1
|
Bonfiglioli L, Urbanavičiūtė I, Pagnotta MA. Durum wheat ( Triticum turgidum L. var. durum) root system response to drought and salt stresses and genetic characterization for root-related traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1362917. [PMID: 38584946 PMCID: PMC10995220 DOI: 10.3389/fpls.2024.1362917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024]
Abstract
Abiotic stresses such as drought and salt are significant threats to crop productivity. The root system adaptation and tolerance to abiotic stresses are regulated by many biochemical reactions, which create a complex and multigenic response. The present study aims to evaluate the diversity of root responses to cyclic abiotic stress in three modern durum wheat varieties and one hydric stress-tolerant landrace in a pot experiment from seedling to more advanced plant development stages. The genotypes responded to abiotic stress during the whole experiment very differently, and at the end of the experiment, nine out of the 13 traits for the landrace J. Khetifa were significantly higher than other genotypes. Moreover, single sequence repeat (SSR) genetic analysis revealed high polymorphism among the genotypes screened and interesting private alleles associated with root system architecture traits. We propose that the markers used in this study could be a resource as material for durum wheat breeding programs based on marker-assisted selection to increase the vegetal material with high drought and salt stress tolerance and to identify candidates with strong early vigor and efficient root systems. This study provides appropriate genetic materials for marker-assisted breeding programs as well as a basic study for the genetic diversity of root traits of durum wheat crops.
Collapse
Affiliation(s)
| | | | - Mario A. Pagnotta
- Department of Agricultural and Forest Sciences, Tuscia University, Viterbo, Italy
| |
Collapse
|
2
|
Yu J, Zhang X, Cao J, Bai H, Wang R, Wang C, Xu Z, Li C, Liu G. Genome-Wide Identification and Characterization of WRKY Transcription Factors in Betula platyphylla Suk. and Their Responses to Abiotic Stresses. Int J Mol Sci 2023; 24:15000. [PMID: 37834448 PMCID: PMC10573109 DOI: 10.3390/ijms241915000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The WRKY transcription factor (TF) family is one the largest plant-specific transcription factor families. It has been proven to play significant roles in multiple plant biological processes, especially stress response. Although many WRKY TFs have been identified in various plant species, WRKYs in white birch (Betula platyphylla Suk.) remain to be studied. Here, we identified a total of 68 BpWRKYs, which could be classified into four main groups. The basic physiochemical properties of these TFs were analyzed using bioinformatics tools, including molecular weight, isoelectric point, chromosome location, and predicted subcellular localization. Most BpWRKYs were predicted to be located in the nucleus. Synteny analysis found 17 syntenic gene pairs among BpWRKYs and 52 syntenic gene pairs between BpWRKYs and AtWRKYs. The cis-acting elements in the promoters of BpWRKYs could be enriched in multiple plant biological processes, including stress response, hormone response, growth and development, and binding sites. Tissue-specific expression analysis using qRT-PCR showed that most BpWRKYs exhibited highest expression levels in the root. After ABA, salt (NaCl), or cold treatment, different BpWRKYs showed different expression patterns at different treatment times. Furthermore, the results of the Y2H assay proved the interaction between BpWRKY17 and a cold-responsive TF, BpCBF7. By transient expression assay, BpWRKY17 and BpWRKY67 were localized in the nucleus, consistent with the previous prediction. Our study hopes to shed light for research on WRKY TFs and plant stress response.
Collapse
Affiliation(s)
- Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (X.Z.); (J.C.); (H.B.); (R.W.); (C.W.); (Z.X.)
| | - Xiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (X.Z.); (J.C.); (H.B.); (R.W.); (C.W.); (Z.X.)
| | - Jiayu Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (X.Z.); (J.C.); (H.B.); (R.W.); (C.W.); (Z.X.)
| | - Heming Bai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (X.Z.); (J.C.); (H.B.); (R.W.); (C.W.); (Z.X.)
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (X.Z.); (J.C.); (H.B.); (R.W.); (C.W.); (Z.X.)
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (X.Z.); (J.C.); (H.B.); (R.W.); (C.W.); (Z.X.)
| | - Zhiru Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (X.Z.); (J.C.); (H.B.); (R.W.); (C.W.); (Z.X.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chunming Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (X.Z.); (J.C.); (H.B.); (R.W.); (C.W.); (Z.X.)
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (X.Z.); (J.C.); (H.B.); (R.W.); (C.W.); (Z.X.)
| |
Collapse
|
3
|
Urbanavičiūtė I, Bonfiglioli L, Pagnotta MA. Phenotypic and Genotypic Diversity of Roots Response to Salt in Durum Wheat Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:412. [PMID: 36679125 PMCID: PMC9865824 DOI: 10.3390/plants12020412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Soil salinity is a serious threat to food production now and in the near future. In this study, the root system of six durum wheat genotypes, including one highly salt-tolerant (J. Khetifa) used as a check genotype, was evaluated, by a high-throughput phenotyping system, under control and salt conditions at the seedling stage. Genotyping was performed using 11 SSR markers closely linked with genome regions associated with root traits. Based on phenotypic cluster analysis, genotypes were grouped differently under control and salt conditions. Under control conditions, genotypes were clustered mainly due to a root angle, while under salt stress, genotypes were grouped according to their capacity to maintain higher roots length, volume, and surface area, as J. Khetifa, Sebatel, and Azeghar. SSR analysis identified a total of 42 alleles, with an average of about three alleles per marker. Moreover, quite a high number of Private alleles in total, 18 were obtained. The UPGMA phenogram of the Nei (1972) genetic distance clusters for 11 SSR markers and all phenotypic data under control conditions discriminate genotypes almost into the same groups. The study revealed as the combination of high-throughput systems for phenotyping with SSR markers for genotyping it's a useful tool to provide important data for the selection of suitable parental lines for salt-tolerance breeding. Nevertheless, the narrow root angle, which is an important trait in drought tolerance, is not a good indicator of salt tolerance. Instated for salt tolerance is more important the amount of roots.
