1
|
Fayet-Moore F, Robinson SR. A Breath of Fresh Air: Perspectives on Inhaled Nutrients and Bacteria to Improve Human Health. Adv Nutr 2024; 15:100333. [PMID: 39486624 PMCID: PMC11626012 DOI: 10.1016/j.advnut.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
We propose that the human respiratory system and olfactory pathways sequester airborne nutrients (vitamins, fatty acids, and trace minerals) that are beneficial for health, which we term "aeronutrients." In addition, airborne bacteria, termed "aeromicrobes," have the potential for positive health effects by improving species diversity in the microbiotas of the respiratory and gastrointestinal tracts. These concepts have implications for people living in urban areas or those who have limited access to nature, such as astronauts exposed for long periods to highly filtered air that may be depleted of aeronutrients and aeromicrobes. The possibility that fresh air contributes to human nutrition and health may stimulate a re-evaluation of guidelines pertaining to nutrition and access to natural environments, and will open new avenues of scientific enquiry.
Collapse
Affiliation(s)
- Flávia Fayet-Moore
- FOODiQ Global, Sydney, NSW, Australia; School of Environmental and Life Sciences, the University of Newcastle, Ourimbah, NSW, Australia
| | - Stephen R Robinson
- Discipline of Psychology, School of Health & Biomedical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC, Australia; Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, VIC, Australia.
| |
Collapse
|
2
|
Peer A, Samuelson DR. The Role of the Microbiome in Allergy, Asthma, and Occupational Lung Disease. Curr Allergy Asthma Rep 2024; 24:415-423. [PMID: 38904934 PMCID: PMC11297072 DOI: 10.1007/s11882-024-01156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE OF REVIEW The human commensal microbiota is now widely accepted as a key regulator of human health and disease. The composition of the mucosal associated microbiota has been shown to play a critical role in the lung health. The role of the mucosal microbiota in the development and severity of allergy, asthma, and occupational lung disease is only beginning to take shape. However, advances in our understanding of these links have tremendous potential to led to new clinical interventions to reduce allergy, asthma, and occupational lung disease morbidity. RECENT FINDINGS We review recent work describing the relationship and role of the commensal microbiota in the development of allergy, asthma, and occupational lung disease. Our review primarily focuses on occupational exposures and the effects of the microbiome, both in composition and function. Data generated from these studies may lead to the development of interventions targeted at establishing and maintaining a healthy microbiota. We also highlight the role of environmental exposures and the effects on the commensal microbial community and their potential association with occupational lung disease. This review explores the current research describing the role of the human microbiome in the regulation of pulmonary health and disease, with a specific focus on the role of the mucosal microbiota in the development of allergy, asthma, and occupational lung disease.
Collapse
Affiliation(s)
- Ashley Peer
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Derrick R Samuelson
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep, University of Nebraska Medical Center, Omaha, NE, USA.
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
3
|
Galeana-Cadena D, Gómez-García IA, Lopez-Salinas KG, Irineo-Moreno V, Jiménez-Juárez F, Tapia-García AR, Boyzo-Cortes CA, Matías-Martínez MB, Jiménez-Alvarez L, Zúñiga J, Camarena A. Winds of change a tale of: asthma and microbiome. Front Microbiol 2023; 14:1295215. [PMID: 38146448 PMCID: PMC10749662 DOI: 10.3389/fmicb.2023.1295215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/15/2023] [Indexed: 12/27/2023] Open
Abstract
The role of the microbiome in asthma is highlighted, considering its influence on immune responses and its connection to alterations in asthmatic patients. In this context, we review the variables influencing asthma phenotypes from a microbiome perspective and provide insights into the microbiome's role in asthma pathogenesis. Previous cohort studies in patients with asthma have shown that the presence of genera such as Bifidobacterium, Lactobacillus, Faecalibacterium, and Bacteroides in the gut microbiome has been associated with protection against the disease. While, the presence of other genera such as Haemophilus, Streptococcus, Staphylococcus, and Moraxella in the respiratory microbiome has been implicated in asthma pathogenesis, indicating a potential link between microbial dysbiosis and the development of asthma. Furthermore, respiratory infections have been demonstrated to impact the composition of the upper respiratory tract microbiota, increasing susceptibility to bacterial diseases and potentially triggering asthma exacerbations. By understanding the interplay between the microbiome and asthma, valuable insights into disease mechanisms can be gained, potentially leading to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Karen Gabriel Lopez-Salinas
