1
|
Timilsina H, Kompaniiets D, Arya SP, Postema RM, Jahan R, Reynolds AM, Thennakoon SKS, Liu B, Tan X. DNA aptamers targeting P. aeruginosa RNAP. Chem Commun (Camb) 2025; 61:4848-4851. [PMID: 40042155 DOI: 10.1039/d5cc00682a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
We present the first DNA aptamers designed to target the RNA polymerase (RNAP) of Pseudomonas aeruginosa. Utilizing SELEX, we identified and examined aptamers, among which the R2 aptamer demonstrated high specificity and significant binding affinity for RNAP. R2 effectively captured RNAP, making it suitable for protein tandem purification and coating applications. These results have revealed that aptamers are valuable tools for investigating P. aeruginosa RNAP.
Collapse
Affiliation(s)
- Hari Timilsina
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, USA.
| | - Dmytro Kompaniiets
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA.
| | - Satya Prakash Arya
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, USA.
| | - Rick Mason Postema
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, USA.
| | - Raunak Jahan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, USA.
| | - Andrew Michael Reynolds
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, USA.
| | | | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA.
| | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, USA.
| |
Collapse
|
2
|
Silwal AP, Thennakoon SKS, Jahan R, Arya SP, Postema RM, Timilsina HP, Reynolds AM, Kokensparger KB, Tan X. Aptamer-Assisted DNA SELEX: Dual-Site Targeting of a Single Protein. ACS Biomater Sci Eng 2025. [PMID: 40016918 DOI: 10.1021/acsbiomaterials.4c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Heterobivalent fusion aptamers that target a single protein show significant promise for studying protein-protein interactions. However, a major challenge is finding two distinct aptamers that can simultaneously recognize the same protein. In this study, we used a novel technique called Aptamer-Assisted DNA SELEX (AADS) to isolate two distinct aptamers capable of recognizing different sites on the programmed death-ligand 1 (PD-L1) protein. Initially, Aptamer 1 (P1C2) was identified by using conventional DNA SELEX targeting the PD-L1 protein. Subsequently, Aptamer 2 (P1CSC) was obtained via AADS, which was designed to bind to the PD-L1/P1C2 complex. After confirming that both aptamers could simultaneously recognize the PD-L1 protein, we engineered fusion aptamers by optimizing their orientation and linker sequences, resulting in the creation of the optimized fusion aptamer, P1CSC-T7-P1C1. Our fusion aptamer targeting PD-L1 demonstrated remarkable specificity and affinity, effectively inhibiting PD-1/PD-L1 interactions at both the protein and cellular levels. These findings highlight the potential of fusion aptamers via AADS as powerful tools for targeting the PD-L1 protein and cancer cells (A549 cells). This represents a significant advancement in aptamer-based molecular recognition and has the potential to drive innovation as a versatile method for targeting a wide range of proteins.
Collapse
Affiliation(s)
- Achut Prasad Silwal
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | | | - Raunak Jahan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Satya Prakash Arya
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Rick Mason Postema
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Hari Prasad Timilsina
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Andrew Michael Reynolds
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Kaytelee Brooke Kokensparger
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
3
|
Kedir WM, Li L, Tan YS, Bajalovic N, Loke DK. Nanomaterials and methods for cancer therapy: 2D materials, biomolecules, and molecular dynamics simulations. J Mater Chem B 2024; 12:12141-12173. [PMID: 39502031 DOI: 10.1039/d4tb01667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This review explores the potential of biomolecule-based nanomaterials, i.e., protein, peptide, nucleic acid, and polysaccharide-based nanomaterials, in cancer nanomedicine. It highlights the wide range of design possibilities for creating multifunctional nanomedicines using these biomolecule-based nanomaterials. This review also analyzes the primary obstacles in cancer nanomedicine that can be resolved through the usage of nanomaterials based on biomolecules. It also examines the unique in vivo characteristics, programmability, and biological functionalities of these biomolecule-based nanomaterials. This summary outlines the most recent advancements in the development of two-dimensional semiconductor-based nanomaterials for cancer theranostic purposes. It focuses on the latest developments in molecular simulations and modelling to provide a clear understanding of important uses, techniques, and concepts of nanomaterials in drug delivery and synthesis processes. Finally, the review addresses the challenges in molecular simulations, and generating, analyzing, and developing biomolecule-based and two-dimensional semiconductor-based nanomaterials, and highlights the barriers that must be overcome to facilitate their application in clinical settings.
Collapse
Affiliation(s)
- Welela M Kedir
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Lunna Li
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Natasa Bajalovic
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Desmond K Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| |
Collapse
|
4
|
Ye Z, Chen H, Weinans H, van der Wal B, Rios JL. Novel Aptamer Strategies in Combating Bacterial Infections: From Diagnostics to Therapeutics. Pharmaceutics 2024; 16:1140. [PMID: 39339177 PMCID: PMC11435160 DOI: 10.3390/pharmaceutics16091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial infections and antimicrobial resistance are posing substantial difficulties to the worldwide healthcare system. The constraints of conventional diagnostic and therapeutic approaches in dealing with continuously changing infections highlight the necessity for innovative solutions. Aptamers, which are synthetic oligonucleotide ligands with a high degree of specificity and affinity, have demonstrated significant promise in the field of bacterial infection management. This review examines the use of aptamers in the diagnosis and therapy of bacterial infections. The scope of this study includes the utilization of aptasensors and imaging technologies, with a particular focus on their ability to detect conditions at an early stage. Aptamers have shown exceptional effectiveness in suppressing bacterial proliferation and halting the development of biofilms in therapeutic settings. In addition, they possess the capacity to regulate immune responses and serve as carriers in nanomaterial-based techniques, including radiation and photodynamic therapy. We also explore potential solutions to the challenges faced by aptamers, such as nuclease degradation and in vivo instability, to broaden the range of applications for aptamers to combat bacterial infections.
Collapse
Affiliation(s)
- Zijian Ye
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Huaizhi Chen
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), 2628 CD Delft, The Netherlands
| | - Bart van der Wal
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jaqueline Lourdes Rios
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
5
|
Sioud M, Juzeniene A, Sæbøe-Larssen S. Exploring the Impact of mRNA Modifications on Translation Efficiency and Immune Tolerance to Self-Antigens. Vaccines (Basel) 2024; 12:624. [PMID: 38932353 PMCID: PMC11209393 DOI: 10.3390/vaccines12060624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Therapeutic modified mRNAs are being developed for a broad range of human diseases. However, the impact of potential miscoding of modified mRNAs on self-tolerance remains unknown. Additionally, more studies are needed to explore the effects of nucleoside alkylation on translation. While all six tested modifications are tolerated as substrates by T7 RNA polymerase and inhibited mRNA immunogenicity, the translation efficiency varied significantly depending on the type of modification. In contrast to methylation, ethylation at the N1 position of pseudouridine (Ψ) hindered translation, suggesting that the C5-C1' glycosidic bond alone is not a critical element for high translation. Inhibition of mRNA translation was also observed with 5-methoxyuridine modification. However, this inhibition was partially alleviated through the optimization of mRNA coding sequences. BALB/c mice immunized with syngeneic ψ-modified mRNA encoding for Wilms' tumor antigen-1 (WT1) developed a low but significant level of anti-WT1 IgG antibodies compared to those immunized with either unmodified or N1-methyl ψ-modified mRNA. Overall, the data indicate that adding a simple ethyl group (-CH2CH3) at the N1 position of ψ has a major negative effect on translation despite its reduced immunogenicity. Additionally, mRNA containing Ψ may alter translation fidelity at certain codons, which could lead to a breakdown of immune tolerance to self-antigens. This concern should be taken into account during gene replacement therapies, although it could benefit mRNA-based vaccines by generating a diverse repertoire of antigens.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Cancer Immunology, Oslo University Hospital, Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway
| | - Asta Juzeniene
- Department of Radiation Biology, Oslo University Hospital, Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway;
| | - Stein Sæbøe-Larssen
- Department of cellular Therapy, Oslo University Hospital, Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway;
| |
Collapse
|
6
|
Kim W, Song ES, Lee SH, Yang SH, Cho J, Kim SJ. A new DNA aptamer which binds to SARS-CoV-2 spike protein and reduces pro-inflammatory response. Sci Rep 2024; 14:7516. [PMID: 38553521 PMCID: PMC10980804 DOI: 10.1038/s41598-024-58315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
COVID-19 caused by SARS-CoV-2 spread rapidly around the world, endangering the health of people globally. The SARS-CoV-2 spike protein initiates entry into target cells by binding to human angiotensin-converting enzyme 2 (ACE2). In this study, we developed DNA aptamers that specifically bind to the SARS-CoV-2 spike protein, thereby inhibiting its binding to ACE2. DNA aptamers are small nucleic acid fragments with random structures that selectively bind to various target molecules. We identified nine aptamers targeting the SARS-CoV-2 spike protein using the systematic evolution of ligands by exponential enrichment (SELEX) method and selected three optimal aptamers by comparing their binding affinities. Additionally, we confirmed that the DNA aptamers suppressed pro-inflammatory cytokines induced by the SARS-CoV-2 spike protein in ACE2-overexpressing HEK293 cells. Overall, the DNA aptamer developed in this study has the potential to bind to the SARS-CoV-2 spike protein and inhibit or block its interaction with ACE2. Thus, our DNA aptamers can be used as new biological tools for the prevention and diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Woong Kim
- Institute of Well-Aging Medicare & Chosun University LAMP Center, Chosun University, Gwangju, 61452, Republic of Korea
| | - Eun Su Song
- Corporate Research Institute, UNICOMPANY, Gwangju, 61008, Republic of Korea
| | - Song Ha Lee
- Department of Business Management, UNICOMPANY, Gwangju, 61008, Republic of Korea
| | - Seung Ho Yang
- Department of Planning Management, UNICOMPANY, Gwangju, 61008, Republic of Korea
| | - Junhyung Cho
- Division of Emerging Viral Diseases and Vector Research, Centre for Infectious Diseases Research, Korea National Institute of Health, Korea Centres for Disease Control and Prevention Agency, Cheongju, 28159, Republic of Korea
| | - Seok-Jun Kim
- Institute of Well-Aging Medicare & Chosun University LAMP Center, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
7
|
Yan X, Wang F, Du H, Huo X, Zhang R, Zhou T, Wang X, Zhang G, Zhang Z. The switch of the DNA tetrahedral tweezers controlled by mercury ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123614. [PMID: 37939581 DOI: 10.1016/j.saa.2023.123614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
In this paper, the one-pot method is used to make the four DNA strands complement each other to construct the basic framework for DNA tetrahedral tweezers. To regulate the opening and closing of DNA tetrahedral tweezers, DNA strands with a high amount of T-base sequences is partially complementary to the tetrahedral framework. Hg2+ can form T-Hg-T hairpin structures with T-base. When DNA tetrahedral tweezers encounter Hg2+, the T-Hg-T structure is formed to shorten the connecting chain, and the tightening force causes the DNA tweezers to change from an open state to a closed state. Conversely, changes in fluorescence intensity due to the structure change can be used to detect the presence of Hg2+.
