1
|
Nguyen DQ, Nguyen NL, Nguyen VT, Tran THG, Nguyen TH, Nguyen TKL, Nguyen HH. Comparative analysis of microRNA expression profiles in shoot and root tissues of contrasting rice cultivars (Oryza sativa L.) with different salt stress tolerance. PLoS One 2023; 18:e0286140. [PMID: 37224116 DOI: 10.1371/journal.pone.0286140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Rice is the second-most important primary crop in the world and one of the most susceptible crops to salt stress. Soil salinization hinders seedling growth and decreases crop yield by inducing ionic and osmotic imbalances, photosynthesis disturbances, cell wall alterations, and gene expression inhibition. Plants have developed a range of defense mechanisms to adapt to salt stress. One of the most effective means is to make use of plant microRNAs (miRNAs) as post-transcriptional regulators to regulate the expression of developmental genes in order to mitigate the detrimental effects of salt stress. In this study, the miRNA sequencing data between two contrasting rice cultivars, salt-tolerant Doc Phung (DP) and salt-sensitive IR28 seedlings, were compared under control and salt stress (150 mM NaCl) conditions to determine the salt stress-responsive miRNAs. Comparative analysis of miRNA sequencing data detected a total of 69 differentially expressed miRNAs in response to salt stress treatment. Among them, 18 miRNAs from 13 gene families, MIR156, MIR164, MIR167, MIR168, MIR171, MIR396, MIR398, MIR1432, MIR1846, MIR1857, MIR1861, MIR3979, and MIR5508, were identified to be specifically and significantly expressed in the shoot and root tissues of DP seedlings. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses further revealed that these detected miRNAs regulate a range of essential biological and stress response processes, including gene transcription, osmotic homeostasis, root formation, ROS scavenger synthesis, and auxin and abscisic acid signaling pathways. Our findings provide more insight into the miRNA-mediated responsive mechanisms of rice under salt stress and should benefit the improvement of salt stress tolerance in rice.
Collapse
Affiliation(s)
- Duc Quan Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngoc Lan Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Van Tung Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thi Huong Giang Tran
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thanh Hien Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thi Kim Lien Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Huy Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
2
|
Padilla YG, Gisbert-Mullor R, López-Galarza S, Albacete A, Martínez-Melgarejo PA, Calatayud Á. Short-term water stress responses of grafted pepper plants are associated with changes in the hormonal balance. FRONTIERS IN PLANT SCIENCE 2023; 14:1170021. [PMID: 37180400 PMCID: PMC10167040 DOI: 10.3389/fpls.2023.1170021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023]
Abstract
Phytohormones play an important role in regulating the plant behavior to drought. In previous studies, NIBER® pepper rootstock showed tolerance to drought in terms of production and fruit quality compared to ungrafted plants. In this study, our hypothesis was that short-term exposure to water stress in young, grafted pepper plants would shed light on tolerance to drought in terms of modulation of the hormonal balance. To validate this hypothesis, fresh weight, water use efficiency (WUE) and the main hormone classes were analyzed in self-grafted pepper plants (variety onto variety, V/V) and variety grafted onto NIBER® (V/N) at 4, 24, and 48h after severe water stress was induced by PEG addition. After 48h, WUE in V/N was higher than in V/V, due to major stomata closure to maintain water retention in the leaves. This can be explained by the higher abscisic acid (ABA) levels observed in the leaves of V/N plants. Despite the interaction between ABA and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), in relation to stomata closure is controversial, we observed an important increase of ACC at the end of the experiment in V/N plants coinciding with an important rise of the WUE and ABA. The maximum concentration of jasmonic acid and salicylic acid after 48h was found in the leaves of V/N, associated with their role in abiotic stress signaling and tolerance. Respect to auxins and cytokinins, the highest concentrations were linked to water stress and NIBER®, but this effect did not occur for gibberellins. These results show that hormone balance was affected by water stress and rootstock genotype, where NIBER® rootstock displayed a better ability to overcome short-term water stress.