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Valeria Irineo-Moreno
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Fabiola Jiménez-Juárez
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Alan Rodrigo Tapia-García
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Red de Medicina para la Educación, el Desarrollo y la Investigación Científica de Iztacala, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Alberto Boyzo-Cortes
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Melvin Barish Matías-Martínez
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Luis Jiménez-Alvarez
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| |
Collapse
|
4
|
Lupu A, Jechel E, Mihai CM, Mitrofan EC, Fotea S, Starcea IM, Ioniuc I, Mocanu A, Ghica DC, Popp A, Munteanu D, Sasaran MO, Salaru DL, Lupu VV. The Footprint of Microbiome in Pediatric Asthma-A Complex Puzzle for a Balanced Development. Nutrients 2023; 15:3278. [PMID: 37513696 PMCID: PMC10384859 DOI: 10.3390/nu15143278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
Considered to be of greater complexity than the human genome itself, the microbiome, the structure of the body made up of trillions of bacteria, viruses, and fungi, has proven to play a crucial role in the context of the development of pathological processes in the body, starting from various infections, autoimmune diseases, atopies, and culminating in its involvement in the development of some forms of cancer, a diagnosis that is considered the most disabling for the patient from a psychological point of view. Therefore, being a cornerstone in the understanding and optimal treatment of a multitude of ailments, the body's microbiome has become an intensively studied subject in the scientific literature of the last decade. This review aims to bring the microbiome-asthma correlation up to date by classifying asthmatic patterns, emphasizing the development patterns of the microbiome starting from the perinatal period and the impact of pulmonary dysbiosis on asthmatic symptoms in children. Likewise, the effects of intestinal dysbiosis reflected at the level of homeostasis of the internal environment through the intestine-lung/vital organs axis, the circumstances in which it occurs, but also the main methods of studying bacterial variability used for diagnostic purposes and in research should not be omitted. In conclusion, we draw current and future therapeutic lines worthy of consideration both in obtaining and maintaining remission, as well as in delaying the development of primary acute episodes and preventing future relapses.
Collapse
Affiliation(s)
- Ancuta Lupu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Jechel
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | | | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University of Galati, 800008 Galati, Romania
| | - Iuliana Magdalena Starcea
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ileana Ioniuc
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adriana Mocanu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragos Catalin Ghica
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alina Popp
- Faculty of General Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Dragos Munteanu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Oana Sasaran
- Faculty of General Medicine, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Delia Lidia Salaru
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
5
|
Lopez-Santamarina A, Mondragon ADC, Cardelle-Cobas A, Santos EM, Porto-Arias JJ, Cepeda A, Miranda JM. Effects of Unconventional Work and Shift Work on the Human Gut Microbiota and the Potential of Probiotics to Restore Dysbiosis. Nutrients 2023; 15:3070. [PMID: 37447396 DOI: 10.3390/nu15133070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
The work environment is a factor that can significantly influence the composition and functionality of the gut microbiota of workers, in many cases leading to gut dysbiosis that will result in serious health problems. The aim of this paper was to provide a compilation of the different studies that have examined the influence of jobs with unconventional work schedules and environments on the gut microbiota of workers performing such work. As a possible solution, probiotic supplements, via modulation of the gut microbiota, can moderate the effects of sleep disturbance on the immune system, as well as restore the dysbiosis produced. Rotating shift work has been found to be associated with an increase in the risk of various metabolic diseases, such as obesity, metabolic syndrome, and type 2 diabetes. Sleep disturbance or lack of sleep due to night work is also associated with metabolic diseases. In addition, sleep disturbance induces a stress response, both physiologically and psychologically, and disrupts the healthy functioning of the gut microbiota, thus triggering an inflammatory state. Other workers, including military, healthcare, or metallurgy workers, as well as livestock farmers or long-travel seamen, work in environments and schedules that can significantly affect their gut microbiota.