Collapse
Affiliation(s)
- Xiaoyan Yan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Fang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Huan Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Xiaobing Huo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Ruyan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Ting Zhou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Xiufeng Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Zhiqing Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
8
|
Liu MS, Zhong SS, Jiang S, Wang T, Zhang KH. Bibliometric analysis of aptamer-conjugated nanoparticles for diagnosis in the last two decades. NANOTECHNOLOGY 2023; 35:055102. [PMID: 37879319 DOI: 10.1088/1361-6528/ad06d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Objective.Aptamer-conjugated nanoparticles for diagnosis have recently gained increasing attention. Here, we performed a bibliometric analysis to provide an overview of this field over the past two decades.Methods. The terms 'aptamer, nanoparticles and diagnosis' were used to search for relevant original articles published in English from 2003 to 2022 in the Web of Science database. VOSviewer and CiteSpace software were employed to analyze the development process, knowledge structure, research hotspots, and potential trends in the field of aptamer-conjugated nanoparticles for diagnosis.Results. A total of 1076 original articles were retrieved, with a rapid increase in the annual output and citation. The journal 'Biosensors and Bioelectronics' has contributed the most in this field, and the most influential researcher, institution and country were Weihong Tan, the Chinese Academy of Sciences, China, respectively. Gold nanoparticles and quantum dots were the most used, but in the past three years, research hotspots focused on carbon dots and graphene quantum dots. Diagnostic directions primarily focused on cancer. The most used strategy was label-free electrochemical detection, but in the past two years, colorimetric analysis and fluorescence imaging emerged as hot topics.Conclusion.The bibliometric analysis reveals a rapid increase in the research on aptamer-conjugated nanoparticles for diagnosis, major contributors at the levels of journals, authors, institutions, and countries, and research preferences in diagnostic objects, nanoparticle types, and detection methods, as well as the evolution of research hotspots and future trends.
Collapse
Affiliation(s)
- Mao-Sheng Liu
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, the First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Si-Si Zhong
- Department of Quality and Safety Management, the First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Song Jiang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, the First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ting Wang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, the First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Kun-He Zhang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology & Hepatology, the First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
9
|
Jahan R, Silwal AP, Thennakoon SKS, Arya SP, Postema RM, Timilsina H, Reynolds AM, Tan X. Ni aptamer: DNA mimic of His-tag to recognize Ni-NTA. Chem Commun (Camb) 2023; 59:12851-12854. [PMID: 37807841 DOI: 10.1039/d3cc03349j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
We introduced Ni Apt as the first aptamer with a characterized dissociation constant for recognizing Ni-NTA. Serving as a nucleic acid analog of the His-tag commonly employed for protein purification using Ni-NTA resin, Ni Apt displays a remarkable binding affinity (Kd = 106 nM) towards Ni-NTA. Furthermore, it can be eluted from the resin using imidazole or EDTA, similar to the removal of His-tag from Ni-NTA resin. The versatile capabilities of Ni Apt make it a valuable molecular tool in nucleic acid purification and recognition applications.
Collapse
Affiliation(s)
- Raunak Jahan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Achut Prasad Silwal
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | | | - Satya Prakash Arya
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Rick Mason Postema
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Hari Timilsina
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Andrew Michael Reynolds
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| |
Collapse
|
10
|
Development and classification of RNA aptamers for therapeutic purposes: an updated review with emphasis on cancer. Mol Cell Biochem 2022; 478:1573-1598. [DOI: 10.1007/s11010-022-04614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022]
|
11
|
Chen J, Zhou J, Peng Y, Xie Y, Xiao Y. Aptamers: A prospective tool for infectious diseases diagnosis. J Clin Lab Anal 2022; 36:e24725. [PMID: 36245423 PMCID: PMC9701868 DOI: 10.1002/jcla.24725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/05/2022] Open
Abstract
It is well known that people's health is seriously threatened by various pathogens (such as Mycobacterium tuberculosis, Treponema pallidum, Novel coronavirus, HIV, Mucor, etc.), which leads to heavy socioeconomic burdens. Therefore, early and accurate pathogen diagnosis is essential for timely and effective therapies. Up to now, diagnosing human contagious diseases at molecule and nano levels is remarkably difficult owing to insufficient valid probes when it comes to determining the biological markers of pathogens. Aptamers are a set of high‐specificity and high‐sensitivity plastic oligonucleotides screened in vitro via the selective expansion of ligands by exponential enrichment (SELEX). With the advent of aptamer‐based technologies, their merits have aroused mounting academic interest. In recent years, as new detection and treatment tools, nucleic acid aptamers have been extensively utilized in the field of biomedicine, such as pathogen detection, new drug development, clinical diagnosis, nanotechnology, etc. However, the traditional SELEX method is cumbersome and has a long screening cycle, and it takes several months to screen out aptamers with high specificity. With the persistent development of SELEX‐based aptamer screening technologies, the application scenarios of aptamers have become more and more extensive. The present research briefly reviews the research progress of nucleic acid aptamers in the field of biomedicine, especially in the diagnosis of contagious diseases.
Collapse
Affiliation(s)
- Jiayi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiahuan Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yunchi Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
12
|
Zhou L, Zhang Y, Ma Y. Construction of a redox-responsive drug delivery system utilizing the volume of AS1411 spatial configuration gating mesoporous silica pores. NANOSCALE ADVANCES 2022; 4:4059-4065. [PMID: 36285218 PMCID: PMC9514570 DOI: 10.1039/d2na00446a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 05/30/2023]
Abstract
In recent years, diverse redox-responsive drug delivery systems have emerged to prevent premature drug release and reduce drug toxicity in the human body in cancer treatment. In this paper, we put forward a view of directly utilizing the spatial structure size of the AS1411 aptamer as the nano-gatekeeper on the pore openings of MCM-41 type mesoporous silica and thus constructed a redox-responsive drug delivery system named MCM-41-SS-AS1411. The particles obtained at each step were characterized by TEM, FTIR, SXRD, TGA and zeta potential measurement. The characterization data confirmed that the particles were successfully prepared. The binding amount of the aptamer was ca. 3.1 × 103 for each carrier particle averagely. The anticancer drug Dox was regarded as a drug model to investigate the redox-controlled drug release behavior by fluorescence measurements. The investigation results demonstrate that the spatial volume of aptamer AS1411 can block the mesopore, and this drug-carrier can realize controlled drug release by GSH. We hope this idea can play a prompt role in relevant research. Meanwhile, the preparation steps of this DDS are simplified.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Chemistry, School of Forensic Medicine, China Medical University Shenyang 110122 China
| | - Yajie Zhang
- Department of Gastroenterology, Shengjing Hospital of China Medical University Shenyang 110004 China
| | - Yong Ma
- Department of Chemistry, School of Forensic Medicine, China Medical University Shenyang 110122 China
| |
Collapse
|
13
|
Silwal AP, Thennakoon SKS, Arya SP, Postema RM, Jahan R, Phuoc CMT, Tan X. DNA aptamers inhibit SARS-CoV-2 spike-protein binding to hACE2 by an RBD- independent or dependent approach. Theranostics 2022; 12:5522-5536. [PMID: 35910791 PMCID: PMC9330529 DOI: 10.7150/thno.74428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022] Open
Abstract
Objective: Nobody knows when the COVID-19 pandemic will end or when and where the next coronavirus will outbreak. Therefore, it is still necessary to develop SARS-CoV-2 inhibitors for different variants or even the new coronavirus. Since SARS-CoV-2 uses its surface spike-protein to recognize hACE2, mediating its entry into cells, ligands that can specifically recognize the spike-protein have the potential to prevent infection. Methods: We have recently discovered DNA aptamers against the S2-domain of the WT spike-protein by exploiting the selection process called SELEX. After optimization, among all candidates, the aptamer S2A2C1 has the shortest sequence and the best binding affinity toward the S2-protein. More importantly, the S2A2C1 aptamer does not bind to the RBD of the spike-protein, but it efficiently blocks the spike-protein/hACE2 interaction, suggesting an RBD-independent inhibition approach. To further improve its performance, we conjugated the S2A2C1 aptamer with a reported anti-RBD aptamer, S1B6C3, using various linkers and constructed hetero-bivalent fusion aptamers. Binding affinities of mono and fusion aptamers against the spike-proteins were measured. The inhibition efficacies of mono and fusion aptamers to prevent the hACE2/spike-protein interaction were determined using ELISA. Results: Anti-spike-protein aptamers, including S2A2C1 and S1B6C3-A5-S2A2C1, maintained high binding affinity toward the WT, Delta, and Omicron spike-proteins and high inhibition efficacies to prevent them from binding to hACE2, rendering them well-suited as diagnostic and therapeutic molecular tools to target SARS-CoV-2 and its variants. Conclusions: Overall, we discovered the anti-S2 aptamer, S2A2C1, which inhibits the hACE2/spike-protein interaction via an RBD-independent approach. The anti-S2 and anti-RBD aptamers were conjugated to obtain the fusion aptamer, S1B6C3-A5-S2A2C1, which recognizes the spike-protein by an RBD-dependent approach. Our strategies, which discovered aptamer inhibitors targeting the highly conserved S2-protein, as well as the design of fusion aptamers, can be used to target new coronaviruses as they emerge.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
14
|
Banu K, Mondal B, Rai B, Monica N, Hanumegowda R. Prospects for the application of aptamer based assay platforms in pathogen detection. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Silwal AP, Jahan R, Thennakoon SKS, Arya SP, Postema RM, Vander Ark EC, Tan X. A universal DNA aptamer as an efficient inhibitor against spike-protein/hACE2 interactions. Chem Commun (Camb) 2022; 58:8049-8052. [PMID: 35748608 DOI: 10.1039/d2cc02647c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A universal aptamer against spike-proteins of diverse SARS-CoV-2 variants was discovered via DNA SELEX towards the wild-type (WT) spike-protein. This aptamer, A1C1, binds to the WT spike-protein or other variants of concern such as Delta and Omicron with low nanomolar affinities. A1C1 inhibited the interaction between hACE2 and various spike-proteins by 85-89%. This universal A1C1 aptamer can be used to design diagnostic and therapeutic molecular tools to target SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Achut Prasad Silwal
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, USA.