Collapse
Affiliation(s)
| | | | - Mario A. Pagnotta
- Department of Agricultural and Forest Sciences, Tuscia University, Via S. C. de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
4
|
Urbanavičiūtė I, Bonfiglioli L, Pagnotta MA. One Hundred Candidate Genes and Their Roles in Drought and Salt Tolerance in Wheat. Int J Mol Sci 2021; 22:ijms22126378. [PMID: 34203629 PMCID: PMC8232269 DOI: 10.3390/ijms22126378] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022] Open
Abstract
Drought and salinity are major constraints to agriculture. In this review, we present an overview of the global situation and the consequences of drought and salt stress connected to climatic changes. We provide a list of possible genetic resources as sources of resistance or tolerant traits, together with the previous studies that focused on transferring genes from the germplasm to cultivated varieties. We explained the morphological and physiological aspects connected to hydric stresses, described the mechanisms that induce tolerance, and discussed the results of the main studies. Finally, we described more than 100 genes associated with tolerance to hydric stresses in the Triticeae. These were divided in agreement with their main function into osmotic adjustment and ionic and redox homeostasis. The understanding of a given gene function and expression pattern according to hydric stress is particularly important for the efficient selection of new tolerant genotypes in classical breeding. For this reason, the current review provides a crucial reference for future studies on the mechanism involved in hydric stress tolerance and the use of these genes in mark assistance selection (MAS) to select the wheat germplasm to face the climatic changes.
Collapse
|
5
|
Ye H, Qiao L, Guo H, Guo L, Ren F, Bai J, Wang Y. Genome-Wide Identification of Wheat WRKY Gene Family Reveals That TaWRKY75-A Is Referred to Drought and Salt Resistances. FRONTIERS IN PLANT SCIENCE 2021; 12:663118. [PMID: 34149760 PMCID: PMC8212938 DOI: 10.3389/fpls.2021.663118] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 05/14/2023]
Abstract
It is well known that WRKY transcription factors play essential roles in plants' response to diverse stress responses, especially to drought and salt stresses. However, a full comprehensive analysis of this family in wheat is still missing. Here we used in silico analysis and identified 124 WRKY genes, including 294 homeologous copies from a high-quality reference genome of wheat (Triticum aestivum). We also found that the TaWRKY gene family did not undergo gene duplication rather than gene loss during the evolutionary process. The TaWRKY family members displayed different expression profiles under several abiotic stresses, indicating their unique functions in the mediation of particular responses. Furthermore, TaWRKY75-A was highly induced after polyethylene glycol and salt treatments. The ectopic expression of TaWRKY75-A in Arabidopsis enhanced drought and salt tolerance. A comparative transcriptome analysis demonstrated that TaWRKY75-A integrated jasmonic acid biosynthetic pathway and other potential metabolic pathways to increase drought and salt resistances in transgenic Arabidopsis. Our study provides valuable insights into the WRKY family in wheat and will generate a useful genetic resource for improving wheat breeding.
Collapse
Affiliation(s)
- Hong Ye
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Linyi Qiao
- College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Haoyu Guo
- College of Life Science, Capital Normal University, Beijing, China
| | - Liping Guo
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Fei Ren
- School of Agricultural Science and Engineering, Shaoguan University, Shaoguan, China
| | - Jianfang Bai
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Jianfang Bai,
| | - Yukun Wang
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- *Correspondence: Jianfang Bai,
| |
Collapse
|
6
|
Van der Heyden H, Fortier AM, Savage J. A HRM Assay for Rapid Identification of Members of the Seedcorn Maggot Complex (Delia florilega and D. platura) (Diptera: Anthomyiidae) and Evidence of Variation in Temporal Patterns of Larval Occurrence. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2920-2930. [PMID: 33080027 DOI: 10.1093/jee/toaa230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The seedcorn maggot Delia platura (Meigen), and the bean seed maggot Delia florilega (Zetterstedt) can cause considerable feeding damage to a wide range of cultivated crops. The recent discovery of two distinct genetic lines of D. platura, each with a unique distribution pattern overlapping only in eastern Canada, suggests the presence of a new cryptic species for the group. The reliable identification of the three species/lines in the seedcorn maggot complex is crucial to our understanding of their distribution, phenology, and respective contribution to crop damage as well as to the development of specific integrated pest management approaches. As these taxa are morphologically indistinguishable in the immature stages, we developed a high-resolution melting PCR (HRM) assay using primers amplifying a variable 96-bp PCR product in the CO1 mitochondrial gene for rapid and economical identification of specimens. The three species/lines exhibited distinguishable melting profiles based on their different Tm values (between 0.4 and 0.9°C) and identification results based on HRM and DNA sequencing were congruent for all specimens in the validation data set (n = 100). We then used the new, highly sensitive HRM assay to identify survey specimens from the seedcorn maggot complex collected in Quebec, Canada, between 2017 and 2019. Progress curves developed to document the temporal occurrence patterns of each species/lines indicate differences between taxa, with the N-line (BOLD:AAA3453) of D. platura appearing approximately 17 d before D. florilega (BOLD:ACR4394) and the H-line (BOLD:AAG2511) of D. platura.
