1
|
Feigen CM, Charney MF, Glajchen S, Myers C, Cherny S, Lipnitsky R, Yang WW, Glassman NR, Lipton ML. Genetic Variants and Persistent Impairment Following Mild Traumatic Brain Injury: A Systematic Review. J Head Trauma Rehabil 2025; 40:E29-E53. [PMID: 38668678 PMCID: PMC11647579 DOI: 10.1097/htr.0000000000000907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
OBJECTIVE The purpose of this review is to systematically assess primary research publications on known genetic variants, which modify the risk for symptoms or dysfunction persisting 30 days or more following mild traumatic brain injury (mTBI). SUMMARY OF REVIEW A search of PubMed and Embase from inception through June 2022 identified 42 studies that associated genetic variants with the presence of symptoms or cognitive dysfunction 30 days or more following mTBI. Risk of bias was assessed for each publication using the Newcastle Ottawa Scale (NOS). Fifteen of the 22 studies evaluating apolipoprotein E ( APOE ) ɛ4 concluded that it was associated with worse outcomes and 4 of the 8 studies investigating the brain-derived neurotrophic factor ( BDNF ) reported the Val66Met allele was associated with poorer outcomes. The review also identified 12 studies associating 28 additional variants with mTBI outcomes. Of these, 8 references associated specific variants with poorer outcomes. Aside from analyses comparing carriers and noncarriers of APOE ɛ4 and BDNF Val66Met, most of the reviewed studies were too dissimilar, particularly in terms of specific outcome measures but also in genes examined, to allow for direct comparisons of their findings. Moreover, these investigations were observational and subject to varying degrees of bias. CONCLUSIONS The most consistent finding across articles was that APOE ɛ4 is associated with persistent post-mTBI impairment (symptoms or cognitive dysfunction) more than 30 days after mTBI. The sparsity of other well-established and consistent findings in the mTBI literature should motivate larger, prospective studies, which characterize the risk for persistent impairment with standardized outcomes in mTBI posed by other genetic variants influencing mTBI recovery.
Collapse
Affiliation(s)
- Chaim M Feigen
- Author Affiliations: Department of Neurological Surgery, Montefiore Medical Center, Bronx, New York (Mr Feigen); Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York (Drs Charney and Lipton and Ms Glajchen); D. Samuel Gottesman Library, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York (Ms Glassman); Departments of Radiology, Psychiatry and Behavioral Sciences, and Neurology (Dr Lipton) and Dominick P. Purpura Department of Neuroscience (Mr Feigen and Dr Lipton), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York; Tulane University, New Orleans, Louisiana (Mr Myers); New York Medical College, Valhalla, New York (Mr Cherny); New York University College of Dentistry, New York, New York (Ms Lipnitsky); and University of South Florida Health Morsani College of Medicine, Tampa, Florida (Ms Yang)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Giesler LP, Mychasiuk R, Shultz SR, McDonald SJ. BDNF: New Views of an Old Player in Traumatic Brain Injury. Neuroscientist 2024; 30:560-573. [PMID: 37067029 PMCID: PMC11423547 DOI: 10.1177/10738584231164918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Traumatic brain injury is a common health problem affecting millions of people each year. BDNF has been investigated in the context of traumatic brain injury due to its crucial role in maintaining brain homeostasis. Val66Met is a functional single-nucleotide polymorphism that results in a valine-to-methionine amino acid substitution at codon 66 in the BDNF prodomain, which ultimately reduces secretion of BDNF. Here, we review experimental animal models as well as clinical studies investigating the role of the Val66Met single-nucleotide polymorphism in traumatic brain injury outcomes, including cognitive function, motor function, neuropsychiatric symptoms, and nociception. We also review studies investigating the role of BDNF on traumatic brain injury pathophysiology as well as circulating BDNF as a biomarker of traumatic brain injury.