| | - Raunak Jahan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, USA.
| | | | - Satya Prakash Arya
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, USA.
| | - Rick Mason Postema
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, USA.
| | - Elizabeth Claire Vander Ark
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, USA.
| | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, USA.
| |
Collapse
|
16
|
Ling P, Cheng S, Wang L, Sun X, Gao X, Gao F. Electrochemically classifying DNA structure based on the small molecule-DNA recognition. Bioelectrochemistry 2022; 147:108193. [PMID: 35753199 DOI: 10.1016/j.bioelechem.2022.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Herein, we reported the differential binding ability of aminoglycosides to DNA structures using electrochemical method through principal component analysis (PCA) to classify different DNA secondary structures and understand the link between secondary structure and DNA conformation. In these analyses, the DNA with different secondary structure motifs: bulge, internal loop, hairpin loop and stem loop were designed. The aminoglycosides as receptors were modified on the surface of electrode. In the presence of DNA, the DNA will be absorbed on the surface of electrode via the recognition of DNA and aminoglycosides, resulting in the electrochemical signal observed in [Fe(CN)6]3-/4-. Furthermore, the DNA structures labeled with 2-aminopurine (2-AP) at the structural motif of interest were also employed to study the binding affinity between aminoglycosides and different DNA motifs. The PCA suggested that this method may achieve nucleotide-specific classification of two independent secondary structure motifs, and the structure and sequence of DNA and the size and structure of small molecule could affect the binding ability of the aminoglycosides and DNA. This approach presents a new approach to classify DNA structure and offers ideas for designing targeted drugs small molecule compounds for wound dressing and drug delivery.
Collapse
Affiliation(s)
- Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| | - Shan Cheng
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Linyu Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Xinyu Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Xianping Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| |
Collapse
|
17
|
Carrión-Marchante R, Frezza V, Salgado-Figueroa A, Pérez-Morgado MI, Martín ME, González VM. DNA Aptamers against Vaccinia-Related Kinase (VRK) 1 Block Proliferation in MCF7 Breast Cancer Cells. Pharmaceuticals (Basel) 2021; 14:473. [PMID: 34067799 PMCID: PMC8156982 DOI: 10.3390/ph14050473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Vaccinia-related kinase (VRK) 1 is a serin/threonine kinase that plays an important role in DNA damage response (DDR), phosphorylating some proteins involved in this process such as 53BP1, NBS1 or H2AX, and in the cell cycle progression. In addition, VRK1 is overexpressed in many cancer types and its correlation with poor prognosis has been determined, showing VRK1 as a new therapeutic target in oncology. Using in vitro selection, high-affinity DNA aptamers to VRK1 were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA), and the selected aptamer population was cloned and sequenced. Three aptamers were selected and characterized. These aptamers recognized the protein kinase VRK1 with an affinity in the nanomolar range and showed a high sensibility. Moreover, the treatment of the MCF7 breast cell line with these aptamers resulted in a decrease in cyclin D1 levels, and an inhibition of cell cycle progression by G1 phase arrest, which induced apoptosis in cells. These results suggest that these aptamers are specific inhibitors of VRK1 that might be developed as potential drugs for the treatment of cancer.
Collapse
Affiliation(s)
| | | | | | | | - M. Elena Martín
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain; (R.C.-M.); (V.F.); (A.S.-F.); (M.I.P.-M.)
| | - Víctor M. González
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain; (R.C.-M.); (V.F.); (A.S.-F.); (M.I.P.-M.)
| |
Collapse
|
18
|
Amero P, Lokesh GLR, Chaudhari RR, Cardenas-Zuniga R, Schubert T, Attia YM, Montalvo-Gonzalez E, Elsayed AM, Ivan C, Wang Z, Cristini V, Franciscis VD, Zhang S, Volk DE, Mitra R, Rodriguez-Aguayo C, Sood AK, Lopez-Berestein G. Conversion of RNA Aptamer into Modified DNA Aptamers Provides for Prolonged Stability and Enhanced Antitumor Activity. J Am Chem Soc 2021; 143:7655-7670. [PMID: 33988982 DOI: 10.1021/jacs.9b10460] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aptamers, synthetic single-strand oligonucleotides that are similar in function to antibodies, are promising as therapeutics because of their minimal side effects. However, the stability and bioavailability of the aptamers pose a challenge. We developed aptamers converted from RNA aptamer to modified DNA aptamers that target phospho-AXL with improved stability and bioavailability. On the basis of the comparative analysis of a library of 17 converted modified DNA aptamers, we selected aptamer candidates, GLB-G25 and GLB-A04, that exhibited the highest bioavailability, stability, and robust antitumor effect in in vitro experiments. Backbone modifications such as thiophosphate or dithiophosphate and a covalent modification of the 5'-end of the aptamer with polyethylene glycol optimized the pharmacokinetic properties, improved the stability of the aptamers in vivo by reducing nuclease hydrolysis and renal clearance, and achieved high and sustained inhibition of AXL at a very low dose. Treatment with these modified aptamers in ovarian cancer orthotopic mouse models significantly reduced tumor growth and the number of metastases. This effective silencing of the phospho-AXL target thus demonstrated that aptamer specificity and bioavailability can be improved by the chemical modification of existing aptamers for phospho-AXL. These results lay the foundation for the translation of these aptamer candidates and companion biomarkers to the clinic.
Collapse
Affiliation(s)
- Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Ganesh L R Lokesh
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Rajan R Chaudhari
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Roberto Cardenas-Zuniga
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | | | - Yasmin M Attia
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo 11796, Egypt
| | - Efigenia Montalvo-Gonzalez
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Integral Laboratory of Food Research, Technological Institute of Tepic, Avenue Tecnologico 2595, 63175 Tepic, Nayarit Mexico
| | - Abdelrahman M Elsayed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11675, Egypt
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Zhihui Wang
- Mathematics in Medicine Program, The Houston Methodist Research Institute, 6670 Bertner Ave, Houston, Texas 77030, United States
| | - Vittorio Cristini
- Mathematics in Medicine Program, The Houston Methodist Research Institute, 6670 Bertner Ave, Houston, Texas 77030, United States
| | - Vittorio de Franciscis
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy.,National Research Council (CNR), Institute of Genetic and Biomedical Research (IRGB)-UOS Milan via Rita Levi Montalcini, 20090 Pieve Emanuele (MI), Italy.,Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Shuxing Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - David E Volk
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Rahul Mitra
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Anil K Sood
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
19
|
Sajid MI, Moazzam M, Kato S, Yeseom Cho K, Tiwari RK. Overcoming Barriers for siRNA Therapeutics: From Bench to Bedside. Pharmaceuticals (Basel) 2020; 13:E294. [PMID: 33036435 PMCID: PMC7600125 DOI: 10.3390/ph13100294] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
The RNA interference (RNAi) pathway possesses immense potential in silencing any gene in human cells. Small interfering RNA (siRNA) can efficiently trigger RNAi silencing of specific genes. FDA Approval of siRNA therapeutics in recent years garnered a new hope in siRNA therapeutics. However, their therapeutic use is limited by several challenges. siRNAs, being negatively charged, are membrane-impermeable and highly unstable in the systemic circulation. In this review, we have comprehensively discussed the extracellular barriers, including enzymatic degradation of siRNAs by serum endonucleases and RNAases, rapid renal clearance, membrane impermeability, and activation of the immune system. Besides, we have thoroughly described the intracellular barriers such as endosomal trap and off-target effects of siRNAs. Moreover, we have reported most of the strategies and techniques in overcoming these barriers, followed by critical comments in translating these molecules from bench to bedside.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan;
| | - Muhammad Moazzam
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan;
| | - Shun Kato
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| | - Kayley Yeseom Cho
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| |
Collapse
|
20
|
Campos-Fernández E, Barcelos L, Souza AG, Goulart LR, Alonso-Goulart V. Post-SELEX Optimization and Characterization of a Prostate Cancer Cell-Specific Aptamer for Diagnosis. ACS OMEGA 2020; 5:3533-3541. [PMID: 32118168 PMCID: PMC7045564 DOI: 10.1021/acsomega.9b03855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/31/2020] [Indexed: 05/27/2023]
Abstract
The RNA aptamer A4 binds specifically to tumor prostate cells. A4 was modified (mA4) by adding deoxyribonucleotides to its ends to remove the reactive 2' hydroxyl groups of RNA's sugar at the ends of the aptamer and to make it more stable to widespread RNase contamination in laboratories. Thus, mA4 would be more suitable to use in the clinical settings of prostate cancer (PCa). We aimed to characterize this optimized oligonucleotide to verify its potential as a diagnostic tool. The sequences and structures of A4 and mA4 were compared through in silico approaches to corroborate their similarity. Then, the degradation of mA4 was measured in appropriate media and human plasma for in vitro tests. In addition, the binding abilities of A4 to prostate cells were contrasted with those of mA4. The effects of mA4 were assessed on the viability, proliferation, and migration of human prostate cell lines RWPE-1 and PC-3 in three-dimensional (3D) cell cultures. mA4 showed configurational motifs similar to those of A4, displayed a half-life in plasma substantially higher than A4, and exhibited a comparable binding capacity to that of A4 and unaltered viability, proliferation, and migration of prostatic cells. Therefore, mA4 maintains the crucial 3D structures of A4 that would allow binding to its target, as suggested by in silico and binding analyses. mA4 may be a good PCa reporter as it does not change cellular parameters of prostate cells when incubated with it. Its additional deoxyribonucleotides make mA4 inherently more chemically stable than A4, avoiding its degradation and favoring its storage and handling for clinical applications. These characteristics support the potential of mA4 to be used in diagnostic systems for PCa.
