1
|
Fahlbusch SS, Keil S, Epplen JT, Zänker KS, Dittmar T. Comparison of hybrid clones derived from human breast epithelial cells and three different cancer cell lines regarding in vitro cancer stem/ initiating cell properties. BMC Cancer 2020; 20:446. [PMID: 32430004 PMCID: PMC7236176 DOI: 10.1186/s12885-020-06952-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Background Several physiological (fertilization, placentation, wound healing) and pathophysiological processes (infection with enveloped viruses, cancer) depend on cell fusion. In cancer it was postulated that the fusion of cancer cells with normal cells such as macrophages or stem cells may not only give rise to hybrid cells exhibiting novel properties, such as an increased metastatic capacity and drug resistance, but possibly also cancer stem/ initiating cell properties. Hence, hybrid clone cells (M13HS, M13MDA435 and M13MDA231) that were derived from spontaneous fusion events of human M13SV1-EGFP-Neo breast epithelial cells and HS578T-Hyg, MDA-MB-435-Hyg and MDA-MB-231-Hyg cancer cells were investigated regarding potential in vitro cancer stem/ initiating cell properties. Methods CD44/CD24 expression pattern and ALDH1 activity of parental cells and hybrid clones was determined by flow cytometry. A colony formation and mammosphere formation assay was applied to determine the cells’ capability to form colonies and mammospheres. Sox9, Slug and Snail expression levels were determined by Western blot analysis. Results Flow cytometry revealed that all hybrid clone cells were CD44+/CD24−/low, but differed markedly among each other regarding ALDH1 activity. Likewise, each hybrid clone possessed a unique colony formation and mammosphere capacity as well as unique Snail, Slug and Sox9 expression patterns. Nonetheless, comparison of hybrid clones revealed that M13HS hybrids exhibited more in vitro cancer stem/ initiating cell properties than M13MDA231 and M13MDA435 hybrids, such as more ALDH1 positive cells or an increased capacity to form colonies and mammospheres. Conclusion The fate whether cancer stem/ initiating cells may originate from cell fusion events likely depends on the specific characteristics of the parental cells.
Collapse
Affiliation(s)
- Sera Selina Fahlbusch
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Silvia Keil
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Jörg T Epplen
- Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Kurt S Zänker
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany.
| |
Collapse
|
2
|
Fried S, Tosun S, Troost G, Keil S, Zaenker KS, Dittmar T. Lipopolysaccharide (LPS) Promotes Apoptosis in Human Breast Epithelial × Breast Cancer Hybrids, but Not in Parental Cells. PLoS One 2016; 11:e0148438. [PMID: 26863029 PMCID: PMC4749126 DOI: 10.1371/journal.pone.0148438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/18/2016] [Indexed: 01/03/2023] Open
Abstract
Toll-like receptors (TLRs) belong to the group of pathogen recognition receptors known to play a crucial role in the innate immune system. In cancer, TLR expression is still debated controversially due to contradictory results reporting that both induction of apoptosis as well as tumor progression could depend on TLR signaling, whereby recent data rather indicate a pro-tumorigenic effect. The biological phenomenon of cell fusion has been associated with cancer progression due to findings revealing that fusion-derived hybrid cells could exhibit properties like an increased metastatogenic capacity and an increased drug resistance. Thus, M13MDA435 hybrid cell lines, which derived from spontaneous fusion events between human M13SV1-EGFP-Neo breast epithelial cells and human MDA-MB-435-Hyg breast cancer cells, were investigated. Cultivation of cells in the presence of the TLR4 ligand LPS potently induced apoptosis in all hybrid clones, but not in parental cells, which was most likely attributed to differential kinetics of the TLR4 signal transduction cascade. Activation of this pathway concomitant with NF-κB nuclear translocation and TNF-α expression was solely observed in hybrid cells. However, induction of LPS mediated apoptosis was not TNF-α dependent since TNF-α neutralization was not correlated to a decreased amount of dead cells. In addition to TNF-α, LPS also caused IFN-β expression in hybrid clones 1 and 3. Interestingly, hybrid clones differ in the mode of LPS induced apoptosis. While neutralization of IFN-β was sufficient to impair the LPS induced apoptosis in M13MDA435-1 and -3 hybrids, the amount of apoptotic M13MDA435-2 and -4 hybrid cells remained unchanged in the presence of neutralizing IFN-β antibodies. In summary, the fusion of non-LPS susceptible parental human breast epithelial cells and human breast cancer cells gave rise to LPS susceptible hybrid cells, which is in view with the cell fusion hypothesis that hybrid cells could exhibit novel properties.
