1
|
Flerlage WJ, Dell’Acqua ML, Cox BM, Nugent FS. Emerging role of A-kinase anchoring protein 5 signaling in reward circuit function. Neural Regen Res 2025; 20:2913-2914. [PMID: 39610100 PMCID: PMC11826476 DOI: 10.4103/nrr.nrr-d-24-00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 11/30/2024] Open
Affiliation(s)
- William J. Flerlage
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, USA
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Brian M. Cox
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, USA
| | - Fereshteh S. Nugent
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, USA
| |
Collapse
|
2
|
Flerlage WJ, Simmons SC, Thomas EH, Gouty S, Tsuda MC, Wu TJ, Armstrong RC, Cox BM, Nugent FS. Effects of Repetitive Mild Traumatic Brain Injury on Corticotropin-Releasing Factor Modulation of Lateral Habenula Excitability and Motivated Behavior. J Neurotrauma 2025; 42:832-850. [PMID: 38943284 DOI: 10.1089/neu.2024.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is a significant health burden due to mTBI-related chronic debilitating cognitive and psychiatric morbidities. Recent evidence from our laboratory suggests a possible dysregulation within reward/motivational circuit function at the level of a subcortical structure, the lateral habenula (LHb), where we demonstrated a causal role for hyperactive LHb in mTBI-induced motivational deficits in self-care grooming behavior in young adult male mice when exposed to mTBI during late adolescence (at ∼8 weeks old). In this study, we extended this observation by further characterizing neurobehavioral effects of this repetitive closed head injury model of mTBI in both young adult male and female mice on LHb excitability, corticotropin releasing factor (CRF) modulation of LHb activity, and behavioral responses of motivation to self-care behavior and approach versus avoidance behavior in the presence of a social- or threat-related stimulus. We show that mTBI increases LHb spontaneous tonic activity in female mice similar to what we previously observed in male mice, as well as promoting LHb neuronal hyperexcitability and hyperpolarization-induced LHb bursting in both male and female mice. Interestingly, mTBI only increases LHb intrinsic excitability in male mice coincident with higher levels of the hyperpolarization-activated cation currents (HCN/Ih) and reduces levels of the M-type potassium currents while potentiating M-currents without altering intrinsic excitability in LHb neurons of female mice. Because persistent dysregulation of brain CRF systems is suggested to contribute to chronic psychiatric morbidities and that LHb neurons are highly responsive to CRF, we tested whether the LHb CRF subsystem becomes engaged following mTBI. We found that in vitro inhibition of CRF receptor type 1 (CRFR1) within the LHb reverses mTBI-induced enhancement of LHb tonic activity and hyperexcitability in both sexes, suggesting that an augmented intra-LHb CRF-CRFR1-mediated signaling contributes to the overall LHb hyperactivity following mTBI. Behaviorally, mTBI diminishes motivation for self-care grooming in female mice as in male mice. mTBI also alters defensive behaviors in the looming shadow task by shifting the innate defensive behaviors toward more passive action locking rather than escape behaviors in response to an aerial threat in both male and female mice, as well as prolonging the latency to escape responses in female mice. While this model of mTBI reduces social preference in male mice, it induces higher social novelty seeking during the novel social encounters in both male and female mice. Overall, our study provides further translational validity for the use of this pre-clinical model of mTBI for investigation of mTBI-related reward circuit dysfunction and mood/motivation-related behavioral deficits in both sexes while uncovering a few sexually dimorphic neurobehavioral effects of this model that may differentially affect young males and females when exposed to this type of mTBI during late adolescence.
Collapse
Affiliation(s)
- William J Flerlage
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sarah C Simmons
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Emily H Thomas
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Shawn Gouty
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Mumeko C Tsuda
- Preclinical Behavior and Modeling Core, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - T John Wu
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Regina C Armstrong
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Brian M Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Fereshteh S Nugent
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Benevides ES, Rana S, Fuller DD. Chemogenetic activation of the diaphragm after spinal cord injury in rats. Respir Physiol Neurobiol 2025; 336:104421. [PMID: 40154905 DOI: 10.1016/j.resp.2025.104421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
We tested the hypothesis that activation of DREADDs in the mid-cervical spinal cord could restore diaphragm activation during spontaneous breathing after cervical spinal cord injury (SCI). Adult Sprague Dawley rats (n = 7) received bilateral mid-cervical ventral horn injections of an AAV construct encoding an excitatory DREADD (AAV9-hSyn-HA-hM3D(Gq)-mCherry; titer: 2.44 × 1013 vg/mL). Subsequently, diaphragm electromyogram (EMG) activity was recorded during spontaneous breathing under isoflurane anesthesia. The selective DREADD ligand JHU37160 (J60) was administered intravenously at acute (3 days), sub-acute (2 weeks), and chronic (2 months) timepoints following cervical hemilesion at spinal level C2. J60 administration resulted in robust increases in diaphragm EMG output at all timepoints, and near-complete restoration of diaphragm EMG activity from the paralyzed hemi-diaphragm in 50 % of trials. Administration of J60 to DREADD naïve, spinal intact rats (n = 8) did not produce an increase in diaphragm activity. These proof-of-concept results indicate that refinement of this technique may provide a strategy for improving diaphragm activation after cervical SCI.