Collapse
Affiliation(s)
- Esther Campos-Fernández
- Laboratory
of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil
| | - Letícia
S. Barcelos
- Laboratory
of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil
| | - Aline G. Souza
- Laboratory
of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil
| | - Luiz R. Goulart
- Laboratory
of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil
- Department
of Medical Microbiology and Immunology, University of California-Davis, Davis 95616, California, United States
| | - Vivian Alonso-Goulart
- Laboratory
of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil
| |
Collapse
|
21
|
Jain S, Zhu Q, Paz ASP, Schlick T. Identification of novel RNA design candidates by clustering the extended RNA-As-Graphs library. Biochim Biophys Acta Gen Subj 2020; 1864:129534. [PMID: 31954797 DOI: 10.1016/j.bbagen.2020.129534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND We re-evaluate our RNA-As-Graphs clustering approach, using our expanded graph library and new RNA structures, to identify potential RNA-like topologies for design. Our coarse-grained approach represents RNA secondary structures as tree and dual graphs, with vertices and edges corresponding to RNA helices and loops. The graph theoretical framework facilitates graph enumeration, partitioning, and clustering approaches to study RNA structure and its applications. METHODS Clustering graph topologies based on features derived from graph Laplacian matrices and known RNA structures allows us to classify topologies into 'existing' or hypothetical, and the latter into, 'RNA-like' or 'non RNA-like' topologies. Here we update our list of existing tree graph topologies and RAG-3D database of atomic fragments to include newly determined RNA structures. We then use linear and quadratic regression, optionally with dimensionality reduction, to derive graph features and apply several clustering algorithms on our tree-graph library and recently expanded dual-graph library to classify them into the three groups. RESULTS The unsupervised PAM and K-means clustering approaches correctly classify 72-77% of all existing graph topologies and 75-82% of newly added ones as RNA-like. For supervised k-NN clustering, the cross-validation accuracy ranges from 57 to 81%. CONCLUSIONS Using linear regression with unsupervised clustering, or quadratic regression with supervised clustering, provides better accuracies than supervised/linear clustering. All accuracies are better than random, especially for newly added existing topologies, thus lending credibility to our approach. GENERAL SIGNIFICANCE Our updated RAG-3D database and motif classification by clustering present new RNA substructures and RNA-like motifs as novel design candidates.
Collapse
Affiliation(s)
- Swati Jain
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Qiyao Zhu
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Amiel S P Paz
- NYU Shanghai, 1555 Century Avenue, Shanghai 200135, China; NYU-ECNU Center for Computational Chemistry, NYU Shanghai, 3663 Zhongshang Road North, Shanghai 200062, China
| | - Tamar Schlick
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA; NYU-ECNU Center for Computational Chemistry, NYU Shanghai, 3663 Zhongshang Road North, Shanghai 200062, China.
| |
Collapse
|
22
|
Qiu L, Zou X. Scoring Functions for Protein-RNA Complex Structure Prediction: Advances, Applications, and Future Directions. COMMUNICATIONS IN INFORMATION AND SYSTEMS 2020; 20:1-22. [PMID: 33867869 DOI: 10.4310/cis.2020.v20.n1.a1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-RNA interaction is among the most essential of biological events in living cells, being involved in protein synthesizing, RNA processing and transport, DNA transcription, and regulation of gene expression, and many other critical bio-molecular activities. A thorough understanding of this interaction is of paramount importance in fundamental study of a variety of vital cellular processes and therapeutic application for remedy of a broad range of diseases. Experimental high-resolution 3D structure determination is the primary source of knowledge for protein-RNA complexes. However, due to technical limitations, the existing techniques for experimental structure determination couldn't match the demand from fast growing interest in academia and industry. This problem necessitates the alternative high-throughput computational method for protein-RNA complex structure prediction. Similar to the in silico methods used for protein-protein and protein-DNA interactions, a reliable prediction of protein-RNA complex structure requires a scoring function with commensurate discriminatory power. Derived from determined structures and purposed to predict the to-be-determined structures, the scoring function is not only a predictive tool but also a gauge of our knowledge of protein-RNA interaction. In this review, we present an overview of the status of existing scoring functions and the scientific principle behind their constructions as well as their strengths and limitations. Finally, we will discuss about future directions of the scoring function development for protein-RNA structure prediction.
Collapse
Affiliation(s)
- Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211.,Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211.,Department of Biochemistry, University of Missouri, Columbia, Missouri 65211.,Informatics Institute, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
23
|
Smestad J, Wilbanks B, Maher LJ. An in Vitro Selection Strategy Identifying Naked DNA That Localizes to Cell Nuclei. J Am Chem Soc 2019; 141:18375-18379. [PMID: 31702902 DOI: 10.1021/jacs.9b06736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Combinatorial chemistry drives the biological generation of protein structural diversity in antibodies and T-cell receptors. When applied to nucleic acids, vast engineered random libraries of DNA and RNA strands allow selection of affinity reagents ("aptamers") against molecular targets. Selection involves cycles rewarding target binding affinity with amplification. Despite the success of this approach, delivery of selected aptamers across cell membranes and to specific subcellular compartments is an unmet need in chemical biology. Here, we address this challenge, demonstrating in vitro selection of DNA aptamers capable of homing to nuclei of cultured cells without transfection agents or viral transduction. Selection of such folded karyophilic DNA aptamers (∼100 nucleotides) is achieved by a biosensor strategy that rewards exposure to nuclear DNA ligase. Identified DNA molecules are preferentially delivered to cell nuclei within minutes. Related strategies can be envisioned to select aptamers that home to other subcellular compartments.
Collapse
Affiliation(s)
- John Smestad
- Medical Scientist Training Program , Mayo Clinic College of Medicine and Science , Rochester , Minnesota 55905 , United States.,Department of Biochemistry and Molecular Biology , Mayo Clinic College of Medicine and Science , Rochester , Minnesota 55905 , United States
| | - Brandon Wilbanks
- Department of Biochemistry and Molecular Biology , Mayo Clinic College of Medicine and Science , Rochester , Minnesota 55905 , United States.,Mayo Clinic Graduate School of Biomedical Sciences , Rochester , Minnesota 55905 , United States
| | - Louis J Maher
- Department of Biochemistry and Molecular Biology , Mayo Clinic College of Medicine and Science , Rochester , Minnesota 55905 , United States
| |
Collapse
|
24
|
Jain S, Saju S, Petingi L, Schlick T. An extended dual graph library and partitioning algorithm applicable to pseudoknotted RNA structures. Methods 2019; 162-163:74-84. [PMID: 30928508 DOI: 10.1016/j.ymeth.2019.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
Exploring novel RNA topologies is imperative for understanding RNA structure and pursuing its design. Our RNA-As-Graphs (RAG) approach exploits graph theory tools and uses coarse-grained tree and dual graphs to represent RNA helices and loops by vertices and edges. Only dual graphs represent pseudoknotted RNAs fully. Here we develop a dual graph enumeration algorithm to generate an expanded library of dual graph topologies for 2-9 vertices, and extend our dual graph partitioning algorithm to identify all possible RNA subgraphs. Our enumeration algorithm connects smaller-vertex graphs, using all possible edge combinations, to build larger-vertex graphs and retain all non-isomorphic graph topologies, thereby more than doubling the size of our prior library to a total of 110,667 dual graph topologies. We apply our dual graph partitioning algorithm, which keeps pseudoknots and junctions intact, to all existing RNA structures to identify all possible substructures up to 9 vertices. In addition, our expanded dual graph library assigns graph topologies to all RNA graphs and subgraphs, rectifying prior inconsistencies. We update our RAG-3Dual database of RNA atomic fragments with all newly identified substructures and their graph IDs, increasing its size by more than 50 times. The enlarged dual graph library and RAG-3Dual database provide a comprehensive repertoire of graph topologies and atomic fragments to study yet undiscovered RNA molecules and design RNA sequences with novel topologies, including a variety of pseudoknotted RNAs.