Collapse
Affiliation(s)
- Aroa Lopez-Santamarina
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alicia Del Carmen Mondragon
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Eva Maria Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4.5, Pachuca 42076, Hidalgo, Mexico
| | - Jose Julio Porto-Arias
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Jose Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
6
|
Vieceli T, Tejada S, Martinez-Reviejo R, Pumarola T, Schrenzel J, Waterer GW, Rello J. Impact of air pollution on respiratory microbiome: A narrative review. Intensive Crit Care Nurs 2022. [DOI: 10.1016/j.iccn.2022.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Mucci N, Tommasi E, Chiarelli A, Lulli LG, Traversini V, Galea RP, Arcangeli G. WORKbiota: A Systematic Review about the Effects of Occupational Exposure on Microbiota and Workers' Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1043. [PMID: 35162072 PMCID: PMC8834335 DOI: 10.3390/ijerph19031043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
The characterization of human microbiota and the impact of its modifications on the health of individuals represent a current topic of great interest for the world scientific community. Scientific evidence is emerging regarding the role that microbiota has in the onset of important chronic illnesses. Since individuals spend most of their life at work, occupational exposures may have an impact on the organism's microbiota. The purpose of this review is to explore the influence that different occupational exposures have on human microbiota in order to set a new basis for workers' health protection and disease prevention. The literature search was performed in PubMed, Cochrane, and Scopus. A total of 5818 references emerged from the online search, and 31 articles were included in the systematic review (26 original articles and 5 reviews). Exposure to biological agents (in particular direct contact with animals) was the most occupational risk factor studied, and it was found involved in modifications of the microbiota of workers. Changes in microbiota were also found in workers exposed to chemical agents or subjected to work-related stress and altered dietary habits caused by specific microclimate characteristics or long trips. Two studies evaluated the role of microbiota changes on the development of occupational lung diseases. Occupational factors can interface with the biological rhythms of the bacteria of the microbiota and can contribute to its modifications and to the possible development of diseases. Future studies are needed to better understand the role of the microbiota and its connection with occupational exposure to promote projects for the prevention and protection of global health.
Collapse
Affiliation(s)
- Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| | - Eleonora Tommasi
- Postgraduate Medical Training Programme in Cardiology, University of Perugia, 1 Piazza dell’Università, 06123 Perugia, Italy;
| | - Annarita Chiarelli
- Occupational Medicine Unit, Careggi University Hospital, 50134 Florence, Italy;
| | | | - Veronica Traversini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| | - Raymond Paul Galea
- Faculty of Medicine & Surgery, University of Malta, MSD 2090 Msida, Malta;
- The Malta Postgraduate Medical Training Programme, Mater Dei Hospital Msida, MSD 2090 Msida, Malta
| | - Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| |
Collapse
|
8
|
Allali I, Abotsi RE, Tow LA, Thabane L, Zar HJ, Mulder NM, Nicol MP. Human microbiota research in Africa: a systematic review reveals gaps and priorities for future research. MICROBIOME 2021; 9:241. [PMID: 34911583 PMCID: PMC8672519 DOI: 10.1186/s40168-021-01195-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/14/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND The role of the human microbiome in health and disease is an emerging and important area of research; however, there is a concern that African populations are under-represented in human microbiome studies. We, therefore, conducted a systematic survey of African human microbiome studies to provide an overview and identify research gaps. Our secondary objectives were: (i) to determine the number of peer-reviewed publications; (ii) to identify the extent to which the researches focused on diseases identified by the World Health Organization [WHO] State of Health in the African Region Report as being the leading causes of morbidity and mortality in 2018; (iii) to describe the extent and pattern of collaborations between researchers in Africa and the rest of the world; and (iv) to identify leadership and funders of the studies. METHODOLOGY We systematically searched Medline via PubMed, Scopus, CINAHL, Academic Search Premier, Africa-Wide Information through EBSCOhost, and Web of Science from inception through to 1st April 2020. We included studies that characterized samples from African populations using next-generation sequencing approaches. Two reviewers independently conducted the literature search, title and abstract, and full-text screening, as well as data extraction. RESULTS We included 168 studies out of 5515 records retrieved. Most studies were published in PLoS One (13%; 22/168), and samples were collected from 33 of the 54 African countries. The country where most studies were conducted was South Africa (27/168), followed by Kenya (23/168) and Uganda (18/168). 26.8% (45/168) focused on diseases of significant public health concern in Africa. Collaboration between scientists from the United States of America and Africa was most common (96/168). The first and/or last authors of 79.8% of studies were not affiliated with institutions in Africa. Major funders were the United States of America National Institutes of Health (45.2%; 76/168), Bill and Melinda Gates Foundation (17.8%; 30/168), and the European Union (11.9%; 20/168). CONCLUSIONS There are significant gaps in microbiome research in Africa, especially those focusing on diseases of public health importance. There is a need for local leadership, capacity building, intra-continental collaboration, and national government investment in microbiome research within Africa. Video Abstract.