Collapse
Affiliation(s)
- Ethan S Benevides
- Department of Physical Therapy, University of Florida, Gainesville, FL 32601, United States; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32601, United States
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL 32601, United States; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32601, United States; McKnight Brain Institute, University of Florida, Gainesville, FL 32601, United States
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32601, United States; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32601, United States; McKnight Brain Institute, University of Florida, Gainesville, FL 32601, United States.
| |
Collapse
|
4
|
Zhong J, Li H, Cao K, Zhou L, An L, Zhao J, Bai S, Shi Y, Liu Z, Liang Q, Zhang R, Deng D. Glutamate-mediated antidepressant effects of Jieyu I formula via modulation of PFC CaMKII-LHb CaMKII/GABA circuitry in lipopolysaccharide-induced depression model. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119414. [PMID: 39870335 DOI: 10.1016/j.jep.2025.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jieyu I Formula (JY-I) is an improved version of the classic formula "Sini San" documented in the books Shanghan Lun, which is known for regulating the liver and treating depression. However, the disturbance of neuronal signal transmission in the neural circuit of the brain is closely related to the occurrence of depression, yet its neural mechanism is still unclear. AIM OF THE STUDY This study aimed to observe the antidepressant effect of JY-I on depressed mice induced by lipopolysaccharide and its underlying central nervous system mechanisms, focusing on the prefrontal cortex (PFC) to lateral habenular nucleus (LHb) neural circuit in the depressed mice model. MATERIALS AND METHODS JY-I comprised herbs include Bupleurum chinense, Fructus Aurantii, Paeonia lactiflora, Lotus Seed Heart, Schisandra chinensis, and Hypericum perforatum, which are prepared in a ratio of 2:2:2:2:1:1. The mouse model of depression was induced by lipopolysaccharide. The antidepressant efficacy of JY-I was observed by behavioral tests. Observation of the PFC/LHb neuron activity in mice using in-vivo electrophysiological combined with optogenetic technology. Subsequently, the activity of the LHb neuron was observed using immunofluorescence staining analysis and Western blot. Inject Rabies virus into the LHb brain region and observe the projection of the PFC from upstream brain regions received by the LHb. Using chemogenetic techniques to activate/inhibit the PFC-LHb neural circuit and investigate the effect of JY-I on depression-like behaviors. RESULTS Depression-like behaviors in mice can be induced by intraperitoneal administration of lipopolysaccharide, the behavior changes were reversed with the administration of the JY-I. The combination of optogenetics and electrophysiological recording result indicates that JY-I activates glutamate (Glu) neurons in the PFC, thus maintaining an optimal excitatory/inhibitory (E/I) balance and ameliorating depression-like behaviors. Notably, the PFC, a crucial brain area for emotion regulation, exerts its antidepressant effect on downstream LHb region through the activation of Glu neurons. CONCLUSIONS JY-I can significantly improve lipopolysaccharide-induced depression-like behaviors. JY-I exerts antidepressant effects by activating the PFC Glu neurons projecting to the LHb, revealing a promising therapeutic target for depression.
Collapse
Affiliation(s)
- Jialong Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Huan Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Kerun Cao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liuchang Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Lin An
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Jinlan Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Shasha Bai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China
| | - Qi Liang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen, 518000, China.
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China.
| | - Di Deng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China.