Collapse
Affiliation(s)
- Swati Jain
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Sera Saju
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Louis Petingi
- Computer Science Department, College of Staten Island, City University of New York, Staten Island, New York, NY 10314, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA; NYU-East China Normal University Center for Computational Chemistry at New York University Shanghai, Room 340, Geography Building, North Zhongshan Road, 3663 Shanghai, China.
| |
Collapse
|
25
|
Udofot O, Lin LH, Thiel WH, Erwin M, Turner E, Miller FJ, Giangrande PH, Yazdani SK. Delivery of Cell-Specific Aptamers to the Arterial Wall with an Occlusion Perfusion Catheter. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:360-366. [PMID: 30986697 PMCID: PMC6462795 DOI: 10.1016/j.omtn.2019.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/20/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022]
Abstract
Current strategies to prevent restenosis following endovascular treatment include the local delivery of anti-proliferative agents to inhibit vascular smooth muscle cell (VSMC) proliferation and migration. These agents, not specific to VSMCs, are deposited on the luminal surface and therefore target endothelial cells and delay vascular healing. Cell-targeted therapies, (e.g., RNA aptamers), can potentially overcome these safety concerns by specifically binding to VSMC and inhibiting proliferation and migration. The purpose of this study was to therefore demonstrate the ability of a perfusion catheter to deliver cell-specific RNA aptamer inhibitors directly to the vessel wall. RNA aptamers specific to VSMCs were developed using an in vitro cell-based systematic evolution of ligand by exponential enrichment selection process. Two aptamers (Apt01 and Apt14) were evaluated ex vivo using harvested pig arteries in a pulsatile flow bioreactor. Local drug delivery of the aptamers into the medial wall was accomplished using a novel perfusion catheter. We demonstrated the feasibility to deliver aptamer-based drugs directly to the medial layer of an artery using a perfusion catheter. Such cell-specific targeted therapeutic drugs provide a potentially safer and more effective treatment option for patients with vascular disease.
Collapse
Affiliation(s)
- Ofonime Udofot
- Internal Medicine, University of Iowa, Iowa City, IA, USA; Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| | - Li-Hsien Lin
- Internal Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Megan Erwin
- Mechanical Engineering Department, University of South Alabama, Mobile, AL, USA
| | - Emily Turner
- Mechanical Engineering Department, University of South Alabama, Mobile, AL, USA
| | - Francis J Miller
- Department of Medicine, Duke University, Durham, NC, USA; Pharmacology and Cancer Biology Program, Duke University, Durham, NC, USA; Department of Medicine, Veterans Administration Medical Center, Durham, NC, USA.
| | - Paloma H Giangrande
- Internal Medicine, University of Iowa, Iowa City, IA, USA; Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Radiation Oncology, University of Iowa, Iowa City, IA, USA; Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, USA; Environmental Health Sciences Research Center (EHSRC), University of Iowa, Iowa City, IA, USA.
| | - Saami K Yazdani
- Mechanical Engineering Department, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
26
|
Urak KT, Blanco GN, Shubham S, Lin LH, Dassie JP, Thiel WH, Chen Y, Sonkar VK, Lei B, Murthy S, Gutierrez WR, Wilson ME, Stiber JA, Klesney-Tait J, Dayal S, Miller FJ, Giangrande PH. RNA inhibitors of nuclear proteins responsible for multiple organ dysfunction syndrome. Nat Commun 2019; 10:116. [PMID: 30631065 PMCID: PMC6328615 DOI: 10.1038/s41467-018-08030-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 12/12/2018] [Indexed: 12/30/2022] Open
Abstract
The development of multiple organ dysfunction syndrome (MODS) following infection or tissue injury is associated with increased patient morbidity and mortality. Extensive cellular injury results in the release of nuclear proteins, of which histones are the most abundant, into the circulation. Circulating histones are implicated as essential mediators of MODS. Available anti-histone therapies have failed in clinical trials due to off-target effects such as bleeding and toxicity. Here, we describe a therapeutic strategy for MODS based on the neutralization of histones by chemically stabilized nucleic acid bio-drugs (aptamers). Systematic evolution of ligands by exponential enrichment technology identified aptamers that selectively bind those histones responsible for MODS and do not bind to serum proteins. We demonstrate the efficacy of histone-specific aptamers in human cells and in a murine model of MODS. These aptamers could have a significant therapeutic benefit in the treatment of multiple diverse clinical conditions associated with MODS.
Collapse
Affiliation(s)
- Kevin T Urak
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Giselle N Blanco
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Li-Hsien Lin
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Justin P Dassie
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - William H Thiel
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Yani Chen
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Beilei Lei
- Department of Medicine, Duke University, Durham, NC, 27708, USA
| | - Shubha Murthy
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Wade R Gutierrez
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Mary E Wilson
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Department of Microbiology, University of Iowa, Iowa City, IA, 52242, USA.,Veteran's Affairs Medical Center, University of Iowa, Iowa City, IA, 52241, USA
| | | | | | - Sanjana Dayal
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Francis J Miller
- Department of Medicine, Duke University, Durham, NC, 27708, USA. .,Pharmacology and Cancer Biology Program, Duke University, Durham, NC, 27708, USA. .,Deptartment of Medicine, Veterans Administration Medical Center, Durham, NC, 27705, USA.
| | - Paloma H Giangrande
- Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA. .,Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, 52242, USA. .,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, 52242, USA. .,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA. .,Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA. .,Environmental Health Sciences Research Center (EHSRC), University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
27
|
Ahmadi S, Rabiee N, Rabiee M. Application of Aptamer-based Hybrid Molecules in Early Diagnosis and Treatment of Diabetes Mellitus: From the Concepts Towards the Future. Curr Diabetes Rev 2019; 15:309-313. [PMID: 29875005 DOI: 10.2174/1573399814666180607075550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/23/2018] [Accepted: 06/03/2018] [Indexed: 02/07/2023]
Abstract
Aptamers have several positive advantages that made them eminent as a potential factor in diagnosing and treating diseases such as their application in prevention and treatment of diabetes. In this opinion-based mini-review article, we aimed to investigate the DNA and RNA-based hybrid molecules specifically aptamers and had a logical conclusion as a promising future perspective in early diagnosis and treatment of diabetes.
Collapse
Affiliation(s)
- Sepideh Ahmadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
28
|
Aptamers as Diagnostic Tools in Cancer. Pharmaceuticals (Basel) 2018; 11:ph11030086. [PMID: 30208607 PMCID: PMC6160954 DOI: 10.3390/ph11030086] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 02/08/2023] Open
Abstract
Cancer is the second leading cause of death worldwide. Researchers have been working hard on investigating not only improved therapeutics but also on early detection methods, both critical to increasing treatment efficacy, and developing methods for disease prevention. The use of nucleic acids, or aptamers, has emerged as more specific and accurate cancer diagnostic and therapeutic tools. Aptamers are single-stranded DNA or RNA molecules that recognize specific targets based on unique three-dimensional conformations. Despite the fact aptamer development has been mainly restricted to laboratory settings, the unique attributes of these molecules suggest their high potential for clinical advances in cancer detection. Aptamers can be selected for a wide range of targets, and also linked with an extensive variety of diagnostic agents, via physical or chemical conjugation, to improve previously-established detection methods or to be used as novel biosensors for cancer diagnosis. Consequently, herein we review the principal considerations and recent updates in cancer detection and imaging through aptamer-based molecules.
Collapse
|
29
|
Jain S, Laederach A, Ramos SBV, Schlick T. A pipeline for computational design of novel RNA-like topologies. Nucleic Acids Res 2018; 46:7040-7051. [PMID: 30137633 PMCID: PMC6101589 DOI: 10.1093/nar/gky524] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Designing novel RNA topologies is a challenge, with important therapeutic and industrial applications. We describe a computational pipeline for design of novel RNA topologies based on our coarse-grained RNA-As-Graphs (RAG) framework. RAG represents RNA structures as tree graphs and describes RNA secondary (2D) structure topologies (currently up to 13 vertices, ≈260 nucleotides). We have previously identified novel graph topologies that are RNA-like among these. Here we describe a systematic design pipeline and illustrate design for six broad design problems using recently developed tools for graph-partitioning and fragment assembly (F-RAG). Following partitioning of the target graph, corresponding atomic fragments from our RAG-3D database are combined using F-RAG, and the candidate atomic models are scored using a knowledge-based potential developed for 3D structure prediction. The sequences of the top scoring models are screened further using available tools for 2D structure prediction. The results indicate that our modular approach based on RNA-like topologies rather than specific 2D structures allows for greater flexibility in the design process, and generates a large number of candidate sequences quickly. Experimental structure probing using SHAPE-MaP for two sequences agree with our predictions and suggest that our combined tools yield excellent candidates for further sequence and experimental screening.
Collapse
Affiliation(s)
- Swati Jain
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Silvia B V Ramos
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
- NYU-ECNU Center for Computational Chemistry at New York University Shanghai, Room 340, Geography Building, North Zhongshan Road, 3663 Shanghai, China
| |
Collapse
|
30
|
Rahimi F. Aptamers Selected for Recognizing Amyloid β-Protein-A Case for Cautious Optimism. Int J Mol Sci 2018; 19:ijms19030668. [PMID: 29495486 PMCID: PMC5877529 DOI: 10.3390/ijms19030668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
Aptamers are versatile oligonucleotide ligands used for molecular recognition of diverse targets. However, application of aptamers to the field of amyloid β-protein (Aβ) has been limited so far. Aβ is an intrinsically disordered protein that exists in a dynamic conformational equilibrium, presenting time-dependent ensembles of short-lived, metastable structures and assemblies that have been generally difficult to isolate and characterize. Moreover, despite understanding of potential physiological roles of Aβ, this peptide has been linked to the pathogenesis of Alzheimer disease, and its pathogenic roles remain controversial. Accumulated scientific evidence thus far highlights undesirable or nonspecific interactions between selected aptamers and different Aβ assemblies likely due to the metastable nature of Aβ or inherent affinity of RNA oligonucleotides to β-sheet-rich fibrillar structures of amyloidogenic proteins. Accordingly, lessons drawn from Aβ–aptamer studies emphasize that purity and uniformity of the protein target and rigorous characterization of aptamers’ specificity are important for realizing and garnering the full potential of aptamers selected for recognizing Aβ or other intrinsically disordered proteins. This review summarizes studies of aptamers selected for recognizing different Aβ assemblies and highlights controversies, difficulties, and limitations of such studies.