Collapse
Affiliation(s)
- Sabrina Fried
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, Witten, Germany
| | - Songuel Tosun
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, Witten, Germany
| | - Gabriele Troost
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, Witten, Germany
| | - Silvia Keil
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, Witten, Germany
| | - Kurt S. Zaenker
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, Witten, Germany
| | - Thomas Dittmar
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, Witten, Germany
- * E-mail:
| |
Collapse
|
3
|
Fusion of CCL21 non-migratory active breast epithelial and breast cancer cells give rise to CCL21 migratory active tumor hybrid cell lines. PLoS One 2013; 8:e63711. [PMID: 23667660 PMCID: PMC3646822 DOI: 10.1371/journal.pone.0063711] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/07/2013] [Indexed: 12/16/2022] Open
Abstract
The biological phenomenon of cell fusion has been linked to tumor progression because several data provided evidence that fusion of tumor cells and normal cells gave rise to hybrid cell lines exhibiting novel properties, such as increased metastatogenic capacity and an enhanced drug resistance. Here we investigated M13HS hybrid cell lines, derived from spontaneous fusion events between M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics and HS578T-Hyg breast cancer cells, concerning CCL21/CCR7 signaling. Western Blot analysis showed that all cell lines varied in their CCR7 expression levels as well as differed in the induction and kinetics of CCR7 specific signal transduction cascades. Flow cytometry-based calcium measurements revealed that a CCL21 induced calcium influx was solely detected in M13HS hybrid cell lines. Cell migration demonstrated that only M13HS hybrid cell lines, but not parental derivatives, responded to CCL21 stimulation with an increased migratory activity. Knockdown of CCR7 expression by siRNA completely abrogated the CCL21 induced migration of hybrid cell lines indicating the necessity of CCL21/CCR7 signaling. Because the CCL21/CCR7 axis has been linked to metastatic spreading of breast cancer to lymph nodes we conclude from our data that cell fusion could be a mechanism explaining the origin of metastatic cancer (hybrid) cells.
Collapse
|
4
|
Nagler C, Hardt C, Zänker KS, Dittmar T. Co-cultivation of murine BMDCs with 67NR mouse mammary carcinoma cells give rise to highly drug resistant cells. Cancer Cell Int 2011; 11:21. [PMID: 21711510 PMCID: PMC3135493 DOI: 10.1186/1475-2867-11-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 06/28/2011] [Indexed: 12/11/2022] Open
Abstract
Background Tumor tissue resembles chronically inflamed tissue. Since chronic inflammatory conditions are a strong stimulus for bone marrow-derived cells (BMDCs) it can be assumed that recruitment of BMDCs into cancer tissue should be a common phenomenon. Several data have outlined that BMDC can influence tumor growth and metastasis, e.g., by inducing a paracrine acting feedback loop in tumor cells. Likewise, cell fusion and horizontal gene transfer are further mechanisms how BMDCs can trigger tumor progression. Results Hygromycin resistant murine 67NR-Hyg mammary carcinoma cells were co-cultivated with puromycin resistant murine BMDCs from Tg(GFPU)5Nagy/J mice. Isolation of hygromycin/puromycin resistant mBMDC/67NR-Hyg cell clones was performed by a dual drug selection procedure. PCR analysis revealed an overlap of parental markers in mBMDC/67NR-Hyg cell clones, suggesting that dual resistant cells originated by cell fusion. By contrast, both STR and SNP data analysis indicated that only parental 67NR-Hyg alleles were found in mBMDC/67NR-Hyg cell clones favoring horizontal gene transfer as the mode of origin. RealTime-PCR-array analysis showed a marked up-regulation of Abcb1a and Abcb1b ABC multidrug transporters in mBMDC/67NR-Hyg clones, which was verified by Western Blot analysis. Moreover, the markedly increased Abcb1a/Abcb1b expression was correlated to an efficient Rhodamine 123 efflux, which was completely inhibited by verapamil, a well-known Abcb1a/Abcb1b inhibitor. Likewise, mBMDCs/67NR-Hyg clones revealed a marked resistance towards chemotherapeutic drugs including 17-DMAG, doxorubicin, etoposide and paclitaxel. In accordance to Rhodamine 123 efflux data, chemotherapeutic drug resistance of mBMDC/67NR-Hyg cells was impaired by verapamil mediated blockage of Abc1a/Abcb1b multidrug transporter function. Conclusion Co-cultivation of mBMDCs and mouse 67NR-Hyg mammary carcinoma cells gave rise to highly drug resistant cells. Even though it remains unknown whether mBMDC/67NR-Hyg clones originated by cell fusion or horizontal gene transfer, our data indicate that the exchange of genetic information between two cellular entities is crucial for the origin of highly drug resistant cancer (hybrid) cells, which might be capable to survive chemotherapy.