Collapse
Affiliation(s)
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
3
|
Lakshmipathy D, Rangarajan S, Barreau A, Lu J, Kleinberg G, Lucke-Wold B. Genetic Contributions to Recovery following Brain Trauma: A Narrative Review. FRONT BIOSCI-LANDMRK 2024; 29:103. [PMID: 38538271 DOI: 10.31083/j.fbl2903103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/08/2025]
Abstract
Traumatic brain injury (TBI) is a frequently encountered form of injury that can have lifelong implications. Despite advances in prevention, diagnosis, monitoring, and treatment, the degree of recovery can vary widely between patients. Much of this is explained by differences in severity of impact and patient-specific comorbidities; however, even among nearly identical patients, stark disparities can arise. Researchers have looked to genetics in recent years as a means of explaining this phenomenon. It has been hypothesized that individual genetic factors can influence initial inflammatory responses, recovery mechanisms, and overall prognoses. In this review, we focus on cytokine polymorphisms, mitochondrial DNA (mtDNA) haplotypes, immune cells, and gene therapy given their associated influx of novel research and magnitude of potential. This discussion is prefaced by a thorough background on TBI pathophysiology to better understand where each mechanism fits within the disease process. Cytokine polymorphisms causing unfavorable regulation of genes encoding IL-1β, IL-RA, and TNF-α have been linked to poor TBI outcomes like disability and death. mtDNA haplotype H has been correlated with deleterious effects on TBI recovery time, whereas haplotypes K, T, and J have been depicted as protective with faster recovery times. Immune cell genetics such as microglial differentially expressed genes (DEGs), monocyte receptor genes, and regulatory factors can be both detrimental and beneficial to TBI recovery. Gene therapy in the form of gene modification, inactivation, and editing show promise in improving post-TBI memory, cognition, and neuromotor function. Limitations of this study include a large proportion of cited literature being focused on pre-clinical murine models. Nevertheless, favorable evidence on the role of genetics in TBI recovery continues to grow. We aim for this work to inform interested parties on the current landscape of research, highlight promising targets for gene therapy, and galvanize translation of findings into clinical trials.
Collapse
Affiliation(s)
- Deepak Lakshmipathy
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Shreya Rangarajan
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Ariana Barreau
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Jeffrey Lu
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Giona Kleinberg
- College of Engineering, Northeastern University, Boston, MA 02115, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
4
|
Treble-Barna A, Petersen BA, Stec Z, Conley YP, Fink EL, Kochanek PM. Brain-Derived Neurotrophic Factor in Pediatric Acquired Brain Injury and Recovery. Biomolecules 2024; 14:191. [PMID: 38397427 PMCID: PMC10886547 DOI: 10.3390/biom14020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
We review emerging preclinical and clinical evidence regarding brain-derived neurotrophic factor (BDNF) protein, genotype, and DNA methylation (DNAm) as biomarkers of outcomes in three important etiologies of pediatric acquired brain injury (ABI), traumatic brain injury, global cerebral ischemia, and stroke. We also summarize evidence suggesting that BDNF is (1) involved in the biological embedding of the psychosocial environment, (2) responsive to rehabilitative therapies, and (3) potentially modifiable. BDNF's unique potential as a biomarker of neuroplasticity and neural repair that is reflective of and responsive to both pre- and post-injury environmental influences separates it from traditional protein biomarkers of structural brain injury with exciting potential to advance pediatric ABI management by increasing the accuracy of prognostic tools and informing clinical decision making through the monitoring of therapeutic effects.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (B.A.P.); (Z.S.)
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
| | - Bailey A. Petersen
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (B.A.P.); (Z.S.)
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
| | - Zachary Stec
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (B.A.P.); (Z.S.)
| | - Yvette P. Conley
- Department of Health Promotion & Development, University of Pittsburgh School of Nursing, Pittsburgh, PA 15213, USA;
| | - Ericka L. Fink
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.L.F.); (P.M.K.)