Collapse
Affiliation(s)
| | | | - Jade Savage
- Department of Biological Sciences, Bishop's University, Sherbrooke, QC, Canada
| |
Collapse
|
7
|
Li X, Tang Y, Zhou C, Zhang L, Lv J. A Wheat WRKY Transcription Factor TaWRKY46 Enhances Tolerance to Osmotic Stress in transgenic Arabidopsis Plants. Int J Mol Sci 2020; 21:ijms21041321. [PMID: 32075313 PMCID: PMC7072902 DOI: 10.3390/ijms21041321] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022] Open
Abstract
WRKY transcription factors play central roles in developmental processes and stress responses of wheat. Most WRKY proteins of the same group (Group III) have a similar function in abiotic stress responses in plants. TaWRKY46, a member of Group III, was up-regulated by PEG treatment. TaWRKY46-GFP fusion proteins localize to the nucleus in wheat mesophyll protoplasts. Overexpression of TaWRKY46 enhanced osmotic stress tolerance in transgenic Arabidopsis thaliana plants, which was mainly demonstrated by transgenic Arabidopsis plants forming higher germination rate and longer root length on 1/2 Murashige and Skoog (MS) medium containing mannitol. Furthermore, the expression of several stress-related genes (P5CS1, RD29B, DREB2A, ABF3, CBF2, and CBF3) was significantly increased in TaWRKY46-overexpressing transgenic Arabidopsis plants after mannitol treatment. Taken together, these findings proposed that TaWRKY46 possesses vital functions in improving drought tolerance through ABA-dependent and ABA-independent pathways when plants are exposed to adverse osmotic conditions. TaWRKY46 can be taken as a candidate gene for transgenic breeding against osmotic stress in wheat. It can further complement and improve the information of the WRKY family members of Group III.
Collapse
Affiliation(s)
| | | | | | | | - Jinyin Lv
- Correspondence: ; Tel.: +86-135-7219-6187
| |
Collapse
|
8
|
Lin J, Dang F, Chen Y, Guan D, He S. CaWRKY27 negatively regulates salt and osmotic stress responses in pepper. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:43-51. [PMID: 31665666 DOI: 10.1016/j.plaphy.2019.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/29/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
WRKY transcription factors are key regulatory components of plant responses to both biotic and abiotic stresses. In pepper (Capsicum annuum), CaWRKY27 positively regulates resistance to the pathogenic bacterium Ralstonia solanacearum and negatively regulates thermotolerance. Here, we report that CaWRKY27 functions in the response to salinity and osmotic stress. CaWRKY27 transcription was induced by salinity, osmotic, and abscisic acid (ABA) treatments, as determined using qPCR and GUS assays. Transgenic Arabidopsis thaliana and tobacco (Nicotiana tabacum) plants heterologously expressing CaWRKY27 had an increased sensitivity to salinity and osmotic stress, with a higher inhibition of both root elongation and whole plant growth, more severe chlorosis and wilting, lower germination rates, and an enhanced germination sensitivity to ABA than the corresponding wild-type plants. Furthermore, most marker genes associated with reactive oxygen species (ROS) detoxification and polyamine and ABA biosynthesis, as well as stress-responsive genes NtDREB3, were downregulated in plants transgenically expressing CaWRKY27 upon exposure to salinity or osmotic stress. Consistently, silencing of CaWRKY27 using virus-induced gene silencing conferred tolerance to salinity and osmotic stress in pepper plants. These findings suggest that CaWRKY27 acts as a molecular link in the antagonistic crosstalk regulating the expression of defense-related genes in the responses to both abiotic and biotic stresses by acting either as a transcriptional activator or repressor in pepper.
Collapse
Affiliation(s)
- Jinhui Lin
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fengfeng Dang
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yongping Chen
- College of Horticulture Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Deyi Guan
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Shuilin He
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
9
|
Pereira L, Gomes S, Barrias S, Fernandes JR, Martins-Lopes P. Applying high-resolution melting (HRM) technology to olive oil and wine authenticity. Food Res Int 2018; 103:170-181. [DOI: 10.1016/j.foodres.2017.10.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022]
|
10
|
Haplotype analysis of the germacrene A synthase gene and association with cynaropicrin content and biological activities in Cynara cardunculus. Mol Genet Genomics 2017; 293:417-433. [PMID: 29143866 DOI: 10.1007/s00438-017-1388-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
Cynara cardunculus: L. represents a natural source of terpenic compounds, with the predominant molecule being cynaropicrin. Cynaropicrin is gaining interest since it has been correlated to anti-hyperlipidaemia, antispasmodic and cytotoxicity activity against leukocyte cancer cells. The objective of this work was to screen a collection of C. cardunculus, from different origins, for new allelic variants in germacrene A synthase (GAS) gene involved in the cynaropicrin biosynthesis and correlate them with improved cynaropicrin content and biological activities. Using high-resolution melting, nine haplotypes were identified. The putative impact of the identified allelic variants in GAS protein was evaluated by bioinformatic tools and polymorphisms that putatively lead to protein conformational changes were described. Additionally, cynaropicrin and main pentacyclic triterpenes contents, and antithrombin, antimicrobial and antiproliferative activities were also determined in C. cardunculus leaf lipophilic-derived extracts. In this work we identified allelic variants with putative impact on GAS protein, which are significantly associated with cynaropicrin content and antiproliferative activity. The results obtained suggest that the identified polymorphisms should be explored as putative genetic markers correlated with biological properties in Cynara cardunculus.