Collapse
Affiliation(s)
- Christa Nagler
- Institute of Immunology, Witten/Herdecke University, Stockumer Str, 10, 58448 Witten, Germany.
| | | | | | | |
Collapse
|
5
|
Dittmar T, Schwitalla S, Seidel J, Haverkampf S, Reith G, Meyer-Staeckling S, Brandt BH, Niggemann B, Zänker KS. Characterization of hybrid cells derived from spontaneous fusion events between breast epithelial cells exhibiting stem-like characteristics and breast cancer cells. Clin Exp Metastasis 2010; 28:75-90. [PMID: 20981475 DOI: 10.1007/s10585-010-9359-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 10/11/2010] [Indexed: 02/08/2023]
Abstract
Several data of the past years clearly indicated that the fusion of tumor cells and tumor cells or tumor cells and normal cells can give rise to hybrids cells exhibited novel properties such as an increased malignancy, drug resistance, or resistance to apoptosis. In the present study we characterized hybrid cells derived from spontaneous fusion events between the breast epithelial cell line M13SV1-EGFP-Neo and two breast cancer cell lines: HS578T-Hyg and MDA-MB-435-Hyg. Short-tandem-repeat analysis revealed an overlap of parental alleles in all hybrid cells indicating that hybrid cells originated from real cell fusion events. RealTime-PCR-array gene expression data provided evidence that each hybrid cell clone exhibited a unique gene expression pattern, resulting in a specific resistance of hybrid clones towards chemotherapeutic drugs, such as doxorubicin and paclitaxel, as well as a specific migratory behavior of hybrid clones towards EGF. For instance, M13MDA435-4 hybrids showed a marked resistance towards etoposide, doxorubicin and paclitaxel, whereas hybrid clones M13MDA-435-1 and -2 were only resistant towards etoposide. Likewise, all investigated M13MDA435 hybrids responded to EGF with an increased migratory activity, whereas the migration of parental MDA-MB-435-Hyg cells was blocked by EGF, suggesting that M13MDA435 hybrids may have acquired a new motility pathway. Similar findings have been obtained for M13HS hybrids. We conclude from our data that they further support the hypothesis that cell fusion could give rise to drug resistant and migratory active tumor (hybrid) cells in cancer.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Zentrum für Biomedizinische Ausbildung und Forschung an der UWH (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Heyder C, Gloria-Maercker E, Hatzmann W, Niggemann B, Zänker KS, Dittmar T. Role of the beta1-integrin subunit in the adhesion, extravasation and migration of T24 human bladder carcinoma cells. Clin Exp Metastasis 2005; 22:99-106. [PMID: 16086230 DOI: 10.1007/s10585-005-4335-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 03/22/2005] [Indexed: 12/27/2022]
Abstract
The abilities of tumor cells to extravasate from the blood vessel system and to migrate through the connective tissue are prerequisites in metastasis formation. Both processes are chiefly mediated by integrins, which mediate both cell-cell and cell-matrix interactions. We investigated the role of integrin subunits in the adhesion, extravasation and migration of the highly invasive human bladder carcinoma cell line T24. Here we show that inhibition of the beta(1)-integrin subunit using the specific beta(1)-integrin blocking antibody 4B4 significantly reduces the adhesion to HUVEC and transmigratory activity of T24 cells. The blockade of the beta(1)-integrin subunit also resulted in a significantly reduced locomotory activity of T24 cells. A detailed cell migration analysis on a single cell level revealed that blockade of the beta(1)-integrin subunit leads to an altered migration pattern of single cells but does not influence migration per se. Migration parameters such as time active, velocity and distance migrated were significantly reduced as compared to untreated control cells. Our observations strongly suggest a central role for the beta(1)-integrin subunit in forming the cell-cell and cell-matrix bonds necessary for adhesion, extravasation and migration.