| |
Collapse
|
5
|
Wu C, Li M, Chen Z, Feng S, Deng Q, Duan R, Liu TCY, Yang L. Remote photobiomodulation ameliorates behavioral and neuropathological outcomes in a rat model of repeated closed head injury. Transl Psychiatry 2025; 15:8. [PMID: 39799140 PMCID: PMC11724958 DOI: 10.1038/s41398-025-03228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Repeated closed-head injuries (rCHI) from activities like contact sports, falls, military combat, and traffic accidents pose a serious risk due to their cumulative impact on the brain. Often, rCHI is not diagnosed until symptoms of irreversible brain damage appear, highlighting the need for preventive measures. This study assessed the prophylactic efficacy of remote photobiomodulation (PBM) targeted at the lungs against rCHI-induced brain injury and associated behavioral deficits. Utilizing the "Marmarou" weight-drop model, rCHI was induced in rats on days 0, 5, and 10. Remote PBM, employing an 808 nm continuous wave laser, was administered daily in 2-min sessions per lung side over 20 days. Behavioral deficits were assessed through three-chamber social interaction, forced swim, grip strength, open field, elevated plus maze, and Barnes maze tests. Immunofluorescence staining and 3D reconstruction evaluated neuronal damage, apoptosis, degeneration, and the morphology of microglia and astrocytes, as well as astrocyte and microglia-mediated excessive synapse elimination. Additionally, 16S rDNA amplicon sequencing analyzed changes in the lung microbiome following remote PBM treatment. Results demonstrated that remote PBM significantly improved depressive-like behaviors, motor dysfunction, and social interaction impairment while enhancing grip strength and reducing neuronal damage, apoptosis, and degeneration induced by rCHI. Analysis of lung microbiome changes revealed an enrichment of lipopolysaccharide (LPS) biosynthesis pathways, suggesting a potential link to neuroprotection. Furthermore, remote PBM mitigated hyperactivation of cortical microglia and astrocytes and significantly reduced excessive synaptic phagocytosis by these cells, highlighting its potential as a preventive strategy for rCHI with neuroprotective effects.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Meng Li
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Zhe Chen
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
6
|
Bahi A, Dreyer JL. Hippocampal Viral-Mediated Urokinase Plasminogen Activator (uPA) Overexpression Mitigates Stress-Induced Anxiety and Depression in Rats by Increasing Brain-Derived Neurotrophic Factor (BDNF) Levels. Biomolecules 2024; 14:1603. [PMID: 39766310 PMCID: PMC11674468 DOI: 10.3390/biom14121603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Emerging evidence suggests the serine protease, urokinase plasminogen activator (uPA), may play an important role in the modulation of mood and cognitive functions. Also, preliminary evidence indicates that uPA modulates BDNF activity that is known to be involved in the pathogenesis of mood disorders. However, the physiological functions of uPA in specific brain regions for mediating stress-related emotional behaviors remain to be elucidated. Therefore, the aim of this study was to assess the role of ectopic uPA expression on anxiety- and depression-like behaviors following social defeat stress in rats. For this purpose, we inspected the behavioral outcomes following bilateral stereotaxic delivery of uPA-overexpressing lentiviral vectors in the hippocampus using a series of behavioral tests. Results show that hippocampal uPA gain-of-function prevented stress-elicited anxiogenic-like effects, as determined in the marble burying, open field, and elevated plus maze tests, with no alterations in spontaneous locomotor activity. Also, ectopic uPA overexpression resulted in anti-depressant-like effects in the sucrose splash, tail suspension, and forced swim tests. Most importantly, uPA overexpression increased hippocampal BDNF levels, and a strong positive correlation was found using the Pearson test. Moreover, the same correlation analysis revealed a strong negative relationship between uPA mRNA and parameters of anxiety- and depression-like behaviors. Taken together, this work highlights the importance of considering uPA activation and provides new insights into the mechanisms involved in the pathophysiology of stress-elicited mood illnesses, which should help in the development of new approaches to tackle depression and anxiety disorders.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jean-Luc Dreyer
- Division of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
7
|
Hwang EK, Zapata A, Hu V, Hoffman AF, Wang HL, Liu B, Morales M, Lupica CR. Basal forebrain-lateral habenula inputs and control of impulsive behavior. Neuropsychopharmacology 2024; 49:2060-2068. [PMID: 39155312 PMCID: PMC11480124 DOI: 10.1038/s41386-024-01963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Deficits in impulse control are observed in several neurocognitive disorders, including attention deficit hyperactivity (ADHD), substance use disorders (SUDs), and those following traumatic brain injury (TBI). Understanding brain circuits and mechanisms contributing to impulsive behavior may aid in identifying therapeutic interventions. We previously reported that intact lateral habenula (LHb) function is necessary to limit impulsivity defined by impaired response inhibition in rats. Here, we examine the involvement of a synaptic input to the LHb on response inhibition using cellular, circuit, and behavioral approaches. Retrograde fluorogold tracing identified basal forebrain (BF) inputs to LHb, primarily arising from ventral pallidum and nucleus accumbens shell (VP/NAcs). Glutamic acid decarboxylase and cannabinoid CB1 receptor (CB1R) mRNAs colocalized with fluorogold, suggesting a cannabinoid modulated GABAergic pathway. Optogenetic activation of these axons strongly inhibited LHb neuron action potentials and GABA release was tonically suppressed by an endogenous cannabinoid in vitro. Behavioral experiments showed that response inhibition during signaled reward omission was impaired when VP/NAcs inputs to LHb were optogenetically stimulated, whereas inhibition of this pathway did not alter LHb control of impulsivity. Systemic injection with the psychotropic phytocannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC), also increased impulsivity in male, and not female rats, and this was blocked by LHb CB1R antagonism. However, as optogenetic VP/NAcs pathway inhibition did not alter impulse control, we conclude that the pro-impulsive effects of Δ9-THC likely do not occur via inhibition of this afferent. These results identify an inhibitory LHb afferent that is controlled by CB1Rs that can regulate impulsive behavior.