Collapse
|
11
|
Ferro AM, Ramos P, Guerreiro O, Jerónimo E, Pires I, Capel C, Capel J, Lozano R, Duarte MF, Oliveira MM, Gonçalves S. Impact of novel SNPs identified in Cynara cardunculus genes on functionality of proteins regulating phenylpropanoid pathway and their association with biological activities. BMC Genomics 2017; 18:183. [PMID: 28212611 PMCID: PMC5314637 DOI: 10.1186/s12864-017-3534-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 02/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cynara cardunculus L. offers a natural source of phenolic compounds with the predominant molecule being chlorogenic acid. Chlorogenic acid is gaining interest due to its involvement in various biological properties such as, antibacterial, antifungal, antioxidant, hepatoprotective, and anticarcinogenic activities. RESULTS In this work we screened a Cynara cardunculus collection for new allelic variants in key genes involved in the chlorogenic acid biosynthesis pathway. The target genes encode p-coumaroyl ester 3'-hydroxylase (C3'H) and hydroxycinnamoyl-CoA: quinate hydroxycinnamoyl transferase (HQT), both participating in the synthesis of chlorogenic acid. Using high-resolution melting, the C3'H gene proved to be highly conserved with only 4 haplotypes while, for HQT, 17 haplotypes were identified de novo. The putative influence of the identified polymorphisms in C3'H and HQT proteins was further evaluated using bioinformatics tools. We could identify some polymorphisms that may lead to protein conformational changes. Chlorogenic acid content, antioxidant and antithrombin activities were also evaluated in Cc leaf extracts and an association analysis was performed to assess a putative correlation between these traits and the identified polymorphisms. CONCLUSION In this work we identified allelic variants with putative impact on C3'H and HQT proteins which are significantly associated with chlorogenic acid content and antioxidant activity. Further study of these alleles should be explored to assess putative relevance as genetic markers correlating with Cynara cardunculus biological properties with further confirmation by functional analysis.
Collapse
Affiliation(s)
- Ana Margarida Ferro
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2781-901 Oeiras, Portugal
| | - Patrícia Ramos
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
- Centre for Research in Ceramics and Composite Materials (CICECO) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olinda Guerreiro
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Eliana Jerónimo
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
| | - Inês Pires
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2781-901 Oeiras, Portugal
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almeria, Spain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almeria, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almeria, Spain
| | - Maria F. Duarte
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2781-901 Oeiras, Portugal
| | - Sónia Gonçalves
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB101SA Cambridge, UK
| |
Collapse
|
12
|
Samaras A, Madesis P, Karaoglanidis GS. Detection of sdhB Gene Mutations in SDHI-Resistant Isolates of Botrytis cinerea Using High Resolution Melting (HRM) Analysis. Front Microbiol 2016; 7:1815. [PMID: 27895633 PMCID: PMC5108788 DOI: 10.3389/fmicb.2016.01815] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 10/28/2016] [Indexed: 01/05/2023] Open
Abstract
Botrytis cinerea, is a high risk pathogen for fungicide resistance development. Pathogen' resistance to SDHIs is associated with several mutations in sdh gene. The diversity of mutations and their differential effect on cross-resistance patterns among SDHIs and the fitness of resistant strains necessitate the availability of a tool for their rapid identification. This study was initiated to develop and validate a high-resolution melting (HRM) analysis for the identification of P225H/F/L//T, N230I, and H272L/R/Y mutations. Based on the sequence of sdhB subunit of resistant and sensitive isolates, a universal primer pair was designed. The specificity of the HRM analysis primers was verified to ensure against the cross-reaction with other fungal species and its sensitivity was evaluated using concentrations of known amounts of mutant's DNA. The melting curve analysis generated nine distinct curve profiles, enabling the discrimination of all the four mutations located at codon 225, the N230I mutation, the three mutations located in codon 272, and the non-mutated isolates (isolates of wild-type sensitivity). Similar results were obtained when DNA was extracted directly from artificially inoculated strawberry fruit. The method was validated by monitoring the presence of sdhB mutations in samples of naturally infected strawberry fruits and stone fruit rootstock seedling plants showing damping-off symptoms. HRM analysis data were compared with a standard PIRA-PCR technique and an absolute agreement was observed suggesting that in both populations the H272R mutation was the predominant one, while H272Y, N230I, and P225H were detected in lower frequencies. The results of the study suggest that HRM analysis can be a useful tool for sensate, accurate, and rapid identification of several sdhB mutations in B. cinerea and it is expected to contribute in routine fungicide resistance monitoring or assessments of the effectiveness of anti-resistance strategies implemented in crops heavily treated with botryticides.