Collapse
Affiliation(s)
- Farid Rahimi
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
31
|
Zeninskaya NA, Kolesnikov AV, Ryabko AK, Shemyakin IG, Dyatlov IA, Kozyr AV. [Aptamers in the Treatment of Bacterial Infections: Problems and Prospects]. ACTA ACUST UNITED AC 2018; 71:350-8. [PMID: 29297663 DOI: 10.15690/vramn591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aptamers are short single-stranded oligonucleotides which are selected via targeted chemical evolution in vitro to bind a molecular target of interest. The aptamer selection technology is designated as SELEX (Systematic evolution of ligands by exponential enrichment). SELEX enables isolation of oligonucleotide aptamers binding a wide range of targets of interest with little respect for their nature and molecular weight. A number of applications of aptamer selection were developed ranging from biosensor technologies to antitumor drug discovery. First aptamer-based pharmaceutical (Macugen) was approved by FDA for clinical use in 2004, and since then more than ten aptamer-based drugs undergo various phases of clinical trials. From the medicinal chemist’s point of view, aptamers represent a new class of molecules suitable for the development of new therapeutics. Due to the stability, relative synthesis simplicity, and development of advanced strategies of target specific molecular selection, aptamers attract increased attention of drug discovery community. Difficulties of the development of next-generation antibiotics basing on the conventional basis of combinatorial chemistry and high-throughput screening have also amplified the interest to aptamer-based therapeutic candidates. The present article reviews the investigations focused on the development of antibacterial aptamers and discusses the potential and current limitations of the use of this type of therapeutic molecules.
Collapse
|
32
|
Filonov GS. Rapid Selection of RNA Aptamers that Activate Fluorescence of Small Molecules. Methods Mol Biol 2018; 1575:273-289. [PMID: 28255887 DOI: 10.1007/978-1-4939-6857-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA aptamers can serve as valuable tools for studying and manipulating live cells. Fluorescent aptamers are the ones that bind to and turn on fluorescence of small-molecule dyes (fluorogens). Similarly to fluorescent proteins, fluorescent RNA aptamers can be used to image spatial and temporal RNA dynamics in live cells. Additionally, these aptamers can serve as a basis for engineering genetically encoded fluorescent biosensors. This chapter presents a protocol for rapid and efficient screening of RNA aptamer libraries to isolate fluorescent aptamers. The protocol describes how to design, clone, and express RNA aptamer library in bacterial cells and how to screen the bacteria to find aptamers with the desired fluorescent properties.
Collapse
Affiliation(s)
- Grigory S Filonov
- Essen Bioscience, Ann Arbor, MI, USA. .,Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
33
|
Ghassami E, Varshosaz J, Jahanian-Najafabadi A, Minaiyan M, Rajabi P, Hayati E. Pharmacokinetics and in vitro/in vivo antitumor efficacy of aptamer-targeted Ecoflex ® nanoparticles for docetaxel delivery in ovarian cancer. Int J Nanomedicine 2018; 13:493-504. [PMID: 29416331 PMCID: PMC5789074 DOI: 10.2147/ijn.s152474] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose Epithelixal ovarian cancer is the fourth cause of cancer death in developed countries with 77% of ovarian cancer cases diagnosed with regional or distant metastasis, with poor survival rates. Docetaxel (DTX) is a well-known anticancer agent, with clinically proven efficacy in several malignancies, including ovarian cancer. However, the adverse effects caused by the active ingredient or currently marketed formulations could even deprive the patient of the advantages of treatment. Therefore, in the current study, polymeric nanoparticles (NPs) equipped with aptamer molecules as targeting agents were proposed to minimize the adverse effects and enhance the antitumor efficacy through directing the drug cargo toward its site of action. Materials and methods Electrospraying technique was implemented to fabricate poly (butylene adipate-co-butylene terephthalate) (Ecoflex®) NPs loaded with DTX (DTX-NPs). Afterward, aptamer molecules were added to the DTX-NPs, which bound via covalent bonds (Apt-DTX-NPs). The particle size, size distribution, zeta potential, entrapment efficiency, and release profile of the NPs were characterized. Using MTT assay and flow-cytometry analysis, the in vitro cytotoxicity and cellular uptake of the NPs were compared to those of the free drug. Following intravenous administration of Taxotere®, DTX-NPs, and Apt-DTX-NPs (at an equivalent dose of 5 mg/kg of DTX), pharmacokinetic parameters and antitumor efficacy were compared in female Balb/c and HER-2-overexpressing tumor-bearing B6 athymic mice, respectively. Results The obtained results demonstrated significantly enhanced in vitro cytotoxicity and cellular uptake of Apt-DTX-NPs in a HER-2-overexpressing cell line, comparing to DTX-NPs and the free drug. The results of in vivo studies indicated significant increment in pharmacokinetic parameters including the area under the plasma concentration–time curve, mean residence time, and elimination half-life. Significant increment in antitumor efficacy was also observed, probably due to the targeted delivery of DTX to the tumor site and enhanced cellular uptake as evaluated in the aforementioned tests. Conclusion Hence, the proposed drug delivery system could be considered as an appropriate potential substitute for currently marketed DTX formulations.
Collapse
Affiliation(s)
- Erfaneh Ghassami
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre
| | | | | | - Parvin Rajabi
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan
| | - Effat Hayati
- North Research Center, Pasteur Institute of Iran, Amol, Iran
| |
Collapse
|
34
|
Mustonen EK, Palomäki T, Pasanen M. Oligonucleotide-based pharmaceuticals: Non-clinical and clinical safety signals and non-clinical testing strategies. Regul Toxicol Pharmacol 2017; 90:328-341. [PMID: 28966105 DOI: 10.1016/j.yrtph.2017.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
Abstract
Antisense oligonucleotides, short interfering RNAs (siRNAs) and aptamers are oligonucleotide-based pharmaceuticals with a promising role in targeted therapies. Currently, five oligonucleotide-based pharmaceuticals have achieved marketing authorization in Europe or USA and many more are undergoing clinical testing. However, several safety concerns have been raised in non-clinical and clinical studies. Oligonucleotides share properties with both chemical and biological pharmaceuticals and therefore they pose challenges also from the regulatory point of view. We have analyzed the safety data of oligonucleotides and evaluated the applicability of current non-clinical toxicological guidelines for assessing the safety of oligonucleotide-based pharmaceuticals. Oligonucleotide-based pharmaceuticals display a similar toxicological profile, exerting adverse effects on liver and kidney, evoking hematological alterations, as well as causing immunostimulation and prolonging the coagulation time. It is possible to extrapolate some of these effects from non-clinical studies to humans. However, evaluation strategies for genotoxicity testing of "non-natural" oligonucleotides should be revised. Additionally, the selective use of surrogates and prediction of clinical endpoints for non-clinically observed immunostimulation is complicated by its multiple potential manifestations, demanding improvements in the testing strategies. Utilizing more relevant and mechanistic-based approaches and taking better account of species differences, could possibly improve the prediction of relevant immunological/proinflammatory effects in humans.
Collapse
Affiliation(s)
- Enni-Kaisa Mustonen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland
| | | | - Markku Pasanen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland.
| |
Collapse
|
35
|
Li J, Yousefi K, Ding W, Singh J, Shehadeh LA. Osteopontin RNA aptamer can prevent and reverse pressure overload-induced heart failure. Cardiovasc Res 2017; 113:633-643. [PMID: 28453726 PMCID: PMC7526752 DOI: 10.1093/cvr/cvx016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/21/2016] [Accepted: 01/24/2017] [Indexed: 11/14/2022] Open
Abstract
AIMS Cardiac myocyte hypertrophy, the main compensatory response to chronic stress in the heart often progresses to a state of decompensation that can lead to heart failure. Osteopontin (OPN) is an effector for extracellular signalling that induces myocyte growth and fibrosis. Although increased OPN activity has been observed in stressed myocytes and fibroblasts, the detailed and long term effects of blocking OPN signalling on the heart remain poorly defined. Targeting cardiac OPN protein by an RNA aptamer may be beneficial for tuning down OPN pathologic signalling. We aimed to demonstrate the therapeutic effects of an OPN RNA aptamer on cardiac dysfunction. METHODS AND RESULTS In vivo, we show that in a mouse model of pressure overload, treating at the time of surgeries with an OPN aptamer prevented cardiomyocyte hypertrophy and cardiac fibrosis, blocked OPN downstream signalling (PI3K and Akt phosphorylation), reduced expression of extracellular matrix (Lum, Col3a1, Fn1) and hypertrophy (Nppa, Nppb) genes, and prevented cardiac dysfunction. Treating at two months post-surgeries with the OPN aptamer reversed cardiac dysfunction and fibrosis and myocyte hypertrophy. While genetic homozygous deletion of OPN reduced myocardial wall thickness, surprisingly cardiac function and myocardial fibrosis, specifically collagen deposition and myofibroblast infiltration, were worse compared with wild type mice at three months of pressure overload. CONCLUSION Taken together, these data demonstrate that tuning down cardiac OPN signalling by an OPN RNA aptamer is a novel and effective approach for preventing cardiac hypertrophy and fibrosis, improving cardiac function, and reversing pressure overload-induced heart failure.