Collapse
Affiliation(s)
- Eun-Kyung Hwang
- Computational and Systems Neuroscience Branch, Electrophysiology Research Section, U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
- Department of Behavioral Neuroscience, Oregon Health Sciences University, Portland, OR, 97239, USA
| | - Agustin Zapata
- Computational and Systems Neuroscience Branch, Electrophysiology Research Section, U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Vivian Hu
- Computational and Systems Neuroscience Branch, Electrophysiology Research Section, U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Alexander F Hoffman
- Computational and Systems Neuroscience Branch, Electrophysiology Research Section, U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Hui-Ling Wang
- Integrative Neuroscience Research Branch, Neuronal Networks Section, U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Bing Liu
- Integrative Neuroscience Research Branch, Neuronal Networks Section, U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Marisela Morales
- Integrative Neuroscience Research Branch, Neuronal Networks Section, U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Carl R Lupica
- Computational and Systems Neuroscience Branch, Electrophysiology Research Section, U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
8
|
Flerlage WJ, Simmons SC, Thomas EH, Gouty S, Cox BM, Nugent FS. Dysregulation of kappa opioid receptor neuromodulation of lateral habenula synaptic function following a repetitive mild traumatic brain injury. Pharmacol Biochem Behav 2024; 243:173838. [PMID: 39067532 PMCID: PMC11344655 DOI: 10.1016/j.pbb.2024.173838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Mild traumatic brain injury (mTBI) increases the risk of affective disorders, anxiety and substance use disorder. The lateral habenula (LHb) plays an important role in pathophysiology of psychiatric disorders. Recently, we demonstrated a causal link between mTBI-induced LHb hyperactivity due to excitation/inhibition (E/I) imbalance and motivational deficits in male mice using a repetitive closed head injury mTBI model. A major neuromodulatory system that is responsive to traumatic brain injuries, influences affective states and also modulates LHb activity is the dynorphin/kappa opioid receptor (Dyn/KOR) system. However, the effects of mTBI on KOR neuromodulation of LHb function are unknown. Here, we first used retrograde tracing in male and female Cre mouse lines and identified several major KOR-expressing and two prominent Dyn-expressing inputs projecting to the mouse LHb, highlighting the medial prefrontal cortex (mPFC) and the ventromedial nucleus of the hypothalamus (VMH) as the main LHb-projecting Dyn inputs that regulate KOR signaling to the LHb. We then functionally evaluated the effects of in vitro KOR modulation of spontaneous synaptic activity within the LHb of male and female sham and mTBI mice at 4 week post-injury. We observed sex-specific differences in spontaneous release of glutamate and GABA from presynaptic terminals onto LHb neurons with higher levels of presynaptic glutamate and GABA release in females compared to male mice. However, KOR effects on the spontaneous E/I ratios and synaptic drive ratio within the LHb did not differ between male and female sham and mTBI mice. KOR activation generally suppressed spontaneous glutamatergic transmission without altering GABAergic transmission, resulting in a significant but sex-similar reduction in net spontaneous E/I and synaptic drive ratios in LHb neurons of sham mice. Following mTBI, while responses to KOR activation at LHb glutamatergic synapses remained intact, LHb GABAergic synapses acquired an additional sensitivity to KOR-mediated inhibition where we observed a reduction in GABA release probability in response to KOR stimulation in LHb neurons of mTBI mice. Further analysis of percent change in spontaneous synaptic ratios induced by KOR activation revealed that independent of sex mTBI switches KOR-driven synaptic inhibition of LHb neurons (normally observed in sham mice) in a subset of mTBI mice toward synaptic excitation resulting in mTBI-induced divergence of KOR actions within the LHb. Overall, we uncovered the sources of major Dyn/KOR-expressing synaptic inputs projecting to the mouse LHb. We demonstrate that an engagement of intra-LHb Dyn/KOR signaling provides a global KOR-driven synaptic inhibition within the mouse LHb independent of sex. The additional engagement of KOR-mediated action on LHb GABAergic transmission by mTBI could contribute to the E/I imbalance after mTBI, with Dyn/KOR signaling serving as a disinhibitory mechanism for LHb neurons of a subset of mTBI mice.