Collapse
Affiliation(s)
- Anastasios Samaras
- Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Plant Pathology, Aristotelian University of ThessalonikiThessaloniki, Greece
| | - Panagiotis Madesis
- Institute of Applied Biosciences, Centre for Research and Technology HellasThessaloniki, Greece
| | - George S. Karaoglanidis
- Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Plant Pathology, Aristotelian University of ThessalonikiThessaloniki, Greece
| |
Collapse
|
13
|
Gahlaut V, Jaiswal V, Kumar A, Gupta PK. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2019-2042. [PMID: 27738714 DOI: 10.1007/s00122-016-2794-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 09/15/2016] [Indexed: 05/26/2023]
Abstract
TFs involved in drought tolerance in plants may be utilized in future for developing drought tolerant cultivars of wheat and some other crops. Plants have developed a fairly complex stress response system to deal with drought and other abiotic stresses. These response systems often make use of transcription factors (TFs); a gene encoding a specific TF together with -its target genes constitute a regulon, and take part in signal transduction to activate/silence genes involved in response to drought. Since, five specific families of TFs (out of >80 known families of TFs) have gained widespread attention on account of their significant role in drought tolerance in plants, TFs and regulons belonging to these five multi-gene families (AP2/EREBP, bZIP, MYB/MYC, NAC and WRKY) have been described and their role in improving drought tolerance discussed in this brief review. These TFs often undergo reversible phosphorylation to perform their function, and are also involved in complex networks. Therefore, some details about reversible phosphorylation of TFs by different protein kinases/phosphatases and the co-regulatory networks, which involve either only TFs or TFs with miRNAs, have also been discussed. Literature on transgenics involving genes encoding TFs and that on QTLs and markers associated with TF genes involved in drought tolerance has also been reviewed. Throughout the review, there is a major emphasis on wheat as an important crop, although examples from the model cereal rice (sometimes maize also), and the model plant Arabidopsis have also been used. This knowledge base may eventually allow the use of TF genes for development of drought tolerant cultivars, particularly in wheat.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Vandana Jaiswal
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- Plant Molecular Biology and Genetic Engineering, CSIR-National Botanical Research Institute, Lucknow, India
| | - Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology, Dehradun, India
| | | |
Collapse
|
14
|
Allele mining across DREB1A and DREB1B in diverse rice genotypes suggest a highly conserved pathway inducible by low temperature. J Genet 2016; 94:231-8. [PMID: 26174670 DOI: 10.1007/s12041-015-0507-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Low temperature stress is one of the major limiting factors affecting rice productivity in higher altitudes. DREB1A and DREB1B, are two transcription factors that have been reported to play key regulatory role in low temperature tolerance. In order to understand whether natural genetic variation in these two loci leads to cold tolerance or susceptibility, OsDREB1A and OsDREB1B were targeted across several rice genotypes showing differential response to low temperature. Expression data suggests induction of gene expression in shoots in response to low temperature in both tolerant and susceptible genotypes. Upon sequence analysis of 20 rice genotypes, eight nucleotide changes were identified including two in the coding region and six in the 5'UTR. None of the discovered novel variations lie in the conserved region of the genes under study, thereby causing little or no changes in putative function of the corresponding proteins. In silico analysis using a diverse set of 400 O. sativa revealed much lower nucleotide diversity estimates across two DREB loci and one other gene (MYB2) involved in DREB pathway than those observed for other rice genes. None of the changes showed association with seedling stage cold tolerance, suggesting that nucleotide changes in DREB loci are unlikely to contribute to low temperature tolerance. So far, data concerning the physiological role and regulation of DREB1 in different genetic background are very limited; it is to be expected that they will be studied extensively in the near future.
Collapse
|
15
|
Solis J, Baisakh N, Brandt SR, Villordon A, La Bonte D. Transcriptome Profiling of Beach Morning Glory (Ipomoea imperati) under Salinity and Its Comparative Analysis with Sweetpotato. PLoS One 2016; 11:e0147398. [PMID: 26848754 PMCID: PMC4743971 DOI: 10.1371/journal.pone.0147398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 01/04/2016] [Indexed: 01/23/2023] Open
Abstract
The response and adaption to salt remains poorly understood for beach morning glory [Ipomoea imperati (Vahl) Griseb], one of a few relatives of sweetpotato, known to thrive under salty and extreme drought conditions. In order to understand the genetic mechanisms underlying salt tolerance of a Convolvulaceae member, a genome-wide transcriptome study was carried out in beach morning glory by 454 pyrosequencing. A total of 286,584 filtered reads from both salt stressed and unstressed (control) root and shoot tissues were assembled into 95,790 unigenes with an average length of 667 base pairs (bp) and N50 of 706 bp. Putative differentially expressed genes (DEGs) were identified as transcripts overrepresented under salt stressed tissues compared to the control, and were placed into metabolic pathways. Most of these DEGs were involved in stress response, membrane transport, signal transduction, transcription activity and other cellular and molecular processes. We further analyzed the gene expression of 14 candidate genes of interest for salt tolerance through quantitative reverse transcription PCR (qRT-PCR) and confirmed their differential expression under salt stress in both beach morning glory and sweetpotato. The results comparing transcripts of I. imperati against the transcriptome of other Ipomoea species, including sweetpotato are also presented in this study. In addition, 6,233 SSR markers were identified, and an in silico analysis predicted that 434 primer pairs out of 4,897 target an identifiable homologous sequence in other Ipomoea transcriptomes, including sweetpotato. The data generated in this study will help in understanding the basics of salt tolerance of beach morning glory and the SSR resources generated will be useful for comparative genomics studies and further enhance the path to the marker-assisted breeding of sweetpotato for salt tolerance.