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Anderson C, Hicks AJ, Carmichael J, Burke R, Ponsford J. COMT Val158Met and BDNF Val66Met Single-Nucleotide Polymorphisms Are Not Associated With Emotional Distress One Year After Moderate-Severe Traumatic Brain Injury. Neurotrauma Rep 2023; 4:495-506. [PMID: 37636335 PMCID: PMC10457651 DOI: 10.1089/neur.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Emotional distress is a common, but poorly addressed, feature of moderate-severe traumatic brain injury (TBI). Previously identified sociodemographic, psychological, and injury-related factors account for only a small proportion of the variability in emotional distress post-TBI. Genetic factors may help to further understand emotional distress in this population. The catechol-O-methyltransferase (COMT) Val158 and brain-derived neurotrophic factor (BDNF) 66Met single-nucleotide polymorphisms (SNPs) have been identified as possible contributory factors to outcomes after TBI. We investigated whether the COMT Val158 and BDNF 66Met SNPs were associated with emotional distress 1 year after moderate-severe TBI, and whether these associations were moderated by age, sex, and TBI severity (as measured by the duration of post-traumatic amnesia [PTA]). Moderate-severe TBI survivors (COMT, n = 391; BDNF, n = 311) provided saliva samples after admission to a TBI rehabilitation hospital. At a follow-up interview ∼1 year after injury, participants completed a self-report measure of emotional distress (Hospital Anxiety and Depression Scale; HADS). Multiple linear regression models were constructed for each SNP to predict total scores on the HADS. Neither COMT Val158 nor BDNF 66Met carriage status (carrier vs. non-carrier) significantly predicted emotional distress (COMT, p = 0.49; BDNF, p = 0.66). Interactions of SNP × age (COMT, p = 0.90; BDNF, p = 0.93), SNP × sex (COMT, p = 0.09; BDNF, p = 0.60), SNP × injury severity (COMT, p = 0.53; BDNF, p = 0.87), and SNP × sex × age (COMT, p = 0.08; BDNF, p = 0.76) were also non-significant. Our null findings suggest that COMT Val158 and BDNF 66Met SNPs do not aid the prediction of emotional distress 1 year after moderate-severe TBI, neither in isolation nor in interaction with age, sex and injury severity. The reporting of null findings such as ours is important to avoid publication bias and prompt researchers to consider the challenges of single-gene candidate studies in understanding post-TBI outcomes. Analyses in larger samples that incorporate multiple genetic factors and their relevant moderating factors may provide a greater understanding of the role of genetics in post-TBI emotional distress.
Collapse
Affiliation(s)
- Chloe Anderson
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Amelia J. Hicks
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Jai Carmichael
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Richard Burke
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Treble-Barna A, Wade SL, Pilipenko V, Martin LJ, Yeates KO, Taylor HG, Kurowski BG. Brain-derived neurotrophic factor Val66Met and neuropsychological functioning after early childhood traumatic brain injury. J Int Neuropsychol Soc 2023; 29:246-256. [PMID: 35465864 PMCID: PMC9592678 DOI: 10.1017/s1355617722000194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The present study examined the differential effect of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism on neuropsychological functioning in children with traumatic brain injury (TBI) relative to orthopedic injury (OI). METHODS Participants were drawn from a prospective, longitudinal study of children who sustained a TBI (n = 69) or OI (n = 72) between 3 and 7 years of age. Children completed a battery of neuropsychological measures targeting attention, memory, and executive functions at four timepoints spanning the immediate post-acute period to 18 months post-injury. Children also completed a comparable