Collapse
Affiliation(s)
- William J Flerlage
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA; Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| | - Sarah C Simmons
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA; Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| | - Emily H Thomas
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA; Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| | - Shawn Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA; Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| | - Brian M Cox
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA; Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| | - Fereshteh S Nugent
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA; Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| |
Collapse
|
9
|
Flerlage WJ, Simmons SC, Thomas EH, Gouty S, Tsuda MC, Wu TJ, Armstrong RC, Cox BM, Nugent FS. Effects of Repetitive Mild Traumatic Brain Injury on Corticotropin-Releasing Factor Modulation of Lateral Habenula Excitability and Motivated Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589760. [PMID: 38798343 PMCID: PMC11118357 DOI: 10.1101/2024.04.16.589760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mild traumatic brain injury (mTBI) is a significant health burden due to mTBI-related chronic debilitating cognitive and psychiatric morbidities. Recent evidence from our laboratory suggests a possible dysregulation within reward/motivational circuit function at the level of a subcortical structure, the lateral habenula (LHb), where we demonstrated a causal role for hyperactive LHb in mTBI-induced motivational deficits in self-care grooming behavior in young adult male mice when exposed to mTBI injury during late adolescence (at ~8 weeks old). Here we extended this observation by further characterizing neurobehavioral effects of this repetitive closed head injury model of mTBI in both young adult male and female mice on LHb excitability, corticotropin releasing factor (CRF) modulation of LHb activity, and behavioral responses of motivation to self-care behavior, and approach versus avoidance behavior in the presence of a social- or threat-related stimulus. We show that mTBI increases LHb spontaneous tonic activity in female mice similar to what we previously observed in male mice as well as promoting LHb neuronal hyperexcitability and hyperpolarization-induced LHb bursting in both male and female mice. Interestingly, mTBI only increases LHb intrinsic excitability in male mice coincident with higher levels of the hyperpolarization-activated cation currents (HCN/Ih) and reduces levels of the M-type potassium currents while potentiating M-currents without altering intrinsic excitability in LHb neurons of female mice. Since persistent dysregulation of brain CRF systems is suggested to contribute to chronic psychiatric morbidities and that LHb neurons are highly responsive to CRF, we then tested whether LHb CRF subsystem becomes engaged following mTBI. We found that in vitro inhibition of CRF receptor type 1 (CRFR1) within the LHb normalizes mTBI-induced enhancement of LHb tonic activity and hyperexcitability in both sexes, suggesting that an augmented intra-LHb CRF-CRFR1-mediated signaling contributes to the overall LHb hyperactivity following mTBI. Behaviorally, mTBI diminishes motivation for self-care grooming in female mice as in male mice. mTBI also alters defensive behaviors in the looming shadow task by shifting the innate defensive behaviors towards more passive action-locking rather than escape behaviors in response to an aerial threat in both male and female mice as well as prolonging the latency to escape responses in female mice. While, this model of mTBI reduces social preference in male mice, it induces higher social novelty seeking during the novel social encounters in both male and female mice. Overall, our study provides further translational validity for the use of this preclinical model of mTBI for investigation of mTBI-related reward circuit dysfunction and mood/motivation-related behavioral deficits in both sexes while uncovering a few sexually dimorphic neurobehavioral effects of this model that may differentially affect young males and females when exposed to this type of mTBI injury during late adolescence.
Collapse
Affiliation(s)
- William J. Flerlage
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| | - Sarah C. Simmons
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| | - Emily H. Thomas
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| | - Shawn Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| | - Mumeko C. Tsuda
- Preclinical Behavior and Modeling Core, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - T. John Wu
- Uniformed Services University of the Health Sciences, Department of Gynecologic Surgery and Obstetrics, Bethesda, MD 20814
| | - Regina C. Armstrong
- Uniformed Services University of the Health Sciences, Department of Anatomy, Physiology and Genetics, Bethesda, Maryland 20814, USA
| | - Brian M. Cox
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| | - Fereshteh S. Nugent
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| |
Collapse
|
10
|
Flerlage WJ, Simmons SC, Thomas EH, Gouty S, Cox BM, Nugent FS. Dysregulation of Kappa Opioid Receptor Neuromodulation of Lateral Habenula Synaptic Function following a Repetitive Mild Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592017. [PMID: 38746139 PMCID: PMC11092670 DOI: 10.1101/2024.05.01.592017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Mild traumatic brain injury (mTBI) increases the risk of cognitive deficits, affective disorders, anxiety and substance use disorder in affected individuals. Substantial evidence suggests a critical role for the lateral habenula (LHb) in pathophysiology of psychiatric disorders. Recently, we demonstrated a causal link between persistent mTBI-induced LHb hyperactivity due to synaptic excitation/inhibition (E/I) imbalance and motivational deficits in self-care grooming behavior in young adult male mice using a repetitive closed head injury mTBI model. One of the major neuromodulatory systems that is responsive to traumatic brain and spinal cord injuries, influences affective states and also modulates LHb activity is the dynorphin/kappa opioid receptor (Dyn/KOR) system. However, the effects of mTBI on KOR neuromodulation of LHb function is unknown. To address this, we first used retrograde tracing to anatomically verify that the mouse LHb indeed receives Dyn/KOR expressing projections. We identified several major KOR-expressing and Dyn-expressing synaptic inputs projecting to the mouse LHb. We then functionally evaluated the effects of in vitro KOR modulation of spontaneous synaptic activity within the LHb of male and female sham and mTBI mice at 4week post-injury using the repetitive closed head injury mTBI model. Similar to what we previously reported in the LHb of male mTBI mice, mTBI presynaptically diminished spontaneous synaptic activity onto LHb neurons, while shifting synaptic E/I toward excitation in female mouse LHb. Furthermore, KOR activation in either mouse male/female LHb generally suppressed spontaneous glutamatergic transmission without altering GABAergic transmission, resulting in a significant reduction in E/I ratios and decreased excitatory synaptic drive to LHb neurons of male and female sham mice. Interestingly following mTBI, while responses to KOR activation at LHb glutamatergic synapses were observed comparable to those of sham, LHb GABAergic synapses acquired an additional sensitivity to KOR-mediated inhibition. Thus, in contrast to sham LHb, we observed a reduction in GABA release probability in response to KOR stimulation in mTBI LHb, resulting in a chronic loss of KOR-mediated net synaptic inhibition within the LHb. Overall, our findings uncovered the previously unknown sources of major Dyn/KOR-expressing synaptic inputs projecting to the mouse LHb. Further, we demonstrate that an engagement of intra-LHb Dyn/KOR signaling provides a global suppression of excitatory synaptic drive to the mouse LHb which could act as an inhibitory braking mechanism to prevent LHb hyperexcitability. The additional engagement of KOR-mediated modulatory action on LHb GABAergic transmission by mTBI could contribute to the E/I imbalance after mTBI, with Dyn/KOR signaling serving as a disinhibitory mechanism for LHb neurons in male and female mTBI mice.