Collapse
Affiliation(s)
- Julio Solis
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America
- * E-mail: (NB); (DL)
| | - Steven R. Brandt
- Louisiana Digital Media Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Arthur Villordon
- Sweet Potato Research Station, Louisiana State University Agricultural Center, Chase, LA, United States of America
| | - Don La Bonte
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America
- * E-mail: (NB); (DL)
| |
Collapse
|
16
|
Ma R, Sun L, Chen X, Mei B, Chang G, Wang M, Zhao D. Proteomic Analyses Provide Novel Insights into Plant Growth and Ginsenoside Biosynthesis in Forest Cultivated Panax ginseng (F. Ginseng). FRONTIERS IN PLANT SCIENCE 2016; 7:1. [PMID: 26858731 PMCID: PMC4726751 DOI: 10.3389/fpls.2016.00001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/05/2016] [Indexed: 05/18/2023]
Abstract
F. Ginseng (Panax ginseng) is planted in the forest to enhance the natural ginseng resources, which have an immense medicinal and economic value. The morphology of the cultivated plants becomes similar to that of wild growing ginseng (W. Ginseng) over the years. So far, there have been no studies highlighting the physiological or functional changes in F. Ginseng and its wild counterparts. In the present study, we used proteomic technologies (2DE and iTRAQ) coupled to mass spectrometry to compare W. Ginseng and F. Ginseng at various growth stages. Hierarchical cluster analysis based on protein abundance revealed that the protein expression profile of 25-year-old F. Ginseng was more like W. Ginseng than less 20-year-old F. Ginseng. We identified 192 differentially expressed protein spots in F. Ginseng. These protein spots increased with increase in growth years of F. Ginseng and were associated with proteins involved in energy metabolism, ginsenosides biosynthesis, and stress response. The mRNA, physiological, and metabolic analysis showed that the external morphology, protein expression profile, and ginsenoside synthesis ability of the F. Ginseng increased just like that of W. Ginseng with the increase in age. Our study represents the first characterization of the proteome of F. Ginseng during development and provides new insights into the metabolism and accumulation of ginsenosides.
Collapse
Affiliation(s)
- Rui Ma
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Chemistry and Biology, Beihua UniversityJilin, China
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
| | - Liwei Sun
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Chemistry and Biology, Beihua UniversityJilin, China
- *Correspondence: Liwei Sun
| | - Xuenan Chen
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
- The first affiliated hospital to Changchun University of Chinese MedicineChangchun, China
| | - Bing Mei
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
| | - Guijuan Chang
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
| | - Manying Wang
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, College of Chemistry and Biology, Beihua UniversityJilin, China
| | - Daqing Zhao
- Ginseng Research Center, Changchun University of Chinese MedicineChangchun, China
- Daqing Zhao
| |
Collapse
|
17
|
The SsDREB Transcription Factor from the Succulent Halophyte Suaeda salsa Enhances Abiotic Stress Tolerance in Transgenic Tobacco. Int J Genomics 2015; 2015:875497. [PMID: 26504772 PMCID: PMC4609462 DOI: 10.1155/2015/875497] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/07/2015] [Indexed: 11/17/2022] Open
Abstract
Dehydration-responsive element-binding (DREB) transcription factor (TF) plays a key role for abiotic stress tolerance in plants. In this study, a novel cDNA encoding DREB transcription factor, designated SsDREB, was isolated from succulent halophyte Suaeda salsa. This protein was classified in the A-6 group of DREB subfamily based on multiple sequence alignments and phylogenetic characterization. Yeast one-hybrid assays showed that SsDREB protein specifically binds to the DRE sequence and could activate the expression of reporter genes in yeast, suggesting that the SsDREB protein was a CBF/DREB transcription factor. Real-time RT-PCR showed that SsDREB was significantly induced under salinity and drought stress. Overexpression of SsDREB cDNA in transgenic tobacco plants exhibited an improved salt and drought stress tolerance in comparison to the nontransformed controls. The transgenic plants revealed better growth, higher chlorophyll content, and net photosynthesis rate, as well as higher level of proline and soluble sugars. The semiquantitative PCR of transgenics showed higher expression of stress-responsive genes. These data suggest that the SsDREB transcription factor is involved in the regulation of salt stress tolerance in tobacco by the activation of different downstream gene expression.
Collapse
|
18
|
Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N. From Genetics to Functional Genomics: Improvement in Drought Signaling and Tolerance in Wheat. FRONTIERS IN PLANT SCIENCE 2015; 6:1012. [PMID: 26635838 PMCID: PMC4652017 DOI: 10.3389/fpls.2015.01012] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/02/2015] [Indexed: 05/18/2023]
Abstract
Drought being a yield limiting factor has become a major threat to international food security. It is a complex trait and drought tolerance response is carried out by various genes, transcription factors (TFs), microRNAs (miRNAs), hormones, proteins, co-factors, ions, and metabolites. This complexity has limited the development of wheat cultivars for drought tolerance by classical breeding. However, attempts have been made to fill the lost genetic diversity by crossing wheat with wild wheat relatives. In recent years, several molecular markers including single nucleotide polymorphisms (SNPs) and quantitative trait loci (QTLs) associated with genes for drought signaling pathways have been reported. Screening of large wheat collections by marker assisted selection (MAS) and transformation of wheat with different genes/TFs has improved drought signaling pathways and tolerance. Several miRNAs also provide drought tolerance to wheat by regulating various TFs/genes. Emergence of OMICS techniques including transcriptomics, proteomics, metabolomics, and ionomics has helped to identify and characterize the genes, proteins, metabolites, and ions involved in drought signaling pathways. Together, all these efforts helped in understanding the complex drought tolerance mechanism. Here, we have reviewed the advances in wide hybridization, MAS, QTL mapping, miRNAs, transgenic technique, genome editing system, and above mentioned functional genomics tools for identification and utility of signaling molecules for improvement in wheat drought tolerance.