age-appropriate battery of measures approximately 7 years post-injury. Parents rated children's dysexecutive behaviors at all timepoints. RESULTS Longitudinal mixed models revealed a significant allele status × injury group interaction with a medium effect size for verbal fluency. Cross-sectional models at 7 years post-injury revealed non-significant but medium effect sizes for the allele status x injury group interaction for fluid reasoning and immediate and delayed verbal memory. Post hoc stratified analyses revealed a consistent pattern of poorer neuropsychological functioning in Met carriers relative to Val/Val homozygotes in the TBI group, with small effect sizes; the opposite trend or no appreciable effect was observed in the OI group. CONCLUSIONS The results suggest a differential effect of the BDNF Val66Met polymorphism on verbal fluency, and possibly fluid reasoning and immediate and delayed verbal memory, in children with early TBI relative to OI. The Met allele-associated with reduced activity-dependent secretion of BDNF-may confer risk for poorer neuropsychological functioning in children with TBI.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Assistant Professor, Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, KAU-910, Pittsburgh, PA 15213
| | - Shari L. Wade
- Professor, Division of Physical Medicine & Rehabilitation, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Valentina Pilipenko
- Biostatistician, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Lisa J. Martin
- Professor, Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati School of Medicine. 3333 Burnett Av, MLC 4012, Cincinnati OH 45229
| | - Keith Owen Yeates
- Professor, Department of Psychology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N1N4 Canada
| | - H. Gerry Taylor
- Professor, Abigail Wexner Research Institute at Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Columbus, OH, 43205
| | - Brad G. Kurowski
- Associate Professor, Division of Pediatric Rehabilitation Medicine, Cincinnati Children’s Hospital Medical Center, Departments of Pediatrics and Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 3333 Burnett Av, MLC 4009, Cincinnati OH 45229
| |
Collapse
|
7
|
Huynh LK, Gagner C, Bernier A, Beauchamp MH. Discrepancies between mother and father ratings of child behavior after early mild traumatic brain injury. Child Neuropsychol 2023; 29:56-75. [PMID: 35451343 DOI: 10.1080/09297049.2022.2066074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mild traumatic brain injuries (mTBI) are highly prevalent during early childhood and can lead to behavioral difficulties. Parent report questionnaires are widely used to assess children's behavior, but they are subject to parental bias. The aim of this study was to investigate parental discrepancies in internalized and externalized behavior ratings of children who sustain mTBI in early childhood (i.e., between 18 and 60 months) and to determine if parenting stress or family burden related to the injury contribute to parental discrepancies. Mothers and fathers of 85 children with mTBI, 58 orthopedic injured (OI), and 82 typically developing children (TDC) completed the Child Behavior Checklist 6 months after the injury. The primary caregiver completed the Parental Distress subscale of the Parenting Stress Index and the Family Burden of Injury Interview. Mothers reported more internalized and externalized behavior problems than fathers in the mTBI group. No group difference was found in the OI or TDC groups. Neither parenting stress nor family burden related to the injury predicted discrepancies in behavior ratings. Mothers' and fathers' perceptions of behavior after their young child sustains mTBI appear to differ, suggesting that both parents' views are useful in understanding outcome. This difference was not found in either of the comparison groups indicating that factors related to mTBI may underlie the rating discrepancies.