Collapse
Affiliation(s)
- Yaiza Gara Padilla
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Ramón Gisbert-Mullor
- Departamento de Producción Vegetal, Centro Valenciano de Estudios sobre el Riego (CVER), Universitat Politècnica de València, Valencia, Spain
| | - Salvador López-Galarza
- Departamento de Producción Vegetal, Centro Valenciano de Estudios sobre el Riego (CVER), Universitat Politècnica de València, Valencia, Spain
| | - Alfonso Albacete
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, Murcia, Spain
| | | | - Ángeles Calatayud
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| |
Collapse
|
3
|
Berrío RT, Nelissen H, Inzé D, Dubois M. Increasing yield on dry fields: molecular pathways with growing potential. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:323-341. [PMID: 34695266 PMCID: PMC7612350 DOI: 10.1111/tpj.15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 05/02/2023]
Abstract
Drought stress constitutes one of the major constraints to agriculture all over the world, and its devastating effect is only expected to increase in the following years due to climate change. Concurrently, the increasing food demand in a steadily growing population requires a proportional increase in yield and crop production. In the past, research aimed to increase plant resilience to severe drought stress. However, this often resulted in stunted growth and reduced yield under favorable conditions or moderate drought. Nowadays, drought tolerance research aims to maintain plant growth and yield under drought conditions. Overall, recently deployed strategies to engineer drought tolerance in the lab can be classified into a 'growth-centered' strategy, which focuses on keeping growth unaffected by the drought stress, and a 'drought resilience without growth penalty' strategy, in which the main aim is still to boost drought resilience, while limiting the side effects on plant growth. In this review, we put the scope on these two strategies and some molecular players that were successfully engineered to generate drought-tolerant plants: abscisic acid, brassinosteroids, cytokinins, ethylene, ROS scavenging genes, strigolactones, and aquaporins. We discuss how these pathways participate in growth and stress response regulation under drought. Finally, we present an overview of the current insights and future perspectives in the development of new strategies to improve drought tolerance in the field.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hilde Nelissen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Corresponding Author: Dirk Inzé VIB Center for Plant Systems Biology Ghent University, Department of Plant Biotechnology Technologiepark 71 B-9052 Ghent (Belgium) Tel.: +32 9 3313800; Fax: +32 9 3313809;
| | - Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
4
|
Dubois M, Inzé D. Plant growth under suboptimal water conditions: early responses and methods to study them. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1706-1722. [PMID: 31967643 DOI: 10.1093/jxb/eraa037] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 05/03/2023]
Abstract
Drought stress forms a major environmental constraint during the life cycle of plants, often decreasing plant yield and in extreme cases threatening survival. The molecular and physiological responses induced by drought have been the topic of extensive research during the past decades. Because soil-based approaches to studying drought responses are often challenging due to low throughput and insufficient control of the conditions, osmotic stress assays in plates were developed to mimic drought. Addition of compounds such as polyethylene glycol, mannitol, sorbitol, or NaCl to controlled growth media has become increasingly popular since it offers the advantage of accurate control of stress level and onset. These osmotic stress assays enabled the discovery of very early stress responses, occurring within seconds or minutes following osmotic stress exposure. In this review, we construct a detailed timeline of early responses to osmotic stress, with a focus on how they initiate plant growth arrest. We further discuss the specific responses triggered by different types and severities of osmotic stress. Finally, we compare short-term plant responses under osmotic stress versus in-soil drought and discuss the advantages, disadvantages, and future of these plate-based proxies for drought.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
5
|
Lambin J, Demirel Asci S, Dubiel M, Tsaneva M, Verbeke I, Wytynck P, De Zaeytijd J, Smagghe G, Subramanyam K, Van Damme EJM. OsEUL Lectin Gene Expression in Rice: Stress Regulation, Subcellular Localization and Tissue Specificity. FRONTIERS IN PLANT SCIENCE 2020; 11:185. [PMID: 32194594 PMCID: PMC7061729 DOI: 10.3389/fpls.2020.00185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/07/2020] [Indexed: 05/05/2023]
Abstract
The Euonymus lectin (EUL) family is a unique group of carbohydrate-binding proteins that is omnipresent in plants. Sequences encoding EUL-related lectins have been retrieved from all completely sequenced plant genomes. The rice (Oryza sativa) genome contains 5 functional EUL genes referred to as OsEULS2, OsEULS3, OsEULD1a, OsEULD1b, and OsEULD2. In this study we focused on the tissue specific expression, stress inducibility and subcellular localization of the rice EULs. Even though the EUL domain sequence is highly conserved among the rice EULs (at least 80% sequence similarity) different biotic and abiotic stress treatments yielded unique responses for the different EULs. Transcript levels for OsEULs were differentially affected by drought and salt stress, ABA treatment, pathogen infection or insect infestation. Analysis of promoter activity revealed differential expression and tissue specificity for the 5 OsEUL genes, with most expression observed in the vascular system of roots and shoots, as well as in the root tips and seeds. At cell level, all OsEULs are located in the nucleus whereas OsEULD1b and OsEULD2 also locate to the cytoplasm. This paper contributes to the functional characterization of the EULs and provides insight in the biological importance of this family of proteins for rice.
Collapse
Affiliation(s)
- Jeroen Lambin
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sinem Demirel Asci
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Malgorzata Dubiel
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Mariya Tsaneva
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Isabel Verbeke
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Pieter Wytynck
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jeroen De Zaeytijd
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kondeti Subramanyam
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Els J. M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
|
7
|
Physiological and Proteomic Responses of Mulberry Trees ( Morus alba. L.) to Combined Salt and Drought Stress. Int J Mol Sci 2019; 20:ijms20102486. [PMID: 31137512 PMCID: PMC6566768 DOI: 10.3390/ijms20102486] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Intensive investigations have been conducted on the effect of sole drought or salinity stress on the growth of plants. However, there is relatively little knowledge on how plants, particularly woody species, respond to a combination of these two stresses although these stresses can simultaneously occur in the field. In this study, mulberry, an economically important resource for traditional medicine, and the sole food of domesticated silkworms was subjected to a combination of salt and drought stress and analyzed by physiological methods and TMT-based proteomics. Stressed mulberry exhibited significant alteration in physiological parameters, including root/shoot ratio, chlorophyll fluorescence, total carbon, and ion reallocation. A total of 577 and 270 differentially expressed proteins (DEPs) were identified from the stressed leaves and roots, respectively. Through KEGG analysis, these DEPs were assigned to multiple pathways, including carbon metabolism, photosynthesis, redox, secondary metabolism, and hormone metabolism. Among these pathways, the sucrose related metabolic pathway was distinctly enriched in both stressed leaves and roots, indicating an important contribution in mulberry under stress condition. The results provide a comprehensive understanding of the adaptive mechanism of mulberry in response to salt and drought stress, which will facilitate further studies on innovations in terms of crop performance.