Collapse
Affiliation(s)
- Hikmet Budak
- Plant Genomics Group, Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
- *Correspondence: Hikmet Budak,
| | - Babar Hussain
- Plant Genomics Group, Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
| | - Zaeema Khan
- Plant Genomics Group, Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
| | - Neslihan Z. Ozturk
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Niǧde UniversityNiǧde, Turkey
| | - Naimat Ullah
- Plant Genomics Group, Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
| |
Collapse
|
19
|
Mondini L, Nachit MM, Pagnotta MA. Allelic variants in durum wheat (Triticum turgidum L. var. durum) DREB genes conferring tolerance to abiotic stresses. Mol Genet Genomics 2014; 290:531-44. [PMID: 25332074 DOI: 10.1007/s00438-014-0933-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 10/03/2014] [Indexed: 11/25/2022]
Abstract
To identify potential and useful markers able to discriminate promising lines of durum wheat (Triticum turgidum L. var durum) tolerant to salt and drought stresses, nucleotide sequences of Dehydration-Responsive-Element Binding Factor (DREB) genes were used to design primers probed with High Resolution Melting technology for the identification of allelic variants. DREB1, DREB2, DREB3, DREB4 and DREB5 conserved regions corresponding to EREBP/AP2 domain and containing the conserved core sequence (5'-TACCGACAT-3'), the protein site directly involved in DNA recognition, were analyzed. The validated primers were probed on four lines of durum wheat differentially tolerant to salt and drought stresses treated with solutions containing different salt concentrations. Some SNPs mutations were identified in the highly tolerant durum cultivar Jennah Khetifa treated with the maximum salt concentration (1.5 M). The SNPs mutations identified were non-synonymous (nsSNPs) causing changes in peptide sequences. These concerned amino acid residues directly involved in the maintenance of protein geometry, the recognition of the specific cis-element, and the contacts between the protein and DNA. A validation of the found SNPs was carried out by analyzing the regressions between DREBs SNPs allelic variants and some morpho-physiological characters in a RIL population, deriving from a cross between the two durum wheat genotypes utilized for SNPs detection, grown under contrasting environments. Several phenotypical characters have been assessed in the progeny across all the localities evaluating the different performances under different stress levels and related with SNPs occurrence. Significant relations between SNPs variants and morpho-physiological characteristics were found in the progeny growth in very severe drought environments, suggesting a role of the identified SNPs in conferring a superior capability to adverse stress conditions and, at the same time, the key role of these genes in empowering salt tolerance.
Collapse
Affiliation(s)
- Linda Mondini
- Department of Science and Technologies for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, via S. C. de Lellis, 01100, Viterbo, Italy
| | | | | |
Collapse
|
20
|
Alvarez S, Roy Choudhury S, Pandey S. Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J Proteome Res 2014; 13:1688-701. [PMID: 24475748 DOI: 10.1021/pr401165b] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Wheat is one of the most highly cultivated cereals in the world. Like other cultivated crops, wheat production is significantly affected by abiotic stresses such as drought. Multiple wheat varieties suitable for different geographical regions of the world have been developed that are adapted to different environmental conditions; however, the molecular basis of such adaptations remains unknown in most cases. We have compared the quantitative proteomics profile of the roots of two different wheat varieties, Nesser (drought-tolerant) and Opata (drought-sensitive), in the absence and presence of abscisic acid (ABA, as a proxy for drought). A labeling LC-based quantitative proteomics approach using iTRAQ was applied to elucidate the changes in protein abundance levels. Quantitative differences in protein levels were analyzed for the evaluation of inherent differences between the two varieties as well as the overall and variety-specific effect of ABA on the root proteome. This study reveals the most elaborate ABA-responsive root proteome identified to date in wheat. A large number of proteins exhibited inherently different expression levels between Nesser and Opata. Additionally, significantly higher numbers of proteins were ABA-responsive in Nesser roots compared with Opata roots. Furthermore, several proteins showed variety-specific regulation by ABA, suggesting their role in drought adaptation.
Collapse
Affiliation(s)
- Sophie Alvarez
- Donald Danforth Plant Science Center , 975 North Warson Road, St. Louis, Missouri 63132, United States
| | | | | |
Collapse
|
21
|
Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Mol Biotechnol 2013; 54:803-17. [PMID: 23250722 DOI: 10.1007/s12033-012-9628-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been established that drought-responsive element binding (DREB) proteins correspond to transcription factors which play important regulatory roles in plant response to abiotic and biotic stresses. In this study, a novel cDNA encoding DREB transcription factor, designated StDREB1, was isolated from potato (Solanum tuberosum L.). This protein was classified in the A-4 group of DREB subfamily based on multiple sequence alignments and phylogenetic characterization. Semi-quantitative RT-PCR showed that StDREB1 is expressed in leaves, stems, and roots under stress conditions and it is greatly induced by NaCl, drought, low temperature, and abscisic acid (ABA) treatments. Overexpression of StDREB1 cDNA in transgenic potato plants exhibited an improved salt and drought stress tolerance in comparison to the non-transformed controls. The enhanced stress tolerance may be associated with the increase in P5CS-RNA expression (δ (1)-pyrroline-5-carboxylate synthetase) and the subsequent accumulation of proline osmoprotectant in addition to a better control of water loss. Overexpression of StDREB1 also activated stress-responsive genes, such as those encoding calcium-dependent protein kinases (CDPKs), in transgenic potatoes under standard and high salt conditions. These data suggest that the StDREB1 transcription factor is involved in the regulation of salt stress tolerance in potato by the activation of different downstream gene expression.