Collapse
Affiliation(s)
- Lara-Kim Huynh
- Department of Psychology, University of Montreal, Montreal, Canada
| | - Charlotte Gagner
- Department of Psychology, University of Montreal, Montreal, Canada
| | - Annie Bernier
- Department of Psychology, University of Montreal, Montreal, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal, Montreal, Canada.,Sainte-Justine Hospital Research Center, Montreal, Canada
| |
Collapse
|
8
|
A review of molecular and genetic factors for determining mild traumatic brain injury severity and recovery. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
9
|
Treble-Barna A, Wade SL, Pilipenko V, Martin LJ, Yeates KO, Taylor HG, Kurowski BG. Brain-Derived Neurotrophic Factor Val66Met and Behavioral Adjustment after Early Childhood Traumatic Brain Injury. J Neurotrauma 2022; 39:114-121. [PMID: 33605167 PMCID: PMC8785712 DOI: 10.1089/neu.2020.7466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The present study examined the differential effect of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism on behavioral adjustment in children with traumatic brain injury (TBI) relative to children with orthopedic injury (OI). Participants were drawn from a prospective, longitudinal study of children who sustained a TBI (n = 69) or OI (n = 72) between 3 and 7 years of age. Parents completed the Child Behavior Checklist (CBCL) at the immediate post-acute period, 6, 12, and 18 months after injury, and an average of 3.5 and 7 years after injury. Longitudinal mixed models examined the BDNF Val66Met allele status (Met carriers vs. Val/Val homozygotes) × injury group (TBI vs. OI) interaction in association with behavioral adjustment. After adjusting for continental ancestry, socioeconomic status, time post-injury, and pre-injury functioning, the allele status × injury group interaction was statistically significant for Internalizing, Externalizing, and Total Behavior problems. Post hoc within-group analysis suggested a consistent trend of poorer behavioral adjustment in Met carriers relative to Val/Val homozygotes in the TBI group; in contrast, the opposite trend was observed in the OI group. These within-group differences, however, did not reach statistical significance. The results support a differential effect of the BDNF Val66Met polymorphism on behavioral adjustment in children with early TBI relative to OI, and suggest that the Met allele associated with reduced activity-dependent secretion of BDNF may impart risk for poorer long-term behavioral adjustment in children with TBI.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shari L. Wade
- Division of Physical Medicine and Rehabilitation, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Valentina Pilipenko
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lisa J. Martin
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - H. Gerry Taylor
- Abigail Wexner Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Brad G. Kurowski
- Division of Pediatric Rehabilitation Medicine and Departments of Pediatrics and Neurology and Rehabilitation Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Carmichael J, Hicks AJ, Spitz G, Gould KR, Ponsford J. Moderators of gene-outcome associations following traumatic brain injury. Neurosci Biobehav Rev 2021; 130:107-124. [PMID: 34411558 DOI: 10.1016/j.neubiorev.2021.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/04/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
The field of genomics is the principal avenue in the ongoing development of precision/personalised medicine for a variety of health conditions. However, relating genes to outcomes is notoriously complex, especially when considering that other variables can change, or moderate, gene-outcome associations. Here, we comprehensively discuss moderation of gene-outcome associations in the context of traumatic brain injury (TBI), a common, chronically debilitating, and costly neurological condition that is under complex polygenic influence. We focus our narrative review on single nucleotide polymorphisms (SNPs) of three of the most studied genes (apolipoprotein E, brain-derived neurotrophic factor, and catechol-O-methyltransferase) and on three demographic variables believed to moderate associations between these SNPs and TBI outcomes (age, biological sex, and ethnicity). We speculate on the mechanisms which may underlie these moderating effects, drawing widely from biomolecular and behavioural research (n = 175 scientific reports) within the TBI population (n = 72) and other neurological, healthy, ageing, and psychiatric populations (n = 103). We conclude with methodological recommendations for improved exploration of moderators in future genetics research in TBI and other populations.
Collapse
Affiliation(s)
- Jai Carmichael
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia.
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Kate Rachel Gould
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| |
Collapse
|
11
|
Cortes D, Pera MF. The genetic basis of inter-individual variation in recovery from traumatic brain injury. NPJ Regen Med 2021; 6:5. [PMID: 33479258 PMCID: PMC7820607 DOI: 10.1038/s41536-020-00114-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death among young people, and is increasingly prevalent in the aging population. Survivors of TBI face a spectrum of outcomes from short-term non-incapacitating injuries to long-lasting serious and deteriorating sequelae. TBI is a highly complex condition to treat; many variables can account for the observed heterogeneity in patient outcome. The limited success of neuroprotection strategies in the clinic has led to a new emphasis on neurorestorative approaches. In TBI, it is well recognized clinically that patients with similar lesions, age, and health status often display differences in recovery of function after injury. Despite this heterogeneity of outcomes in TBI, restorative treatment has remained generic. There is now a new emphasis on developing a personalized medicine approach in TBI, and this will require an improved understanding of how genetics impacts on long-term outcomes. Studies in animal model systems indicate clearly that the genetic background plays a role in determining the extent of recovery following an insult. A candidate gene approach in human studies has led to the identification of factors that can influence recovery. Here we review studies of the genetic basis for individual differences in functional recovery in the CNS in animals and man. The application of in vitro modeling with human cells and organoid cultures, along with whole-organism studies, will help to identify genes and networks that account for individual variation in recovery from brain injury, and will point the way towards the development of new therapeutic approaches.