Collapse
MESH Headings
- Animals
- Aorta/physiopathology
- Aorta/surgery
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Arterial Pressure
- Collagen Type III/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Fibrosis
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Heart Failure/prevention & control
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Ligation
- Lumican/metabolism
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardium/metabolism
- Myocardium/pathology
- Osteopontin/deficiency
- Osteopontin/genetics
- Osteopontin/metabolism
- Phenotype
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Time Factors
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Jihe Li
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Biomedical Research Building, Room 818, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Keyvan Yousefi
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Biomedical Research Building, Room 818, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Wen Ding
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Biomedical Research Building, Room 818, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Jayanti Singh
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Biomedical Research Building, Room 818, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Lina A. Shehadeh
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Biomedical Research Building, Room 818, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
36
|
An Update on Aptamer-Based Multiplex System Approaches for the Detection of Common Foodborne Pathogens. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0814-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Aptamer targeting EGFRvIII mutant hampers its constitutive autophosphorylation and affects migration, invasion and proliferation of glioblastoma cells. Oncotarget 2016; 6:37570-87. [PMID: 26461476 PMCID: PMC4741949 DOI: 10.18632/oncotarget.6066] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma Multiforme (GBM) is the most common and aggressive human brain tumor, associated with very poor survival despite surgery, radiotherapy and chemotherapy.The epidermal growth factor receptor (EGFR) and the platelet-derived growth factor receptor β (PDGFRβ) are hallmarks in GBM with driving roles in tumor progression. In approximately half of the tumors with amplified EGFR, the EGFRvIII truncated extracellular mutant is detected. EGFRvIII does not bind ligands, is highly oncogenic and its expression confers resistance to EGFR tyrosine kinase inhibitors (TKIs). It has been demonstrated that EGFRvIII-dependent cancers may escape targeted therapy by developing dependence on PDGFRβ signaling, thus providing a strong rationale for combination therapy aimed at blocking both EGFRvIII and PDGFRβsignaling.We have recently generated two nuclease resistant RNA aptamers, CL4 and Gint4.T, as high affinity ligands and inhibitors of the human wild-type EGFR (EGFRwt) and PDGFRβ, respectively.Herein, by different approaches, we demonstrate that CL4 aptamer binds to the EGFRvIII mutant even though it lacks most of the extracellular domain. As a consequence of binding, the aptamer inhibits EGFRvIII autophosphorylation and downstream signaling pathways, thus affecting migration, invasion and proliferation of EGFRvIII-expressing GBM cell lines.Further, we show that targeting EGFRvIII by CL4, as well as by EGFR-TKIs, erlotinib and gefitinib, causes upregulation of PDGFRβ. Importantly, CL4 and gefitinib cooperate with the anti-PDGFRβ Gint4.T aptamer in inhibiting cell proliferation.The proposed aptamer-based strategy could have impact on targeted molecular cancer therapies and may result in progresses against GBMs.
Collapse
|
38
|
Sarisozen C, Salzano G, Torchilin VP. Recent advances in siRNA delivery. Biomol Concepts 2016; 6:321-41. [PMID: 26609865 DOI: 10.1515/bmc-2015-0019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023] Open
Abstract
In the 1990s an unexpected gene-silencing phenomena in plants, the later called RNA interference (RNAi), perplexed scientists. Following the proof of activity in mammalian cells, small interfering RNAs (siRNAs) have quickly crept into biomedical research as a new powerful tool for the potential treatment of different human diseases based on altered gene expression. In the past decades, several promising data from ongoing clinical trials have been reported. However, despite surprising successes in many pre-clinical studies, concrete obstacles still need to be overcome to translate therapeutic siRNAs into clinical reality. Here, we provide an update on the recent advances of RNAi-based therapeutics and highlight novel synthetic platforms for the intracellular delivery of siRNAs.
Collapse
|
39
|
Mokhtarzadeh A, Tabarzad M, Ranjbari J, de la Guardia M, Hejazi M, Ramezani M. Aptamers as smart ligands for nano-carriers targeting. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
40
|
Song Y, Shi Y, Li X, Ma Y, Gao M, Liu D, Mao Y, Zhu Z, Lin H, Yang C. Afi-Chip: An Equipment-Free, Low-Cost, and Universal Binding Ligand Affinity Evaluation Platform. Anal Chem 2016; 88:8294-301. [DOI: 10.1021/acs.analchem.6b02140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yanling Song
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanzhi Shi
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xingrui Li
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanli Ma
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingxuan Gao
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dan Liu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu Mao
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
41
|
Gijs M, Penner G, Blackler GB, Impens NREN, Baatout S, Luxen A, Aerts AM. Improved Aptamers for the Diagnosis and Potential Treatment of HER2-Positive Cancer. Pharmaceuticals (Basel) 2016; 9:E29. [PMID: 27213406 PMCID: PMC4932547 DOI: 10.3390/ph9020029] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
Aptamers provide a potential source of alternative targeting molecules for existing antibody diagnostics and therapeutics. In this work, we selected novel DNA aptamers targeting the HER2 receptor by an adherent whole-cell SELEX approach. Individual aptamers were identified by next generation sequencing and bioinformatics analysis. Two aptamers, HeA2_1 and HeA2_3, were shown to bind the HER2 protein with affinities in the nanomolar range. In addition, both aptamers were able to bind with high specificity to HER2-overexpressing cells and HER2-positive tumor tissue samples. Furthermore, we demonstrated that aptamer HeA2_3 is being internalized into cancer cells and has an inhibitory effect on cancer cell growth and viability. In the end, we selected novel DNA aptamers with great potential for the diagnosis and possible treatment of HER2-positive cancer.
Collapse
Affiliation(s)
- Marlies Gijs
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
- Cyclotron Research Centre, University of Liège, 4000 Liège, Belgium.
| | - Gregory Penner
- NeoVentures Biotechnology Inc., London, N6A 1A1 ON, Canada.
| | | | | | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
| | - André Luxen
- Cyclotron Research Centre, University of Liège, 4000 Liège, Belgium.
| | - An M Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
| |
Collapse
|
42
|
Marton S, Cleto F, Krieger MA, Cardoso J. Isolation of an Aptamer that Binds Specifically to E. coli. PLoS One 2016; 11:e0153637. [PMID: 27104834 PMCID: PMC4841571 DOI: 10.1371/journal.pone.0153637] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/01/2016] [Indexed: 01/24/2023] Open
Abstract
Escherichia coli is a bacterial species found ubiquitously in the intestinal flora of animals, although pathogenic variants cause major public health problems. Aptamers are short oligonucleotides that bind to targets with high affinity and specificity, and have great potential for use in diagnostics and therapy. We used cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) to isolate four single stranded DNA (ssDNA) aptamers that bind strongly to E. coli cells (ATCC generic strain 25922), with Kd values in the nanomolar range. Fluorescently labeled aptamers label the surface of E. coli cells, as viewed by fluorescent microscopy. Specificity tests with twelve different bacterial species showed that one of the aptamers–called P12-31—is highly specific for E. coli. Importantly, this aptamer binds to Meningitis/sepsis associated E. coli (MNEC) clinical isolates, and is the first aptamer described with potential for use in the diagnosis of MNEC-borne pathologies.
Collapse
Affiliation(s)
- Soledad Marton
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Fernanda Cleto
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Marco Aurélio Krieger
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil.,Instituto Carlos Chagas, Laboratório de Genomica Functional, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Josiane Cardoso
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| |
Collapse
|
43
|
Structural computational modeling of RNA aptamers. Methods 2016; 103:175-9. [PMID: 26972787 DOI: 10.1016/j.ymeth.2016.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/10/2023] Open
Abstract
RNA aptamers represent an emerging class of biologics that can be easily adapted for personalized and precision medicine. Several therapeutic aptamers with desirable binding and functional properties have been developed and evaluated in preclinical studies over the past 25years. However, for the majority of these aptamers, their clinical potential has yet to be realized. A significant hurdle to the clinical adoption of this novel class of biologicals is the limited information on their secondary and tertiary structure. Knowledge of the RNA's structure would greatly facilitate and expedite the post-selection optimization steps required for translation, including truncation (to reduce costs of manufacturing), chemical modification (to enhance stability and improve safety) and chemical conjugation (to improve drug properties for combinatorial therapy). Here we describe a structural computational modeling methodology that when coupled to a standard functional assay, can be used to determine key sequence and structural motifs of an RNA aptamer. We applied this methodology to enable the truncation of an aptamer to prostate specific membrane antigen (PSMA) with great potential for targeted therapy that had failed previous truncation attempts. This methodology can be easily applied to optimize other aptamers with therapeutic potential.
Collapse
|
44
|
Catuogno S, Esposito CL, de Franciscis V. A trojan horse for human immunodeficiency virus. ACTA ACUST UNITED AC 2016; 22:313-4. [PMID: 25794434 DOI: 10.1016/j.chembiol.2015.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this issue of Chemistry & Biology, Zhou et al. demonstrate the possibility of effective multiple targeting of HIV infection by using a multifunctional molecule in which an anti-CCR5 receptor aptamer (G-3) is conjugated to an anti-TNPO3 siRNA.
Collapse
Affiliation(s)
- Silvia Catuogno
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80145 Naples, Italy
| | | | | |
Collapse
|
45
|
Elle IC, Karlsen KK, Terp MG, Larsen N, Nielsen R, Derbyshire N, Mandrup S, Ditzel HJ, Wengel J. Selection of LNA-containing DNA aptamers against recombinant human CD73. MOLECULAR BIOSYSTEMS 2016; 11:1260-70. [PMID: 25720604 DOI: 10.1039/c5mb00045a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
LNA-containing DNA aptamers against CD73 (human ecto-5'-nucleotidase), a protein frequently overexpressed in solid tumours, were isolated by SELEX. A pre-defined stem-loop library, containing LNA in the forward primer region, was enriched with CD73 binding sequences through six rounds of SELEX with recombinant his-tagged CD73 immobilised on anti-his plates. Enriched pools isolated from rounds one, three and six were subjected to next-generation sequencing and analysed for enrichment using custom bioinformatics software. The software identified aptamer sequences via the primers and then performed several steps including sequence unification, clustering and alignment to identify enriched sequences. Three enriched sequences were synthesised for further analysis, two of which showed sequence similarities. These sequences exhibited binding to the recombinant CD73 with KD values of 10 nM and 3.5 nM when tested by surface plasmon resonance. Truncated variants of these aptamers and variants where the LNA nucleotides were substituted for the DNA equivalent also exhibited affinity for the recombinant CD73 in the low nanomolar range. In enzyme inhibition assays with recombinant CD73 the aptamer sequences were able to decrease the activity of the protein. However, the aptamers exhibited no binding to cellular CD73 by flow cytometry analysis likely since the epitope recognised by the aptamer was not available for binding on the cellular protein.