Collapse
|
8
|
Khalloufi M, Martínez-Andújar C, Lachaâl M, Karray-Bouraoui N, Pérez-Alfocea F, Albacete A. The interaction between foliar GA 3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:134-144. [PMID: 28482334 DOI: 10.1016/j.jplph.2017.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/06/2017] [Accepted: 04/09/2017] [Indexed: 05/08/2023]
Abstract
The agriculture industry is frequently affected by various abiotic stresses limiting plant productivity. To decrease the negative effect of salinity and improve growth performance, some strategies have been used, such as exogenous application of plant growth regulators (i.e. gibberellic acid, GA3), or arbuscular mycorrhizal fungi (AMF) inoculation. To gain insights about the cross-talk effect of exogenous GA3 application and AMF inoculation on growth under salinity conditions, tomato plants (Solanum lycopersicum, cv. TT-115) were inoculated or not with the AMF Rhizophagus irregularis and exposed to different treatments during two weeks: 0M GA3+0mM NaCl, 10-6M GA3+0mM NaCl, 0M GA3+100mM NaCl and 10-6M GA3+100mM NaCl. Results have revealed that AMF inoculation or GA3 application alone, but especially their interaction, resulted in growth improvement under salinity conditions. The growth improvement observed in AMF-inoculated tomato plants under salinity conditions was mainly associated to ionic factors (higherK concentration and K/Na ratio) while the alleviating effect of GA3 application and its interaction with AMF appear to be due to changes in the hormonal balance. Foliar GA3 application was found to increase the active gibberellins (GAs), resulting in a positive correlation between GA3 and the growth-related parameters. Furthermore, cytokinins, indoleacetic acid and abscisic acid concentrations increased in AMF inoculated or GA3 treated plants but, notably, in AMF plants treated with GA3, which showed improved growth under salinity conditions. This suggests that there is an interactive positive effect between GAs and AMF which alleviates growth impairment under salinity conditions by modifying the hormonal balance of the plant.
Collapse
Affiliation(s)
- Mouna Khalloufi
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; Unité de Physiologie et Biochimie de la Réponse des Plantes aux Contraintes Abiotiques, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar, Tunisia
| | | | - Mokhtar Lachaâl
- Unité de Physiologie et Biochimie de la Réponse des Plantes aux Contraintes Abiotiques, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar, Tunisia
| | - Najoua Karray-Bouraoui
- Unité de Physiologie et Biochimie de la Réponse des Plantes aux Contraintes Abiotiques, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar, Tunisia
| | - Francisco Pérez-Alfocea
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Alfonso Albacete
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
9
|
Time course of physiological, biochemical, and gene expression changes under short-term salt stress in Brassica juncea L. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2016.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Pal S, Zhao J, Khan A, Yadav NS, Batushansky A, Barak S, Rewald B, Fait A, Lazarovitch N, Rachmilevitch S. Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Sci Rep 2016; 6:39321. [PMID: 28004823 PMCID: PMC5177942 DOI: 10.1038/srep39321] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/16/2016] [Indexed: 12/28/2022] Open
Abstract
Dwindling water resources combined with meeting the demands for food security require maximizing water use efficiency (WUE) both in rainfed and irrigated agriculture. In this regard, deficit irrigation (DI), defined as the administration of water below full crop-water requirements (evapotranspiration), is a valuable practice to contain irrigation water use. In this study, the mechanism of paclobutrazol (Pbz)-mediated improvement in tolerance to water deficit in tomato was thoroughly investigated. Tomato plants were subjected to normal irrigated and deficit irrigated conditions plus Pbz application (0.8 and 1.6 ppm). A comprehensive morpho-physiological, metabolomics and molecular analysis was undertaken. Findings revealed that Pbz application reduced plant height, improved stem diameter and leaf number, altered root architecture, enhanced photosynthetic rates and WUE of tomato plants under deficit irrigation. Pbz differentially induced expression of genes and accumulation of metabolites of the tricarboxylic acid (TCA) cycle, γ-aminobutyric acid (GABA-shunt pathway), glutathione ascorbate (GSH-ASC)-cycle, cell wall and sugar metabolism, abscisic acid (ABA), spermidine (Spd) content and expression of an aquaporin (AP) protein under deficit irrigation. Our results suggest that Pbz application could significantly improve tolerance in tomato plants under limited water availability through selective changes in morpho-physiology and induction of stress-related molecular processes.