Collapse
|
12
|
Costanza A, Radomska M, Zenga F, Amerio A, Aguglia A, Serafini G, Amore M, Berardelli I, Ojio Y, Nguyen KD. Severe Suicidality in Athletes with Chronic Traumatic Encephalopathy: A Case Series and Overview on Putative Ethiopathogenetic Mechanisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030876. [PMID: 33498520 PMCID: PMC7908343 DOI: 10.3390/ijerph18030876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) results from repetitive brain injuries and is a common neurotraumatic sequela in contact sports. CTE is often accompanied by neuropsychiatric symptoms, which could escalate to suicidal ideation (SI) and suicidal behaviour (SB). Nevertheless, fairly limited emphasis about the association between suicidality and CTE exists in medical literature. Here, we report two cases of retired professional athletes in high contact sports (boxing and ice hockey) who have developed similar clinical trajectories characterized by progressive neuropsychiatric symptoms compatible with a CTE diagnosis and subsequent SB in its severe forms (medical serious suicide attempt (SA) and completed suicide). In addition to the description of outlining clinical, neuropsychological, neuroimaging, and differential diagnosis elements related to these cases, we also hypothesized some mechanisms that might augment the suicide risk in CTE. They include those related to neurobiological (neuroanatomic/neuroinflammatory) dysfunctions as well as those pertaining to psychiatry and psychosocial maladaptation to neurotraumas and retirement from professional competitive activity. Findings described here can provide clinical pictures to improve the identification of patients with CTE and also potential mechanistic insights to refine the knowledge of eventual severe SB development, which might enable its earlier prevention.
Collapse
Affiliation(s)
- Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), 1211 Geneva, Switzerland
- Department of Psychiatry, ASO Santi Antonio e Biagio e Cesare Arrigo Hospital, 15121 Alessandria, Italy
- Correspondence:
| | - Michalina Radomska
- Faculty of Psychology, University of Geneva (UNIGE), 1206 Geneva, Switzerland;
| | - Francesco Zenga
- Department of Neurosurgery, City of Health and Science Hospital, 10126 Torino, Italy;
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Psychiatry, Tufts University, Boston, MA 02111, USA
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Isabella Berardelli
- Suicide Prevention Center, Department of Neurosciences, Mental Health and Sensory Organs, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy;
| | - Yasutaka Ojio
- National Center of Neurology and Psychiatry, Department of Community Mental Health Law, National Institute of Mental Health, Tokyo 187-8553, Japan;
| | - Khoa D. Nguyen
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA 94304, USA;
- Tranquis Therapeutics, Palo Alto, CA 94304, USA
- Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
13
|
Quality of life 6 and 18 months after mild traumatic brain injury in early childhood: An exploratory study of the role of genetic, environmental, injury, and child factors. Brain Res 2020; 1748:147061. [DOI: 10.1016/j.brainres.2020.147061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/18/2022]
|
14
|
Beauchamp MH, Séguin M, Gagner C, Lalonde G, Bernier A. The PARENT model: a pathway approach for understanding parents’ role after early childhood mild traumatic brain injury. Clin Neuropsychol 2020; 35:846-867. [DOI: 10.1080/13854046.2020.1834621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- M. H. Beauchamp
- Department of Psychology, University of Montreal, Canada
- Sainte-Justine Hospital Research Center, Montreal, Canada
| | - M. Séguin
- Department of Psychology, University of Montreal, Canada
- Sainte-Justine Hospital Research Center, Montreal, Canada
| | - C. Gagner
- Department of Psychology, University of Montreal, Canada
- Sainte-Justine Hospital Research Center, Montreal, Canada
| | - G. Lalonde
- Department of Psychology, University of Montreal, Canada
- Sainte-Justine Hospital Research Center, Montreal, Canada
| | - A. Bernier
- Department of Psychology, University of Montreal, Canada
| |
Collapse
|
15