Collapse
|
22
|
Pandey B, Sharma P, Pandey DM, Sharma I, Chatrath R. Identification of new aquaporin genes and single nucleotide polymorphism in bread wheat. Evol Bioinform Online 2013; 9:437-52. [PMID: 24250219 PMCID: PMC3825567 DOI: 10.4137/ebo.s12568] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Major facilitators of water movement through plant cell membranes include aquaporin proteins. Wheat is among the largest and most important cereal crops worldwide; however, unlike other model plants such as rice, maize and Arabidopsis, little has been reported on wheat major intrinsic proteins (MIPs). This study presents a comprehensive computational identification of 349 new wheat expressed sequence tags (ESTs), encoding 13 wheat aquaporin genes. Identified aquaporins consist of 6 plasma membrane intrinsic proteins (PIP) and 1 TIP showing high sequence similarity with rice aquaporins. We also identified 4 NOD26-like intrinsic proteins (NIP) and 2 SIP members that showed more divergence. Further, expression analysis of the aquaporin genes using the available EST information in UniGene revealed their transcripts were differentially regulated in various stress- and tissue-specific libraries. Allele specific Polymerase chain reaction (PCR) primers based on single nucleotide polymorphism (SNP) were designed using PIP as the target gene and validated on a core set of Indian wheat genotypes. A 3D theoretical model of the wheat aquaporin protein was built by homology modeling and could prove to be useful in the further functional characterization of this protein. Collectively with expression and bioinformatics analysis, our results support the idea that the genes identified in this study signify an important genetic resource providing potential targets to modify the water use properties of wheat.
Collapse
Affiliation(s)
- B Pandey
- Biotechnology laboratory, Directorate of Wheat Research, Karnal, India. ; Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | | | | | | | | |
Collapse
|
23
|
Drought tolerance in modern and wild wheat. ScientificWorldJournal 2013; 2013:548246. [PMID: 23766697 PMCID: PMC3671283 DOI: 10.1155/2013/548246] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/03/2013] [Indexed: 11/18/2022] Open
Abstract
The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by "omics" studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance.
Collapse
|
24
|
Plant High-Affinity Potassium (HKT) Transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity. Int J Mol Sci 2013; 14:7660-80. [PMID: 23571493 PMCID: PMC3645709 DOI: 10.3390/ijms14047660] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/07/2013] [Accepted: 03/28/2013] [Indexed: 12/27/2022] Open
Abstract
High-affinity Potassium Transporters (HKTs) belong to an important class of integral membrane proteins (IMPs) that facilitate cation transport across the plasma membranes of plant cells. Some members of the HKT protein family have been shown to be critical for salinity tolerance in commercially important crop species, particularly in grains, through exclusion of Na+ ions from sensitive shoot tissues in plants. However, given the number of different HKT proteins expressed in plants, it is likely that different members of this protein family perform in a range of functions. Plant breeders and biotechnologists have attempted to manipulate HKT gene expression through genetic engineering and more conventional plant breeding methods to improve the salinity tolerance of commercially important crop plants. Successful manipulation of a biological trait is more likely to be effective after a thorough understanding of how the trait, genes and proteins are interconnected at the whole plant level. This article examines the current structural and functional knowledge relating to plant HKTs and how their structural features may explain their transport selectivity. We also highlight specific areas where new knowledge of plant HKT transporters is needed. Our goal is to present how knowledge of the structure of HKT proteins is helpful in understanding their function and how this understanding can be an invaluable experimental tool. As such, we assert that accurate structural information of plant IMPs will greatly inform functional studies and will lead to a deeper understanding of plant nutrition, signalling and stress tolerance, all of which represent factors that can be manipulated to improve agricultural productivity.
Collapse
|
25
|
Agarwal G, Jhanwar S, Priya P, Singh VK, Saxena MS, Parida SK, Garg R, Tyagi AK, Jain M. Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLoS One 2012; 7:e52443. [PMID: 23300670 PMCID: PMC3531472 DOI: 10.1371/journal.pone.0052443] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/13/2012] [Indexed: 11/25/2022] Open
Abstract
Chickpea (Cicer arietinum L.) is an important crop legume plant with high nutritional value. The transcriptomes of desi and wild chickpea have already been sequenced. In this study, we sequenced the transcriptome of kabuli chickpea, C. arietinum (genotype ICCV2), having higher commercial value, using GS-FLX Roche 454 and Illumina technologies. The assemblies of both Roche 454 and Illumina datasets were optimized using various assembly programs and parameters. The final optimized hybrid assembly generated 43,389 transcripts with an average length of 1065 bp and N50 length of 1653 bp representing 46.2 Mb of kabuli chickpea transcriptome. We identified a total of 5409 simple sequence repeats (SSRs) in these transcript sequences. Among these, at least 130 and 493 SSRs were polymorphic with desi (ICC4958) and wild (PI489777) chickpea, respectively. In addition, a total of 1986 and 37,954 single nucleotide polymorphisms (SNPs) were predicted in kabuli/desi and kabuli/wild genotypes, respectively. The SNP frequency was 0.043 SNP per kb for kabuli/desi and 0.821 SNP per kb for kabuli/wild, reflecting very low genetic diversity in chickpea. Further, SSRs and SNPs present in tissue-specific and transcription factor encoding transcripts have been identified. The experimental validation of a selected set of polymorphic SSRs and SNPs exhibited high intra-specific polymorphism potential between desi and kabuli chickpea, suggesting their utility in large-scale genotyping applications. The kabuli chickpea gene index assembled, and SSRs and SNPs identified in this study will serve as useful genomic resource for genetic improvement of chickpea.
Collapse
Affiliation(s)
- Gaurav Agarwal
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Shalu Jhanwar
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Pushp Priya
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Vikash K. Singh
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Maneesha S. Saxena
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Swarup K. Parida
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Rohini Garg
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Akhilesh K. Tyagi
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Mukesh Jain
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
- * E-mail:
| |
Collapse
|