Collapse
Affiliation(s)
- Ida C Elle
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Riese SB, Buscher K, Enders S, Kuehne C, Tauber R, Dernedde J. Structural requirements of mono- and multivalent L-selectin blocking aptamers for enhanced receptor inhibition in vitro and in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:901-908. [PMID: 26772426 DOI: 10.1016/j.nano.2015.12.379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/28/2015] [Accepted: 12/24/2015] [Indexed: 01/08/2023]
Abstract
UNLABELLED L-selectin mediates extravasation of leukocytes from blood into the surrounding tissue during inflammation and is therefore a therapeutical target in certain overwhelming immune reactions. In this study, we characterized an L-selectin specific blocking DNA aptamer with respect to nucleotide composition and target binding. Introduction of deletions and nucleotide exchanges resulted in an optimized DNA sequence but preservation of the IC50 in the low nanomolar range. The inhibitory potential was significantly increased when the aptamer was displayed as a di- and trimer connected via appropriate linker length. Similar to monoclonal antibodies, trimer yielded picomolar IC50 values in a competitive binding assay. In comparison to the monovalent aptamer, the trivalent assembly reduced PBMC interactions to L-selectin ligands 90-fold under shear and exerted superior inhibition of PBMC rolling in vivo. In conclusion, our work demonstrates the feasibility of optimizing aptamer sequences and shows that multivalent ligand presentation enables superior adhesion receptor targeting. FROM THE CLINICAL EDITOR During inflammation, leukocytes extravasate from blood vessels under chemotaxic signals. The presence of L-selectin on endothelium acts as a mediator for the extravasation process. In this study, the authors investigated an L-selectin specific blocking DNA aptamer in various forms, as inhibitors to leukocyte binding and extravasation. This new approach confirmed the potential use of aptamers in clinical setting.
Collapse
Affiliation(s)
- Sebastian B Riese
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Konrad Buscher
- Institute for Physiological Chemistry Pathobiochemistry, University of Muenster, Muenster, Germany; Department of Nephrology and Rheumatology, University Hospital Muenster, Muenster, Germany.
| | - Sven Enders
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Christian Kuehne
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Rudolf Tauber
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
47
|
Smooth Muscle Cell-targeted RNA Aptamer Inhibits Neointimal Formation. Mol Ther 2016; 24:779-87. [PMID: 26732878 DOI: 10.1038/mt.2015.235] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/27/2015] [Indexed: 12/13/2022] Open
Abstract
Inhibition of vascular smooth muscle cell (VSMC) proliferation by drug eluting stents has markedly reduced intimal hyperplasia and subsequent in-stent restenosis. However, the effects of antiproliferative drugs on endothelial cells (EC) contribute to delayed re-endothelialization and late stent thrombosis. Cell-targeted therapies to inhibit VSMC remodeling while maintaining EC health are necessary to allow vascular healing while preventing restenosis. We describe an RNA aptamer (Apt 14) that functions as a smart drug by preferentially targeting VSMCs as compared to ECs and other myocytes. Furthermore, Apt 14 inhibits phosphatidylinositol 3-kinase/protein kinase-B (PI3K/Akt) and VSMC migration in response to multiple agonists by a mechanism that involves inhibition of platelet-derived growth factor receptor (PDGFR)-β phosphorylation. In a murine model of carotid injury, treatment of vessels with Apt 14 reduces neointimal formation to levels similar to those observed with paclitaxel. Importantly, we confirm that Apt 14 cross-reacts with rodent and human VSMCs, exhibits a half-life of ~300 hours in human serum, and does not elicit immune activation of human peripheral blood mononuclear cells. We describe a VSMC-targeted RNA aptamer that blocks cell migration and inhibits intimal formation. These findings provide the foundation for the translation of cell-targeted RNA therapeutics to vascular disease.
Collapse
|
48
|
García-Recio EM, Pinto-Díez C, Pérez-Morgado MI, García-Hernández M, Fernández G, Martín ME, González VM. Characterization of MNK1b DNA Aptamers That Inhibit Proliferation in MDA-MB231 Breast Cancer Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e275. [PMID: 26730812 PMCID: PMC5012548 DOI: 10.1038/mtna.2015.50] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/19/2015] [Indexed: 02/08/2023]
Abstract
Elevated expression levels of eukaryotic initiation factor 4E (eIF4E) promote cancer development and progression. MAP kinase interacting kinases (MNKs) modulate the function of eIF4E through the phosphorylation that is necessary for oncogenic transformation. Therefore, pharmacologic MNK inhibitors may provide a nontoxic and effective anticancer strategy. MNK1b is a truncated isoform of MNK1a that is active in the absence of stimuli. Using in vitro selection, high-affinity DNA aptamers to MNK1b were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA), and the selected aptamer population was cloned and sequenced. Four groups of aptamers were identified, and the affinities of one representative for rMNK1b were determined using ELONA and quantitative polymerase chain reaction. Two aptamers, named apMNK2F and apMNK3R, had a lower Kd in the nmol/l range. The secondary structure of the selected aptamers was predicted using mFold, and the QGRS Mapper indicated the presence of potential G-quadruplex structures in both aptamers. The selected aptamers were highly specific against MNK1, showing higher affinity to MNK1b than to MNK1a. Interestingly, both aptamers were able to produce significant translation inhibition and prevent tumor cell proliferation and migration and colony formation in breast cancer cells. These results indicate that MNK1 aptamers have an attractive therapeutic potential.
Collapse
Affiliation(s)
- Eva M García-Recio
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Celia Pinto-Díez
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - M Isabel Pérez-Morgado
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Marta García-Hernández
- Aptus Biotech SL, c/ Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Gerónimo Fernández
- Aptus Biotech SL, c/ Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - M Elena Martín
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Víctor M González
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
49
|
Dickey DD, Thomas GS, Dassie JP, Giangrande PH. Method for Confirming Cytoplasmic Delivery of RNA Aptamers. Methods Mol Biol 2016; 1364:209-217. [PMID: 26472453 PMCID: PMC4826031 DOI: 10.1007/978-1-4939-3112-5_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
RNA aptamers are single-stranded RNA oligos that represent a powerful emerging technology with potential for treating numerous diseases. More recently, cell-targeted RNA aptamers have been developed for delivering RNA interference (RNAi) modulators (siRNAs and miRNAs) to specific diseased cells (e.g., cancer cells or HIV infected cells) in vitro and in vivo. However, despite initial promising reports, the broad application of this aptamer delivery technology awaits the development of methods that can verify and confirm delivery of aptamers to the cytoplasm of target cells where the RNAi machinery resides. We recently developed a functional assay (RIP assay) to confirm cellular uptake and subsequent cytoplasmic release of an RNA aptamer which binds to a cell surface receptor expressed on prostate cancer cells (PSMA). To assess cytoplasmic delivery, the aptamer was chemically conjugated to saporin, a ribosome inactivating protein toxin that is toxic to cells only when delivered to the cytoplasm (where it inhibits the ribosome) by a cell-targeting ligand (e.g., aptamer). Here, we describe the chemistry used to conjugate the aptamer to saporin and discuss a gel-based method to verify conjugation efficiency. We also detail an in vitro functional assay to confirm that the aptamer retains function following conjugation to saporin and describe a cellular assay to measure aptamer-mediated saporin-induced cytotoxicity.
Collapse
Affiliation(s)
- David D Dickey
- Department of Internal Medicine, University of Iowa, 375 Newton Rd, 5202 MERF, Iowa City, IA, 52242, USA
| | - Gregory S Thomas
- Department of Internal Medicine, University of Iowa, 375 Newton Rd, 5202 MERF, Iowa City, IA, 52242, USA
| | - Justin P Dassie
- Department of Internal Medicine, University of Iowa, 375 Newton Rd, 5202 MERF, Iowa City, IA, 52242, USA
| | - Paloma H Giangrande
- Department of Internal Medicine, University of Iowa, 375 Newton Rd, 5202 MERF, Iowa City, IA, 52242, USA.
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
50
|
Dickey DD, Giangrande PH. Oligonucleotide aptamers: A next-generation technology for the capture and detection of circulating tumor cells. Methods 2015; 97:94-103. [PMID: 26631715 DOI: 10.1016/j.ymeth.2015.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 01/17/2023] Open
Abstract
A critical challenge for treating cancer is the early identification of those patients who are at greatest risk of developing metastatic disease. The number of circulating tumor cells (CTCs) in cancer patients has recently been shown to be a valuable (and non-invasively accessible) diagnostic indicator of the state of metastatic disease. CTCs are rare cancer cells found in the blood circulation of cancer patients believed to provide a means of diagnosing the likelihood for metastatic spread and assessing response to therapy in advanced, as well as early stage disease settings. Numerous technical efforts have been made to reliably detect and quantify CTCs, but the development of a universal assay has proven quite difficult. Notable challenges for developing a broadly useful CTC-based diagnostic assay are the development of easy-to-operate methods that (1) are sufficiently sensitive to reliably detect the small number of CTCs that are present in the circulation and (2) can capture the molecular heterogeneity of tumor cells. In this review, we describe recent progress towards the application of synthetic oligonucleotide aptamers as promising, novel, robust tools for the isolation and detection of CTCs. Advantages and challenges of the aptamer approach are also discussed.
Collapse
Affiliation(s)
- David D Dickey
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Paloma H Giangrande
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|