1
|
Monteiro KKDS, Tomazoni SS, Albuquerque Pontes GM, Teixeira AM, Agra FADA, Alvim CB, Medeiros Brigato SL, Marcos RL, Dellê H, Serra AJ, Leal-Junior ECP. Effects of Short-, Medium-, and Long-Term Treatment Using Photobiomodulation Therapy Combined with Static Magnetic Field in Aging Rats. Biomedicines 2024; 12:990. [PMID: 38790953 PMCID: PMC11117574 DOI: 10.3390/biomedicines12050990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: We investigated the detrimental and protective effects of short-, medium, and long-term treatment with different doses of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) during the aging process. (2) Methods: Rats were treated for 15, 30, and 60 weeks with 1, 3, 10, and 30 J of PBMT-sMF or a placebo control. In addition, eight young rats were not subjected to any procedure or treatment and were euthanized at six weeks old. Skin, muscle, bone, kidney, liver, and blood samples were analyzed. (3) Results: No differences between the groups in the morphology of the skin, muscle, and bone was observed. Glutamic pyruvic transaminase levels were increased in the placebo group after 30 and 60 weeks. Glutamic oxaloacetic transaminase levels were also increased in the placebo group after 30 weeks. An increase in creatinine in the PBMT-sMF 3, 10, and 30 J groups compared with that in the young control group was observed. No significant difference in urea levels between the groups was noted. Vascular endothelial growth factor increased in the PBMT-sMF 10 and 30 J groups after 15 weeks of treatment and in the PBMT-sMF 3 J after 60 weeks. Finally, vascular endothelial growth factor decreased in the PBMT-sMF 30 J group after 30 weeks of treatment. (4) Conclusions: PBMT-sMF did not have detrimental effects on the skin, muscle, bone, kidney, or liver after short-, medium-, and long-term treatments in aging rats. In addition, PBMT-sMF may have protective effects on the muscle tissue in aging rats after short- and long-term treatment.
Collapse
Affiliation(s)
- Kadma Karênina Damasceno Soares Monteiro
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-Graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo 01504-001, Brazil
| | | | - Gianna Móes Albuquerque Pontes
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-Graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo 01504-001, Brazil
| | - Adeilson Matias Teixeira
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-Graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo 01504-001, Brazil
| | - Fernanda Aparecida de Araújo Agra
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-Graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo 01504-001, Brazil
| | - Carolina Barros Alvim
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-Graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo 01504-001, Brazil
| | - Sâmela Lopes Medeiros Brigato
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-Graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo 01504-001, Brazil
| | - Rodrigo Labat Marcos
- Post-Graduate Program in Biophotonics, Nove de Julho University, São Paulo 01504-001, Brazil
| | - Humberto Dellê
- Post-Graduate Program in Medicine, Nove de Julho University, São Paulo 01504-001, Brazil
| | - Andrey Jorge Serra
- Post-Graduate Program in Cardiology, Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - Ernesto Cesar Pinto Leal-Junior
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-Graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo 01504-001, Brazil
- ELJ Consultancy, São Paulo 04076-000, Brazil
| |
Collapse
|
2
|
Syed SB, Ahmet I, Chakir K, Morrell CH, Arany PR, Lakatta EG. Photobiomodulation therapy mitigates cardiovascular aging and improves survival. Lasers Surg Med 2023; 55:278-293. [PMID: 36821717 PMCID: PMC10084725 DOI: 10.1002/lsm.23644] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/03/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Photobiomodulation (PBM) therapy, a form of low-dose light therapy, has been noted to be effective in several age-associated chronic diseases such as hypertension and atherosclerosis. Here, we examined the effects of PBM therapy on age-associated cardiovascular changes in a mouse model of accelerated cardiac aging. METHODS Fourteen months old Adenylyl cyclase type VIII (AC8) overexpressing transgenic mice (n = 8) and their wild-type (WT) littermates (n = 8) were treated with daily exposure to Near-Infrared Light (850 nm) at 25 mW/cm2 for 2 min each weekday for a total dose of 1 Einstein (4.5 p.J/cm2 or fluence 3 J/cm2 ) and compared to untreated controls over an 8-month period. PBM therapy was administered for 3.5 months (Early Treatment period), paused, due to Covid-19 restrictions for the following 3 months, and restarted again for 1.5 months. Serial echocardiography and gait analyses were performed at monthly intervals, and serum TGF-β1 levels were assessed following sacrifice. RESULTS During the Early Treatment period PBM treatments: reduced the age-associated increases in left ventricular (LV) mass in both genotypes (p = 0.0003), reduced the LV end-diastolic volume (EDV) in AC8 (p = 0.04); and reduced the left atrial dimension in both genotypes (p = 0.02). PBM treatments substantially increased the LV ejection fraction (p = 0.03), reduced the aortic wall stiffness (p = 0.001), and improved gait symmetry, an index of neuro-muscular coordination (p = 0.005). The effects of PBM treatments, measured following the pause, persisted. Total TGF-β1 levels were significantly increased in circulation (serum) in AC8 following PBM treatments (p = 0.01). We observed a striking increase in cumulative survival in PBM-treated AC8 mice (100%; p = 0.01) compared to untreated AC8 mice (43%). CONCLUSION PBM treatment mitigated age-associated cardiovascular remodeling and reduced cardiac function, improved neuromuscular coordination, and increased longevity in an experimental animal model. These responses correlate with increased TGF-β1 in circulation. Future mechanistic and dose optimization studies are necessary to assess these anti-aging effects of PBM, and validation in future controlled human studies is required for effective clinical translation.