Collapse
Affiliation(s)
- Sikander Pal
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Jiangsan Zhao
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Asif Khan
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Narendra Singh Yadav
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Albert Batushansky
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Simon Barak
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Boris Rewald
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Aaron Fait
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Naftali Lazarovitch
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Shimon Rachmilevitch
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| |
Collapse
|
11
|
Cantero-Navarro E, Romero-Aranda R, Fernández-Muñoz R, Martínez-Andújar C, Pérez-Alfocea F, Albacete A. Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:90-100. [PMID: 27593467 DOI: 10.1016/j.plantsci.2016.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 05/22/2023]
Abstract
Water availability is the most important factor limiting food production, thus developing new scientific strategies to allow crops to more efficiently use water could be crucial in a world with a growing population. Tomato is a highly water consuming crop and improving its water use efficiency (WUE) implies positive economic and environmental effects. This work aimed to study and exploit root-derived hormonal traits to improve WUE in tomato by grafting on selected rootstocks. Firstly, root-related hormonal parameters associated to WUE were identified in a population of recombinant inbred lines (RILs) derived from the wild tomato species Solanum pimpinellifolium. A principal component analysis (PCA) revealed that some hormonal traits were associated with productivity (plant biomass and photosynthesis) and WUE in the RIL population. Leaf ABA concentration was associated to the first component (PC1) of the PCA, which explained a 60% of the variance in WUE, while the ethylene precursor ACC and the ratio ACC/ABA were also associated to PC1 but in the opposite direction. Secondly, we selected RILs according to their extreme biomass (high, B, low, b) and water use (high, W, low, w), and studied the differential effect of shoot and root on WUE by reciprocal grafting. In absence of any imposed stress, there were no rootstock effects on vegetative shoot growth and water relations. Finally, we exploited the previously identified root-related hormonal traits by grafting a commercial tomato variety onto the selected RILs to improve WUE. Interestingly, rootstocks that induced low biomass and water use, 'bw', improved fruit yield and WUE (defined as fruit yield/water use) by up to 40% compared to self-grafted plants. Although other hormonal factors appear implicated in this response, xylem ACC concentration seems an important root-derived trait that inhibits leaf growth but does not limit fruit yield. Thus tomato WUE can be improved exploiting rootstock-derived hormonal signals which control leaf growth.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Remedios Romero-Aranda
- Department of Plant Breeding and Biotechnology, IHSM-UMA-CSIC 'La Mayora', 29750 Algarrobo-Costa, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Department of Plant Breeding and Biotechnology, IHSM-UMA-CSIC 'La Mayora', 29750 Algarrobo-Costa, Málaga, Spain
| | | | - Francisco Pérez-Alfocea
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Alfonso Albacete
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
12
|
Desalegn G, Turetschek R, Kaul HP, Wienkoop S. Microbial symbionts affect Pisum sativum proteome and metabolome under Didymella pinodes infection. J Proteomics 2016; 143:173-187. [PMID: 27016040 DOI: 10.1016/j.jprot.2016.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/18/2016] [Accepted: 03/15/2016] [Indexed: 11/15/2022]
Abstract
UNLABELLED The long cultivation of field pea led to an enormous diversity which, however, seems to hold just little resistance against the ascochyta blight disease complex. The potential of below ground microbial symbiosis to prime the immune system of Pisum for an upcoming pathogen attack has hitherto received little attention. This study investigates the effect of beneficial microbes on the leaf proteome and metabolome as well as phenotype characteristics of plants in various symbiont interactions (mycorrhiza, rhizobia, co-inoculation, non-symbiotic) after infestation by Didymella pinodes. In healthy plants, mycorrhiza and rhizobia induced changes in RNA metabolism and protein synthesis. Furthermore, metal handling and ROS dampening was affected in all mycorrhiza treatments. The co-inoculation caused the synthesis of stress related proteins with concomitant adjustment of proteins involved in lipid biosynthesis. The plant's disease infection response included hormonal adjustment, ROS scavenging as well as synthesis of proteins related to secondary metabolism. The regulation of the TCA, amino acid and secondary metabolism including the pisatin pathway, was most pronounced in rhizobia associated plants which had the lowest infection rate and the slowest disease progression. BIOLOGICAL SIGNIFICANCE A most comprehensive study of the Pisum sativum proteome and metabolome infection response to Didymella pinodes is provided. Several distinct patterns of microbial symbioses on the plant metabolism are presented for the first time. Upon D. pinodes infection, rhizobial symbiosis revealed induced systemic resistance e.g. by an enhanced level of proteins involved in pisatin biosynthesis.