Collapse
Affiliation(s)
- Christoph Heyder
- Institute of Immunology, Witten/Herdecke University, 58448 Witten, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Katterle Y, Brandt BH, Dowdy SF, Niggemann B, Zänker KS, Dittmar T. Antitumour effects of PLC-gamma1-(SH2)2-TAT fusion proteins on EGFR/c-erbB-2-positive breast cancer cells. Br J Cancer 2004; 90:230-5. [PMID: 14710234 PMCID: PMC2395298 DOI: 10.1038/sj.bjc.6601506] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Due to its pivotal role in the growth factor-mediated tumour cell migration, the adaptor protein phospholipase C-gamma1 (PLC-gamma1) is an appropriate target to block ultimately the spreading of EGFR/c-erbB-2-positive tumour cells, thereby minimising metastasis formation. Here, we present an approach to block PLC-gamma1 activity by using protein-based PLC-gamma1 inhibitors consisting of PLC-gamma1 SH2 domains, which were fused to the TAT-transduction domain to ensure a high protein transduction efficiency. Two proteins were generated containing one PLC-gamma1-SH2-domain (PS1-TAT) or two PLC-gamma1-SH2 domains (PS2-TAT). PS2-TAT treatment of the EGFR/c-erbB-2-positive cell line MDA-HER2 resulted in a reduction of the EGF-mediated PLC-gamma1 tyrosine phosphorylation of about 30%, concomitant with a complete abrogation of the EGF-driven calcium influx. In addition to this, long-term PS2-TAT treatment both reduces the EGF-mediated migration of about 75% combined with a markedly decreased time locomotion of single MDA-HER2 cells as well as decreases the proliferation of MDA-HER2 cells by about 50%. Due to its antitumoral capacity on EGFR/c-erbB-2-positive breast cancer cells, we conclude from our results that the protein-based PLC-gamma1 inhibitor PS2-TAT may be a means for novel adjuvant antitumour strategies to minimise metastasis formation because of the blockade of cell migration and proliferation.
Collapse
Affiliation(s)
- Y Katterle
- Institute of Immunology, University of Witten/Herdecke, Stockumer Strasse 10, 58448 Witten, Germany
| | - B H Brandt
- Institute for Clinical Chemistry and Laboratory Medicine, Westfälische-Wilhelms-University of Münster, Albert-Schweitzer-Strasse 33, 48129 Münster, Germany
| | - S F Dowdy
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0686, USA
| | - B Niggemann
- Institute of Immunology, University of Witten/Herdecke, Stockumer Strasse 10, 58448 Witten, Germany
| | - K S Zänker
- Institute of Immunology, University of Witten/Herdecke, Stockumer Strasse 10, 58448 Witten, Germany
| | - T Dittmar
- Institute of Immunology, University of Witten/Herdecke, Stockumer Strasse 10, 58448 Witten, Germany
- Institute of Immunology, University of Witten/Herdecke, Stockumer Strasse 10, 58448 Witten, Germany. E-mail:
| |
Collapse
|