Collapse
|
11
|
Simmons SC, Flerlage WJ, Langlois LD, Shepard RD, Bouslog C, Thomas EH, Gouty KM, Sanderson JL, Gouty S, Cox BM, Dell'Acqua ML, Nugent FS. AKAP150-anchored PKA regulates synaptic transmission and plasticity, neuronal excitability and CRF neuromodulation in the mouse lateral habenula. Commun Biol 2024; 7:345. [PMID: 38509283 PMCID: PMC10954712 DOI: 10.1038/s42003-024-06041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The scaffolding A-kinase anchoring protein 150 (AKAP150) is critically involved in kinase and phosphatase regulation of synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a key role in brain's processing of rewarding/aversive experiences, however its role in the lateral habenula (LHb, as an important brain reward circuitry) is completely unknown. Using whole cell patch clamp recordings in LHb of male wildtype and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), here we show that the genetic disruption of PKA anchoring to AKAP150 significantly reduces AMPA receptor-mediated glutamatergic transmission and prevents the induction of presynaptic endocannabinoid-mediated long-term depression in LHb neurons. Moreover, ΔPKA mutation potentiates GABAA receptor-mediated inhibitory transmission while increasing LHb intrinsic excitability through suppression of medium afterhyperpolarizations. ΔPKA mutation-induced suppression of medium afterhyperpolarizations also blunts the synaptic and neuroexcitatory actions of the stress neuromodulator, corticotropin releasing factor (CRF), in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPA and GABAA receptor synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPA receptor and potassium channel trafficking and endocannabinoid signaling within the LHb.
Collapse
Affiliation(s)
- Sarah C Simmons
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - William J Flerlage
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Ludovic D Langlois
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Ryan D Shepard
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Christopher Bouslog
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Emily H Thomas
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Kaitlyn M Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Shawn Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Brian M Cox
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Fereshteh S Nugent
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA.
| |
Collapse
|
12
|
Chen Z, Li M, Wu C, Su Y, Feng S, Deng Q, Zou P, Liu TCY, Duan R, Yang L. Photobiomodulation therapy alleviates repeated closed head injury-induced anxiety-like behaviors. JOURNAL OF BIOPHOTONICS 2024; 17:e202300343. [PMID: 37909411 DOI: 10.1002/jbio.202300343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Repeated closed head injury (rCHI) is one of the most common brain injuries. Although extensive studies have focused on how to treat rCHI-induced brain injury and reduce the possibility of developing memory deficits, the prevention of rCHI-induced anxiety has received little research attention. The current study was designed to assess the effects of photobiomodulation (PBM) therapy in preventing anxiety following rCHI. The rCHI disease model was constructed by administering three repeated closed-head injuries within an interval 5 days. 2-min daily PBM therapy using an 808 nm continuous wave laser at 350 mW/cm2 on the scalp was implemented for 20 days. We found that PBM significantly ameliorated rCHII-induced anxiety-like behaviors, neuronal apoptosis, neuronal injury, promotes astrocyte/microglial polarization to anti-inflammatory phenotype, preserves mitochondrial fusion-related protein MFN2, attenuates the elevated mitochondrial fission-related protein DRP1, and mitigates neuronal senescence. We concluded that PBM therapy possesses great potential in preventing anxiety following rCHI.