Collapse
Affiliation(s)
- Imane Allali
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Centre of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Regina E Abotsi
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Department of Pharmaceutical Microbiology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Lemese Ah Tow
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lehana Thabane
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Biostatistics Unit, Father Sean O'Sullivan Research Centre, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Departments of Paediatrics and Anaesthesia, McMaster University, Hamilton, Ontario, Canada
- Centre for Evaluation of Medicine, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Centre for Evidence-based Health Care, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nicola M Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark P Nicol
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- School of Biomedical Sciences, University of Western Australia, M504, Perth, WA, 6009, Australia.
| |
Collapse
|
9
|
Vangrinsven E, Fastrès A, Taminiau B, Frédéric B, Daube G, Clercx C. Variations in facial conformation are associated with differences in nasal microbiota in healthy dogs. BMC Vet Res 2021; 17:361. [PMID: 34819074 PMCID: PMC8611846 DOI: 10.1186/s12917-021-03055-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extrinsic and intrinsic factors have been shown to influence nasal microbiota (NM) in humans. Very few studies investigated the association between nasal microbiota and factors such as facial/body conformation, age, and environment in dogs. The objectives are to investigate variations in NM in healthy dogs with different facial and body conformations. A total of 46 dogs of different age, living environment and from 3 different breed groups were recruited: 22 meso-/dolichocephalic medium to large breed dogs, 12 brachycephalic dogs and 12 terrier breeds. The nasal bacterial microbiota was assessed through sequencing of 16S rRNA gene (V1-V3 regions) amplicons. RESULTS We showed major differences in the NM composition together with increased richness and α-diversity in brachycephalic dogs, compared to meso-/dolichocephalic medium to large dogs and dogs from terrier breeds. CONCLUSION Healthy brachycephalic breeds and their unique facial conformation is associated with a distinct NM profile. Description of the NM in healthy dogs serves as a foundation for future researches assessing the changes associated with disease and the modulation of NM communities as a potential treatment.
Collapse
Affiliation(s)
- Emilie Vangrinsven
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium.
| | - Aline Fastrès
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium
| | - Bernard Taminiau
- Department of Food Sciences - Microbiology, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium
| | - Billen Frédéric
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium
| | - Georges Daube
- Department of Food Sciences - Microbiology, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium
| | - Cécile Clercx
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 3, 4000, Liège, Belgium
| |
Collapse
|
10
|
Huntley KS, Raber J, Fine L, Bernstein JA. Influence of the Microbiome on Chronic Rhinosinusitis With and Without Polyps: An Evolving Discussion. FRONTIERS IN ALLERGY 2021; 2:737086. [PMID: 35386978 PMCID: PMC8974788 DOI: 10.3389/falgy.2021.737086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is widely prevalent within the population and often leads to decreased quality of life, among other related health complications. CRS has classically been stratified by the presence of nasal polyps (CRSwNP) or the absence nasal polyps (CRSsNP). Management of these conditions remains a challenge as investigators continue to uncover potential etiologies and therapeutic targets. Recently, attention has been given to the sinunasal microbiota as both an inciting and protective influence of CRS development. The healthy sinunasal microbiologic environment is largely composed of bacteria, with the most frequent strains including Staphylococcus aureus, Streptococcus epidermidis, and Corynebacterium genera. Disruptions in this milieu, particularly increases in S. aureus concentration, have been hypothesized to perpetuate both Th1 and Th2 inflammatory changes within the nasal mucosa, leading to CRS exacerbation and potential polyp formation. Other contributors to the sinunasal microbiota include fungi, viruses, and bacteriophages which may directly contribute to underlying inflammation or impact bacterial prevalence. Modifiable risk factors, such as smoking, have also been linked to microbiota alterations. Research interest in CRS continues to expand, and thus the goal of this review is to provide clinicians and investigators alike with a current discussion on the microbiologic influence on CRS development, particularly with respect to the expression of various phenotypes. Although this subject is rapidly evolving, a greater understanding of these potential factors may lead to novel research and targeted therapies for this often difficult to treat condition.