Collapse
Affiliation(s)
- G Desalegn
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - R Turetschek
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria
| | - H-P Kaul
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - S Wienkoop
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria.
| |
Collapse
|
13
|
Wang L, Ruan YL. Shoot-root carbon allocation, sugar signalling and their coupling with nitrogen uptake and assimilation. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:105-113. [PMID: 32480445 DOI: 10.1071/fp15249] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/24/2015] [Indexed: 05/10/2023]
Abstract
Roots and shoots are distantly located but functionally interdependent. The growth and development of these two organ systems compete for energy and nutrient resource, and yet, they keep a dynamic balance with each other for growth and development. The success of such a relationship depends on efficient root-shoot communication. Aside from the well-known signalling processes mediated by hormones such as auxin and cytokinin, sugars have recently been shown to act as a rapid signal to co-ordinate root and shoot development in response to endogenous and exogenous clues, in parallel to their function as carbon and energy resources for biomass production. New findings from studies on vascular fluids have provided molecular insights into the role of sugars in long-distance communications between shoot and root. In this review, we discussed phloem- and xylem- translocation of sugars and the impacts of sugar allocation and signalling on balancing root-shoot development. Also, we have taken the shoot-root carbon-nitrogen allocation as an example to illustrate the communication between the two organs through multi-layer root-shoot-root signalling circuits, comprising sugar, nitrogen, cytokinin, auxin and vascular small peptide signals.
Collapse
Affiliation(s)
- Lu Wang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
14
|
Dodd IC, Puértolas J, Huber K, Pérez-Pérez JG, Wright HR, Blackwell MSA. The importance of soil drying and re-wetting in crop phytohormonal and nutritional responses to deficit irrigation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2239-52. [PMID: 25628330 PMCID: PMC4986717 DOI: 10.1093/jxb/eru532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 05/11/2023]
Abstract
Soil drying and re-wetting (DRW) occurs at varying frequencies and intensities during crop production, and is deliberately used in water-saving irrigation techniques that aim to enhance crop water use efficiency. Soil drying not only limits root water uptake which can (but not always) perturb shoot water status, but also alters root synthesis of phytohormones and their transport to shoots to regulate leaf growth and gas exchange. Re-wetting the soil rapidly restores leaf water potential and leaf growth (minutes to hours), but gas exchange recovers more slowly (hours to days), probably mediated by sustained changes in root to shoot phytohormonal signalling. Partial rootzone drying (PRD) deliberately irrigates only part of the rootzone, while the remainder is allowed to dry. Alternating these wet and dry zones (thus re-wetting dry soil) substantially improves crop yields compared with maintaining fixed wet and dry zones or conventional deficit irrigation, and modifies phytohormonal (especially abscisic acid) signalling. Alternate wetting and drying (AWD) of rice can also improve yield compared with paddy culture, and is correlated with altered phytohormonal (including cytokinin) signalling. Both PRD and AWD can improve crop nutrition, and re-wetting dry soil provokes both physical and biological changes which affect soil nutrient availability. Whether this alters crop nutrient uptake depends on competition between plant and microbes for nutrients, with the rate of re-wetting determining microbial dynamics. Nevertheless, studies that examine the effects of soil DRW on both crop nutritional and phytohormonal responses are relatively rare; thus, determining the cause(s) of enhanced crop yields under AWD and PRD remains challenging.
Collapse
Affiliation(s)
- Ian C Dodd
- Centre for Sustainable Agriculture, Lancaster Environment Centre, Lancaster University, Lancaster LA1 1YQ, UK
| | - Jaime Puértolas
- Centre for Sustainable Agriculture, Lancaster Environment Centre, Lancaster University, Lancaster LA1 1YQ, UK
| | - Katrin Huber
- Institute of Bio- and Geosciences: Agrosphere (IBG 3), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | - Hannah R Wright
- Centre for Sustainable Agriculture, Lancaster Environment Centre, Lancaster University, Lancaster LA1 1YQ, UK
| | | |
Collapse
|
15
|
Rothwell SA, Elphinstone ED, Dodd IC. Liming can decrease legume crop yield and leaf gas exchange by enhancing root to shoot ABA signalling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2335-45. [PMID: 25740925 PMCID: PMC4407654 DOI: 10.1093/jxb/erv042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/09/2015] [Accepted: 01/15/2015] [Indexed: 05/11/2023]
Abstract
To meet future requirements for food production, sustainable intensive agricultural systems need to optimize nutrient availability to maximize yield, traditionally achieved by maintaining soil pH within an optimal range (6-6.5) by applying lime (calcium carbonate). However, a field trial that applied recommended liming rates to a sandy loam soil (increasing soil pH from 5.5 to 6.2) decreased pod yield of field bean (Vicia faba L. cv. Fuego) by ~30%. Subsequent pot trials, with liming that raised soil pH to 6.3-6.7, reduced stomatal conductance (g(s)) by 63, 26, and 59% in V. faba, bean (Phaseolus vulgaris), and pea (Pisum sativum), respectively. Furthermore, liming reduced shoot dry biomass by 16-24% in these species. Ionomic analysis of root xylem sap and leaf tissue revealed a decrease in phosphorus concentration that was correlated with decreased g(s): both reductions were partially reversed by adding superphosphate fertilizer. Further analysis of pea suggests that leaf gas exchange was reduced by a systemic increase (roots, xylem sap, and leaves) in the phytohormone abscisic acid (ABA) in response to lime-induced suboptimal plant phosphorus concentrations. Supplying synthetic ABA via the transpiration stream to detached pea leaves, at the same xylem sap concentrations induced by liming, decreased transpiration. Furthermore, the g(s) of the ABA-deficient mutant pea wilty was unresponsive to liming, apparently confirming that ABA mediates some responses to low phosphorus availability caused by liming. This research provides a detailed mechanistic understanding of the physiological processes by which lime application can limit crop yields, and questions the suitability of current liming recommendations.
