulatory silencing of contralesional cortex function is conducted at 1 week post-injury using the γ-aminobutyric acid (GABA) agonist muscimol, compared with vehicle. This indicates that subacute, injury-induced remote circuit modifications are likely to prevent normal ipsilesional control over limb function. However, by conducting temporary contralesional cortex silencing in the same injured rats at 4 weeks post-injury, injury-affected limb function either remains unaffected and deficient or is worsened, indicating that circuit modifications are more permanently controlled or at least influenced by the contralesional cortex at extended post-injury times. We provide functional magnetic resonance imaging (MRI) evidence of the neuromodulatory effect of muscimol on forelimb-evoked function in the cortex. We discuss these findings in light of known changes in cortical connectivity and excitability that occur in this injury model, and postulate a mechanism to explain these findings.
Collapse
Affiliation(s)
- Derek R. Verley
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Daniel Torolira
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Brittany A. Hessell
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Richard L. Sutton
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
21
|
Verley DR, Torolira D, Pulido B, Gutman B, Bragin A, Mayer A, Harris NG. Remote Changes in Cortical Excitability after Experimental Traumatic Brain Injury and Functional Reorganization. J Neurotrauma 2018; 35:2448-2461. [PMID: 29717625 DOI: 10.1089/neu.2017.5536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although cognitive and behavioral deficits are well known to occur following traumatic brain injury (TBI), motor deficits that occur even after mild trauma are far less known, yet are equally persistent. This study was aimed at making progress toward determining how the brain reorganizes in response to TBI. We used the adult rat controlled cortical impact injury model to study the ipsilesional forelimb map evoked by electrical stimulation of the affected limb, as well as the contralesional forelimb map evoked by stimulation of the unaffected limb, both before injury and at 1, 2, 3, and 4 weeks after using functional magnetic resonance imaging (fMRI). End-point c-FOS immunohistochemistry data following 1 h of constant stimulation of the unaffected limb were acquired in the same rats to avoid any potential confounds due to altered cerebrovascular coupling. Single and paired-pulse sensory evoked potential (SEP) data were recorded from skull electrodes over the contralesional cortex in a parallel series of rats before injury, at 3 days, and at 1, 2, 3, and 4 weeks after injury in order to determine whether alterations in cortical excitability accompanied reorganization of the cortical map. The results show a transient trans-hemispheric shift in the ipsilesional cortical map as indicated by fMRI, remote contralesional increases in cortical excitability that occur in spatially similar regions to altered fMRI activity and greater c-FOS activation, and reduced or absent ipsilesional cortical activity chronically. The contralesional changes also were indicated by reduced SEP latency within 3 days after injury, but not by blood oxygenation level-dependent fMRI until much later. Detailed interrogation of cortical excitability using paired-pulse electrophysiology showed that the contralesional cortex undergoes both an early and a late post-injury period of hyper-excitability in response to injury, interspersed by a period of relatively normal activity. From these data, we postulate a cross-hemispheric mechanism by which remote cortex excitability inhibits ipsilesional activation by rebalanced cortical excitation-inhibition.
Collapse
Affiliation(s)
- Derek R Verley
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| | - Daniel Torolira
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| | - Brandon Pulido
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| | - Boris Gutman
- 2 Department of Neurology, Imaging Genetics Center, Keck/ University of Southern California School of Medicine, Institute for Neuroimaging and Informatics, University of Southern California , California
| | - Anatol Bragin
- 3 Department of Neurology, University of California , Los Angeles, California
| | - Andrew Mayer
- 4 The MIND Research Network and Department of Neurology, University of New Mexico , Albuquerque, New Mexico
| | - Neil G Harris
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| |
Collapse
|