Collapse
Affiliation(s)
- Kyle S. Huntley
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Joshua Raber
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Lauren Fine
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Jonathan A. Bernstein
- Department of Internal Medicine, Division of Immunology/Allergy Section, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Jonathan A. Bernstein
| |
Collapse
|
11
|
Peace O, Rachakonda K, Kress M, Villalta F, Rachakonda G. Respiratory and Neurological Disease across Different Ethnic Groups Is Influenced by the Microbiome. Microorganisms 2021; 9:1965. [PMID: 34576860 PMCID: PMC8468464 DOI: 10.3390/microorganisms9091965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
Acute and chronic upper respiratory illnesses such as asthma, and allergic rhinitis (AR) have been linked to the presence of microorganisms in the nose. Microorganisms can exist in symbiotic or commensal relationships with the human body. However, in certain cases, opportunistic pathogens can take over, leading to altered states (dysbiosis) and causing disease. Thus, the microflora present in a host can be useful to reflect health status. The human body contains 10 trillion to 100 trillion microorganisms. Of these populations, certain pathogens have been identified to promote or undermine wellbeing. Therefore, knowledge of the microbiome is potentially helpful as a diagnostic tool for many diseases. Variations have been recognized in the types of microbes that inhabit various populations based on geography, diet, and lifestyle choices and various microbiota have been shown to modulate immune responses in allergic disease. Interestingly, the diseases affected by these changes are prevalent in certain racial or ethnic populations. These prevalent microbiome variations in these groups suggest that the presence of these microorganisms may be significantly associated with health disparities. We review current research in the search for correlations between ethnic diversity, microbiome communities in the nasal cavity and health outcomes in neurological and respiratory functions.
Collapse
Affiliation(s)
- Odiase Peace
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (O.P.); (F.V.)
| | - Kartik Rachakonda
- School of Arts and Science, Vanderbilt University, Nashville, TN 37212, USA;
| | - Miller Kress
- División of Molecular Diagnosticas, Phase2Labs, Nashville, TN 37217, USA;
| | - Fernando Villalta
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (O.P.); (F.V.)
| | - Girish Rachakonda
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (O.P.); (F.V.)
| |
Collapse
|
12
|
Mohamed I, Zakeer S, Azab M, Hanora A. Changes in Vaginal Microbiome in Pregnant and Nonpregnant Women with Bacterial Vaginosis: Toward Microbiome Diagnostics? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:602-614. [PMID: 32955994 DOI: 10.1089/omi.2020.0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacterial vaginosis (BV) is highly common, adversely affecting the health of millions of women. New therapeutic targets and diagnostics are urgently needed for BV. Microbiome research offers new prospects in this context. We report here original findings on changes in the vaginal microbiome in pregnant and nonpregnant women with BV. Reproductive age women were recruited for this study after a clinical examination. The total sample (N = 33) included four study groups: (1) healthy nonpregnant women (n = 9), (2) nonpregnant women with symptomatic BV (n = 11), (3) healthy pregnant women without BV (n = 6), and (4) pregnant women with symptomatic BV (N = 7). The vaginal microbiota in healthy women was less diverse, with dominance of a single genus, Lactobacillus. Six major phyla appeared upon taxonomic analysis of the bacterial sequences: Firmicutes, Actinobacteria, Proteobacteria, Tenericutes, Bacteroidetes, and Fusobacteria. For instance, Firmicutes had a significantly higher abundance (98.3%) in the nonpregnant healthy group and 94.3% in pregnant healthy group, compared with nonpregnant (49.7%) and pregnant (67%) women with BV (p = 0.003). Moreover, women with BV had significant increases in representation of Actinobacteria, Fusobacteria, and Bacteroidetes (p = 0.0003, 0.004, and 0.01, respectively). Although the Lactobacillus genus was predominant in healthy women, Gardnerella, Atopobium, Sneathia, and Prevotella significantly increased in nonpregnant women with BV (p = 0.001, 0.014, 0.004, and 0.012, respectively). Dysbiosis of Lactobacillus in pregnant women with BV was accompanied by increased prevalence of the Streptococcus genus. These findings contribute new insights toward microbiome diagnostics and therapeutics innovation in BV.
Collapse
Affiliation(s)
- Ibrahim Mohamed
- Quality Control Department, Medical Union Pharmaceuticals Co. Main Factory, Ismailia, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samira Zakeer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Marwa Azab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Amro Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
13
|
Honarmand Ebrahimi K. SARS-CoV-2 spike glycoprotein-binding proteins expressed by upper respiratory tract bacteria may prevent severe viral infection. FEBS Lett 2020; 594:1651-1660. [PMID: 32449939 PMCID: PMC7280584 DOI: 10.1002/1873-3468.13845] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a major global challenge. The virus infects host cells using its spike glycoprotein (S-protein) and has significantly higher infectivity and mortality rates among the aged population. Here, based on bioinformatic analysis, I provide evidence that some members of the upper respiratory tract (URT) commensal bacteria express viral S-protein -binding proteins. Based on this analysis and available data showing a decline in the population of these bacteria in the elderly, I propose that some URT commensal bacteria hamper SARS-CoV-2 infectivity and that a decline in the population of these bacteria contributes to the severity of infection. Further studies should provide a better understanding of the interaction of URT bacteria and SARS-CoV-2, which may lead to new therapeutic approaches.
Collapse
|