Collapse
Affiliation(s)
- Shane A Rothwell
- The Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
16
|
Albacete A, Martínez-Andújar C, Martínez-Pérez A, Thompson AJ, Dodd IC, Pérez-Alfocea F. Unravelling rootstock×scion interactions to improve food security. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2211-26. [PMID: 25754404 PMCID: PMC4986720 DOI: 10.1093/jxb/erv027] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/12/2014] [Accepted: 01/08/2015] [Indexed: 05/19/2023]
Abstract
While much recent science has focused on understanding and exploiting root traits as new opportunities for crop improvement, the use of rootstocks has enhanced productivity of woody perennial crops for centuries. Grafting of vegetable crops has developed very quickly in the last 50 years, mainly to induce shoot vigour and to overcome soil-borne diseases in solanaceous and cucurbitaceous crops. In most cases, such progress has largely been due to empirical interactions between farmers, gardeners, and botanists, with limited insights into the underlying physiological mechanisms. Only during the last 20 years has science realized the potential of this old activity and studied the physiological and molecular mechanisms involved in rootstock×scion interactions, thereby not only explaining old phenomena but also developing new tools for crop improvement. Rootstocks can contribute to food security by: (i) increasing the yield potential of elite varieties; (ii) closing the yield gap under suboptimal growing conditions; (iii) decreasing the amount of chemical (pesticides and fertilizers) contaminants in the soil; (iv) increasing the efficiency of use of natural (water and soil) resources; (v) generating new useful genotypic variability (via epigenetics); and (vi) creating new products with improved quality. The potential of grafting is as broad as the genetic variability able to cross a potential incompatibility barrier between the rootstock and the scion. Therefore, understanding the mechanisms underlying the phenotypic variability resulting from rootstock×scion×environment interactions will certainly contribute to developing and exploiting rootstocks for food security.
Collapse
Affiliation(s)
- Alfonso Albacete
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 25, E-30100 Murcia, Spain
| | - Cristina Martínez-Andújar
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 25, E-30100 Murcia, Spain
| | - Ascensión Martínez-Pérez
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 25, E-30100 Murcia, Spain
| | - Andrew J Thompson
- School of Energy, Environment and Agrifood, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Ian C Dodd
- Lancaster Environment Centre, University of Lancaster, Lancaster LA1 4YQ, UK
| | - Francisco Pérez-Alfocea
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 25, E-30100 Murcia, Spain
| |
Collapse
|
17
|
Ngara R, Ndimba BK. Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies. Proteomics 2014; 14:611-21. [PMID: 24339029 DOI: 10.1002/pmic.201300351] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/30/2013] [Accepted: 12/01/2013] [Indexed: 11/11/2022]
Abstract
Worldwide, crop productivity is drastically reduced by drought and salinity stresses. In order to develop food crops with increased productivity in marginal areas, it is important to first understand the nature of plant stress response mechanisms. In the past decade, proteomics tools have been extensively used in the study of plants' proteome responses under experimental conditions mimicking drought and salinity stresses. A lot of proteomic data have been generated using different experimental designs. However, the precise roles of these proteins in stress tolerance are yet to be elucidated. This review summarises the applications of proteomics in understanding the complex nature of drought and salinity stress effects on plants, particularly cereals and also highlights the usefulness of sorghum as the next logical model crop for use in understanding drought and salinity tolerance in cereals. With the vast amount of proteomic data that have been generated to date, a call for integrated efforts across the agricultural, biotechnology, and molecular biology sectors is also highlighted in an effort to translate proteomics data into increased food productivity for the world's growing population.
Collapse
Affiliation(s)
- Rudo Ngara
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, Phuthaditjhaba, South Africa
| | | |
Collapse
|
18
|
Ripoll J, Urban L, Staudt M, Lopez-Lauri F, Bidel LPR, Bertin N. Water shortage and quality of fleshy fruits--making the most of the unavoidable. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4097-117. [PMID: 24821951 DOI: 10.1093/jxb/eru197] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Extreme climatic events, including drought, are predicted to increase in intensity, frequency, and geographic extent as a consequence of global climate change. In general, to grow crops successfully in the future, growers will need to adapt to less available water and to take better advantage of the positive effects of drought. Fortunately, there are positive effects associated with drought. Drought stimulates the secondary metabolism, thereby potentially increasing plant defences and the concentrations of compounds involved in plant quality, particularly taste and health benefits. The role of drought on the production of secondary metabolites is of paramount importance for fruit crops. However, to manage crops effectively under conditions of limited water supply, for example by applying deficit irrigation, growers must consider not only the impact of drought on productivity but also on how plants manage the primary and secondary metabolisms. This question is obviously complex because during water deficit, trade-offs among productivity, defence, and quality depend upon the intensity, duration, and repetition of events of water deficit. The stage of plant development during the period of water deficit is also crucial, as are the effects of other stressors. In addition, growers must rely on relevant indicators of water status, i.e. parameters involved in the relevant metabolic processes, including those affecting quality. Although many reports on the effects of drought on plant function and crop productivity have been published, these issues have not been reviewed thus far. Here, we provide an up-to-date review of current knowledge of the effects of different forms of drought on fruit quality relative to the primary and secondary metabolisms and their interactions. We also review conventional and less conventional indicators of water status that could be used for monitoring purposes, such as volatile compounds. We focus on fruit crops owing to the importance of secondary metabolism in fruit quality and the importance of fruits in the human diet. The issue of defence is also briefly discussed.