Collapse
Affiliation(s)
- Zhe Chen
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Meng Li
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Yanlin Su
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shu Feng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Peibin Zou
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
13
|
Simmons S, Flerlage W, Langlois L, Shepard R, Bouslog C, Thomas E, Gouty K, Sanderson J, Gouty S, Cox B, Dell’Acqua M, Nugent F. AKAP150-anchored PKA regulation of synaptic transmission and plasticity, neuronal excitability and CRF neuromodulation in the lateral habenula. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570160. [PMID: 38106086 PMCID: PMC10723374 DOI: 10.1101/2023.12.06.570160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Numerous studies of hippocampal synaptic function in learning and memory have established the functional significance of the scaffolding A-kinase anchoring protein 150 (AKAP150) in kinase and phosphatase regulation of synaptic receptor and ion channel trafficking/function and hence synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a critical role in brain's processing of rewarding/aversive experiences. Here we focused on an unexplored role of AKAP150 in the lateral habenula (LHb), a diencephalic brain region that integrates and relays negative reward signals from forebrain striatal and limbic structures to midbrain monoaminergic centers. LHb aberrant activity (specifically hyperactivity) is also linked to depression. Using whole cell patch clamp recordings in LHb of male wildtype (WT) and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), we found that the genetic disruption of PKA anchoring to AKAP150 significantly reduced AMPA receptor (AMPAR)-mediated glutamatergic transmission and prevented the induction of presynaptic endocannabinoid (eCB)-mediated long-term depression (LTD) in LHb neurons. Moreover, ΔPKA mutation potentiated GABAA receptor (GABAAR)-mediated inhibitory transmission postsynaptically while increasing LHb intrinsic neuronal excitability through suppression of medium afterhyperpolarizations (mAHPs). Given that LHb is a highly stress-responsive brain region, we further tested the effects of corticotropin releasing factor (CRF) stress neuromodulator on synaptic transmission and intrinsic excitability of LHb neurons in WT and ΔPKA mice. As in our earlier study in rat LHb, CRF significantly suppressed GABAergic transmission onto LHb neurons and increased intrinsic excitability by diminishing small-conductance potassium (SK) channel-mediated mAHPs. ΔPKA mutation-induced suppression of mAHPs also blunted the synaptic and neuroexcitatory actions of CRF in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPAR and GABAAR synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPAR and potassium channel trafficking and eCB signaling within the LHb.
Collapse
Affiliation(s)
- S.C. Simmons
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - W.J. Flerlage
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - L.D. Langlois
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - R.D. Shepard
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - C. Bouslog
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - E.H. Thomas
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - K.M. Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - J.L. Sanderson
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - S. Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - B.M. Cox
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - M.L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - F.S. Nugent
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| |
Collapse
|
14
|
Lawson KA, Ruiz CM, Mahler SV. A head-to-head comparison of two DREADD agonists for suppressing operant behavior in rats via VTA dopamine neuron inhibition. Psychopharmacology (Berl) 2023; 240:2101-2110. [PMID: 37530882 PMCID: PMC10794001 DOI: 10.1007/s00213-023-06429-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
RATIONALE Designer receptors exclusively activated by designer drugs (DREADDs) are a tool for "remote control" of defined neuronal populations during behavior. These receptors are inert unless bound by an experimenter-administered designer drug, commonly clozapine-n-oxide (CNO). However, questions have emerged about the suitability of CNO as a systemically administered DREADD agonist. OBJECTIVES Second-generation agonists such as JHU37160 (J60) have been developed, which may have more favorable properties than CNO. Here we sought to directly compare effects of CNO (0, 1, 5, & 10 mg/kg, i.p.) and J60 (0, 0.03, 0.3, & 3 mg/kg, i.p.) on operant food pursuit. METHODS Male and female TH:Cre + rats and their wildtype (WT) littermates received cre-dependent hM4Di-mCherry vector injections into ventral tegmental area (VTA), causing inhibitory DREADD expression in VTA dopamine neurons of TH:Cre + rats. All rats were trained to stably lever press for palatable food on a fixed ratio 10 schedule, and doses of both agonists were tested on separate days in counterbalanced order. RESULTS All three CNO doses reduced operant rewards earned in rats with DREADDs, and no CNO dose had behavioral effects in WT controls. The highest J60 dose tested significantly reduced responding in DREADD rats, but this dose also increased responding in WTs, indicating non-specific effects. The magnitude of CNO and J60 effects in TH:Cre + rats were correlated and were present in both sexes. CONCLUSIONS Findings demonstrate the usefulness of directly comparing DREADD agonists when optimizing behavioral chemogenetics, and highlight the importance of proper controls, regardless of the DREADD agonist employed.
Collapse
Affiliation(s)
- Kate A Lawson
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA.
| | - Christina M Ruiz
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| |
Collapse
|
15
|
Van Savage J, Avegno EM. High dose administration of DREADD agonist JHU37160 produces increases in anxiety-like behavior in male rats. Behav Brain Res 2023; 452:114553. [PMID: 37352979 PMCID: PMC10527408 DOI: 10.1016/j.bbr.2023.114553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are a promising tool for analyzing neural circuitry, and improved DREADD-selective ligands continue to be developed. Relative to clozapine-N-oxide (CNO), JHU37160 is a selective DREADD agonist recently shown to exhibit higher blood brain barrier penetrance and DREADD selectivity in vivo; however, relatively few studies have characterized the behavioral effects of systemic JHU37160 administration in animals. Here, we report a dose-dependent anxiogenic effect of systemic JHU37160 in male Wistar and Long-Evans rats, regardless of DREADD expression, with no impact on locomotor behavior. These results suggest that high dose (1 mg/kg) JHU37160 should be avoided when performing chemogenetic experiments designed to evaluate circuit manipulation on anxiety-like behavior in rats.