|
Beauchamp MH, Dégeilh F, Yeates K, Gagnon I, Tang K, Gravel J, Stang A, Burstein B, Bernier A, Lebel C, El Jalbout R, Lupien S, de Beaumont L, Zemek R, Dehaes M, Deschênes S. Kids' Outcomes And Long-term Abilities (KOALA): protocol for a prospective, longitudinal cohort study of mild traumatic brain injury in children 6 months to 6 years of age. BMJ Open 2020; 10:e040603. [PMID: 33077571 PMCID: PMC7574946 DOI: 10.1136/bmjopen-2020-040603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Mild traumatic brain injury (mTBI) is highly prevalent, especially in children under 6 years. However, little research focuses on the consequences of mTBI early in development. The objective of the Kids' Outcomes And Long-term Abilities (KOALA) study is to document the impact of early mTBI on children's motor, cognitive, social and behavioural functioning, as well as on quality of life, stress, sleep and brain integrity. METHODS AND ANALYSES KOALA is a prospective, multicentre, longitudinal cohort study of children aged 6 months to 6 years at the time of injury/recruitment. Children who sustain mTBI (n=150) or an orthopaedic injury (n=75) will be recruited from three paediatric emergency departments (PEDs), and compared with typically developing children (community controls, n=75). A comprehensive battery of prognostic and outcome measures will be collected in the PED, at 10 days, 1, 3 and 12 months postinjury. Biological measures, including measures of brain structure and function (magnetic resonance imaging, MRI), stress (hair cortisol), sleep (actigraphy) and genetics (saliva), will complement direct testing of function using developmental and neuropsychological measures and parent questionnaires. Group comparisons and predictive models will test the a priori hypotheses that, compared with children from the community or with orthopaedic injuries, children with mTBI will (1) display more postconcussive symptoms and exhibit poorer motor, cognitive, social and behavioural functioning; (2) show evidence of altered brain structure and function, poorer sleep and higher levels of stress hormones. A combination of child, injury, socioenvironmental and psychobiological factors are expected to predict behaviour and quality of life at 1, 3 and 12 months postinjury. ETHICS AND DISSEMINATION The KOALA study is approved by the Sainte-Justine University Hospital, McGill University Health Centre and University of Calgary Conjoint Health Research Ethics Boards. Parents of participants will provide written consent. Dissemination will occur through peer-reviewed journals and an integrated knowledge translation plan.
Collapse
Affiliation(s)
- Miriam H Beauchamp
- Psychology, Université de Montréal, Montreal, Quebec, Canada
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Fanny Dégeilh
- Psychology, Université de Montréal, Montreal, Quebec, Canada
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
- Psychiatry, LMU München, Munchen, Bayern, Germany
| | - Keith Yeates
- Psychology, University of Calgary, Calgary, Alberta, Canada
- Research Institute, Alberta Children's Hospital, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Isabelle Gagnon
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
- Trauma, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Ken Tang
- Clinical Research Unit, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Jocelyn Gravel
- Pediatric Emergency Medicine, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Antonia Stang
- Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Pediatrics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Brett Burstein
- Pediatric Emergency Medicine, Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
| | - Annie Bernier
- Psychology, Université de Montreal, Montreal, Quebec, Canada
| | - Catherine Lebel
- Research Institute, Alberta Children's Hospital, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Radiology, University of Calgary, Calgary, Alberta, Canada
| | | | - Sonia Lupien
- Psychiatry, Université de Montréal, Montreal, Quebec, Canada
| | | | - Roger Zemek
- Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Mathieu Dehaes
- Psychology, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|