Collapse
Affiliation(s)
- Julie Ripoll
- INRA - Centre d'Avignon, UR 1115 Plantes et Systèmes de culture Horticoles, Domaine Saint Paul - Site Agroparc, 228 route de l'Aérodrome, CS 40509, 84914 Avignon Cedex 9, France Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays du Vaucluse, Bât. Agrosciences, 301 rue Baruch de Spinoza, B.p. 21239, F-84916 Avignon Cedex 9, France
| | - Laurent Urban
- Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays du Vaucluse, Bât. Agrosciences, 301 rue Baruch de Spinoza, B.p. 21239, F-84916 Avignon Cedex 9, France
| | - Michael Staudt
- Centre d'Ecologie Fonctionnelle et Evolutive Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Félicie Lopez-Lauri
- Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays du Vaucluse, Bât. Agrosciences, 301 rue Baruch de Spinoza, B.p. 21239, F-84916 Avignon Cedex 9, France
| | - Luc P R Bidel
- INRA, UMR AGAP, Place P. Viala, F-34060 Montpellier, France
| | - Nadia Bertin
- INRA - Centre d'Avignon, UR 1115 Plantes et Systèmes de culture Horticoles, Domaine Saint Paul - Site Agroparc, 228 route de l'Aérodrome, CS 40509, 84914 Avignon Cedex 9, France
| |
Collapse
|
19
|
Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. THE NEW PHYTOLOGIST 2014; 202:35-49. [PMID: 24283512 DOI: 10.1111/nph.12613] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/21/2013] [Indexed: 05/18/2023]
Abstract
Plant growth and productivity are adversely affected by various abiotic stressors and plants develop a wide range of adaptive mechanisms to cope with these adverse conditions, including adjustment of growth and development brought about by changes in stomatal activity. Membrane ion transport systems are involved in the maintenance of cellular homeostasis during exposure to stress and ion transport activity is regulated by phosphorylation/dephosphorylation networks that respond to stress conditions. The phytohormone abscisic acid (ABA), which is produced rapidly in response to drought and salinity stress, plays a critical role in the regulation of stress responses and induces a series of signaling cascades. ABA signaling involves an ABA receptor complex, consisting of an ABA receptor family, phosphatases and kinases: these proteins play a central role in regulating a variety of diverse responses to drought stress, including the activities of membrane-localized factors, such as ion transporters. In this review, recent research on signal transduction networks that regulate the function ofmembrane transport systems in response to stress, especially water deficit and high salinity, is summarized and discussed. The signal transduction networks covered in this review have central roles in mitigating the effect of stress by maintaining plant homeostasis through the control of membrane transport systems.
Collapse
Affiliation(s)
- Yuriko Osakabe
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Kouyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Kouyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
20
|
Barkla BJ, Castellanos-Cervantes T, de León JLD, Matros A, Mock HP, Perez-Alfocea F, Salekdeh GH, Witzel K, Zörb C. Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics--current achievements and perspectives. Proteomics 2014; 13:1885-900. [PMID: 23723162 DOI: 10.1002/pmic.201200399] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 04/12/2013] [Accepted: 04/24/2013] [Indexed: 12/18/2022]
Abstract
Salinity is a major threat limiting the productivity of crop plants. A clear demand for improving the salinity tolerance of the major crop plants is imposed by the rapidly growing world population. This review summarizes the achievements of proteomic studies to elucidate the response mechanisms of selected model and crop plants to cope with salinity stress. We also aim at identifying research areas, which deserve increased attention in future proteome studies, as a prerequisite to identify novel targets for breeding strategies. Such areas include the impact of plant-microbial communities on the salinity tolerance of crops under field conditions, the importance of hormone signaling in abiotic stress tolerance, and the significance of control mechanisms underlying the observed changes in the proteome patterns. We briefly highlight the impact of novel tools for future proteome studies and argue for the use of integrated approaches. The evaluation of genetic resources by means of novel automated phenotyping facilities will have a large impact on the application of proteomics especially in combination with metabolomics or transcriptomics.