Collapse
Affiliation(s)
- Jacqueline Van Savage
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; Tulane University, New Orleans, LA 70118, USA
| | - Elizabeth M Avegno
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA.
| |
Collapse
|
16
|
Lawson KA, Ruiz CM, Mahler SV. A head-to-head comparison of two DREADD agonists for suppressing operant behavior in rats via VTA dopamine neuron inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534429. [PMID: 37034819 PMCID: PMC10081263 DOI: 10.1101/2023.03.27.534429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Rationale Designer receptors exclusively activated by designer drugs (DREADDs) are a tool for "remote control" of defined neuronal populations during behavior. These receptors are inert unless bound by an experimenter-administered designer drug, most commonly clozapine-n-oxide (CNO). However, questions have emerged about the suitability of CNO as a systemically administered DREADD agonist. Objectives Second-generation agonists such as JHU37160 (J60) have been developed, which may have more favorable properties than CNO. Here we sought to directly compare effects of CNO (0, 1, 5, & 10 mg/kg, i.p.) and J60 (0, 0.03, 0.3, & 3 mg/kg, i.p.) on operant food pursuit. Methods Male and female TH:Cre+ rats and their wildtype (WT) littermates received cre-dependent hM4Di-mCherry vector injections into ventral tegmental area (VTA), causing inhibitory DREADD expression in VTA dopamine neurons in TH:Cre+ rats. Rats were trained to stably lever press for palatable food on a fixed ratio 10 schedule, and doses of both agonists were tested on separate days in a counterbalanced order. Results All three CNO doses reduced operant food seeking in rats with DREADDs, and no CNO dose had behavioral effects in WT controls. The highest tested J60 dose significantly reduced responding in DREADD rats, but this dose also increased responding in WTs, indicating non-specific effects. The magnitude of CNO and J60 effects in TH:Cre+ rats were correlated and were present in both sexes. Conclusions Findings demonstrate the usefulness of directly comparing DREADD agonists when optimizing behavioral chemogenetics, and highlight the importance of proper controls, regardless of the DREADD agonist employed.
Collapse
Affiliation(s)
- Kate A Lawson
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA USA
| | - Christina M Ruiz
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA USA
| |
Collapse
|
17
|
Zhang WW, Chen T, Li SY, Wang XY, Liu WB, Wang YQ, Mi WL, Mao-Ying QL, Wang YQ, Chu YX. Tachykinin receptor 3 in the lateral habenula alleviates pain and anxiety comorbidity in mice. Front Immunol 2023; 14:1049739. [PMID: 36756128 PMCID: PMC9900122 DOI: 10.3389/fimmu.2023.1049739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
The coexistence of chronic pain and anxiety is a common clinical phenomenon. Here, the role of tachykinin receptor 3 (NK3R) in the lateral habenula (LHb) in trigeminal neuralgia and in pain-associated anxiety was systematically investigated. First, electrophysiological recording showed that bilateral LHb neurons are hyperactive in a mouse model of trigeminal neuralgia made by partial transection of the infraorbital nerve (pT-ION). Chemicogenetic activation of bilateral LHb glutamatergic neurons in naive mice induced orofacial allodynia and anxiety-like behaviors, and pharmacological activation of NK3R in the LHb attenuated allodynia and anxiety-like behaviors induced by pT-ION. Electrophysiological recording showed that pharmacological activation of NK3R suppressed the abnormal excitation of LHb neurons. In parallel, pharmacological inhibition of NK3R induced orofacial allodynia and anxiety-like behavior in naive mice. The electrophysiological recording showed that pharmacological inhibition of NK3R activates LHb neurons. Neurokinin B (NKB) is an endogenous high-affinity ligand of NK3R, which binds NK3R and activates it to perform physiological functions, and further neuron projection tracing showed that the front section of the periaqueductal gray (fPAG) projects NKB-positive nerve fibers to the LHb. Optogenetics combined with electrophysiology recordings characterize the functional connections in this fPAG NKB → LHb pathway. In addition, electrophysiological recording showed that NKB-positive neurons in the fPAG were more active than NKB-negative neurons in pT-ION mice. Finally, inhibition of NKB release from the fPAG reversed the analgesic and anxiolytic effects of LHb Tacr3 overexpression in pT-ION mice, indicating that fPAG NKB → LHb regulates orofacial allodynia and pain-induced anxious behaviors. These findings for NK3R suggest the cellular mechanism behind pT-ION in the LHb and suggest that the fPAG NKB → LHb circuit is involved in pain and anxiety comorbidity. This previously unrecognized pathway might provide a potential approach for relieving the pain and anxiety associated with trigeminal neuralgia by targeting NK3R.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Teng Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Shi-Yi Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xin-Yue Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wen-Bo Liu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yu-Quan Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China,*Correspondence: Yu-Xia Chu, ; Yan-Qing Wang,
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China,*Correspondence: Yu-Xia Chu, ; Yan-Qing Wang,
| |
Collapse
|