Collapse
|
21
|
Albacete AA, Martínez-Andújar C, Pérez-Alfocea F. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol Adv 2013; 32:12-30. [PMID: 24513173 DOI: 10.1016/j.biotechadv.2013.10.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/17/2013] [Accepted: 10/20/2013] [Indexed: 10/26/2022]
Abstract
Securing food production for the growing population will require closing the gap between potential crop productivity under optimal conditions and the yield captured by farmers under a changing environment, which is termed agronomical stability. Drought and salinity are major environmental factors contributing to the yield gap ultimately by inducing premature senescence in the photosynthetic source tissues of the plant and by reducing the number and growth of the harvestable sink organs by affecting the transport and use of assimilates between and within them. However, the changes in source-sink relations induced by stress also include adaptive changes in the reallocation of photoassimilates that influence crop productivity, ranging from plant survival to yield stability. While the massive utilization of -omic technologies in model plants is discovering hundreds of genes with potential impacts in alleviating short-term applied drought and salinity stress (usually measured as plant survival), only in relatively few cases has an effect on crop yield stability been proven. However, achieving the former does not necessarily imply the latter. Plant survival only requires water status conservation and delayed leaf senescence (thus maintaining source activity) that is usually accompanied by growth inhibition. However, yield stability will additionally require the maintenance or increase in sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves and to delayed stress-induced leaf senescence. This review emphasizes the role of several metabolic and hormonal factors influencing not only the source strength, but especially the sink activity and their inter-relations, and their potential to improve yield stability under drought and salinity stresses.
Collapse
Affiliation(s)
- Alfonso A Albacete
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (C.E.B.A.S.), Consejo Superior de Investigaciones Científicas (C.S.I.C.), Campus Universitario de Espinardo, P.O. Box 164, E-30100 Murcia, Spain
| | - Cristina Martínez-Andújar
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (C.E.B.A.S.), Consejo Superior de Investigaciones Científicas (C.S.I.C.), Campus Universitario de Espinardo, P.O. Box 164, E-30100 Murcia, Spain
| | - Francisco Pérez-Alfocea
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (C.E.B.A.S.), Consejo Superior de Investigaciones Científicas (C.S.I.C.), Campus Universitario de Espinardo, P.O. Box 164, E-30100 Murcia, Spain.
| |
Collapse
|
22
|
Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán AF, Grusak MA, Kachroo P. The plant vascular system: evolution, development and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:294-388. [PMID: 23462277 DOI: 10.1111/jipb.12041] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.
Collapse
Affiliation(s)
- William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cramer GR, Van Sluyter SC, Hopper DW, Pascovici D, Keighley T, Haynes PA. Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit. BMC PLANT BIOLOGY 2013; 13:49. [PMID: 23514573 PMCID: PMC3608200 DOI: 10.1186/1471-2229-13-49] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/14/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND Cabernet Sauvignon grapevines were exposed to a progressive, increasing water defict over 16 days. Shoot elongation and photosynthesis were measured for physiological responses to water deficit. The effect of water deficit over time on the abundance of individual proteins in growing shoot tips (including four immature leaves) was analyzed using nanoflow liquid chromatography - tandem mass spectrometry (nanoLC-MS/MS). RESULTS Water deficit progressively decreased shoot elongation, stomatal conductance and photosynthesis after Day 4; 2277 proteins were identified by shotgun proteomics with an average CV of 9% for the protein abundance of all proteins. There were 472 out of 942 (50%) proteins found in all samples that were significantly affected by water deficit. The 472 proteins were clustered into four groups: increased and decreased abundance of early- and late-responding protein profiles. Vines sensed the water deficit early, appearing to acclimate to stress, because the abundance of many proteins changed before decreases in shoot elongation, stomatal conductance and photosynthesis. Predominant functional categories of the early-responding proteins included photosynthesis, glycolysis, translation, antioxidant defense and growth-related categories (steroid metabolism and water transport), whereas additional proteins for late-responding proteins were largely involved with transport, photorespiration, antioxidants, amino acid and carbohydrate metabolism. CONCLUSIONS Proteomic responses to water deficit were dynamic with early, significant changes in abundance of proteins involved in translation, energy, antioxidant defense and steroid metabolism. The abundance of these proteins changed prior to any detectable decreases in shoot elongation, stomatal conductance or photosynthesis. Many of these early-responding proteins are known to be regulated by post-transcriptional modifications such as phosphorylation. The proteomics analysis indicates massive and substantial changes in plant metabolism that appear to funnel carbon and energy into antioxidant defenses in the very early stages of plant response to water deficit before any significant injury.
Collapse
Affiliation(s)
- Grant R Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV 89557, USA
| | - Steve C Van Sluyter
- Present address: Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Daniel W Hopper
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV 89557, USA
| | - Dana Pascovici
- Present address: Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Tim Keighley
- Present address: Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Paul A Haynes
- Present address: Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
24
|
Biotechnological approaches to study plant responses to stress. BIOMED RESEARCH INTERNATIONAL 2012; 2013:654120. [PMID: 23509757 PMCID: PMC3591138 DOI: 10.1155/2013/654120] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/30/2012] [Indexed: 12/01/2022]
Abstract
Multiple biotic and abiotic environmental stress factors affect negatively various aspects of plant growth, development, and crop productivity. Plants, as sessile organisms, have developed, in the course of their evolution, efficient strategies of response to avoid, tolerate, or adapt to different types of stress situations. The diverse stress factors that plants have to face often activate similar cell signaling pathways and cellular responses, such as the production of stress proteins, upregulation of the antioxidant machinery, and accumulation of compatible solutes. Over the last few decades advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to abiotic stress conditions. In this paper, recent progresses on systematic analyses of plant responses to stress including genomics, proteomics, metabolomics, and transgenic-based approaches are summarized.
Collapse
|