Collapse
Affiliation(s)
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Sciences, NIA, NIH, Baltimore, Maryland, USA
| | - Khalid Chakir
- Laboratory of Cardiovascular Sciences, NIA, NIH, Baltimore, Maryland, USA
| | | | - Praveen R Arany
- Oral Biology, Surgery, and Biomedical Engineering, University of Buffalo, Buffalo, New York, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Sciences, NIA, NIH, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Wang L, Shao J, Su C, Yang J. The application of optical technology in the diagnosis and therapy of oxidative stress-mediated hepatic ischemia-reperfusion injury. Front Bioeng Biotechnol 2023; 11:1133039. [PMID: 36890921 PMCID: PMC9986550 DOI: 10.3389/fbioe.2023.1133039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is defined as liver tissue damage and cell death caused by reperfusion during liver transplantation or hepatectomy. Oxidative stress is one of the important mechanisms of HIRI. Studies have shown that the incidence of HIRI is very high, however, the number of patients who can get timely and efficient treatment is small. The reason is not hard to explain that invasive ways of detection and lack of timely of diagnostic methods. Hence, a new detection method is urgently needed in clinic application. Reactive oxygen species (ROS), which are markers of oxidative stress in the liver, could be detected by optical imaging and offer timely and effective non-invasive diagnosis and monitoring. Optical imaging could become the most potential tool of diagnosis of HIRI in the future. In addition, optical technology can also be used in disease treatment. It found that optical therapy has the function of anti-oxidative stress. Consequently, it has possibility to treat HIRI caused by oxidative stress. In this review, we mainly summarized the application and prospect of optical techniques in oxidative stress-induced by HIRI.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Medicine, Hengyang Medical School, University of South China, Hengyang, China.,Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiali Shao
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen Su
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Hepburn J, Williams-Lockhart S, Bensadoun RJ, Hanna R. A Novel Approach of Combining Methylene Blue Photodynamic Inactivation, Photobiomodulation and Oral Ingested Methylene Blue in COVID-19 Management: A Pilot Clinical Study with 12-Month Follow-Up. Antioxidants (Basel) 2022; 11:2211. [PMID: 36358582 PMCID: PMC9686966 DOI: 10.3390/antiox11112211] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 virus was first recognized in late 2019 and remains a significant threat. We therefore assessed the use of local methylene blue photodynamic viral inactivation (MB-PDI) in the oral and nasal cavities, in combination with the systemic anti-viral, anti-inflammatory and antioxidant actions of orally ingested methylene blue (MB) and photobiomodulation (PBM) for COVID-19 disease. The proposed protocol leverages the separate and combined effects of MB and 660nm red light emitted diode (LED) to comprehensively address the pathophysiological sequelae of COVID-19. A total of eight pilot subjects with COVID-19 disease were treated in the Bahamas over the period June 2021-August 2021, using a remote care program that was developed for this purpose. Although not a pre-requisite for inclusion, none of the subjects had received any COVID-19 vaccination prior to commencing the study. Clinical outcome assessment tools included serial cycle threshold measurements as a surrogate estimate of viral load; serial online questionnaires to document symptom response and adverse effects; and a one-year follow-up survey to assess long-term outcomes. All subjects received MB-PDI to target the main sites of viral entry in the nose and mouth. This was the central component of the treatment protocol with the addition of orally ingested MB and/or PBM based on clinical requirements. The mucosal surfaces were irradiated with 660 nm LED in a continuous emission mode at energy density of 49 J/cm2 for PDI and 4.9 J/cm2 for PBM. Although our pilot subjects had significant co-morbidities, extremely high viral loads and moderately severe symptoms during the Delta phase of the pandemic, the response to treatment was highly encouraging. Rapid reductions in viral loads were observed and negative PCR tests were documented within a median of 4 days. These laboratory findings occurred in parallel with significant clinical improvement, mostly within 12-24 h of commencing the treatment protocol. There were no significant adverse effects and none of the subjects who completed the protocol required in-patient hospitalization. The outcomes were similarly encouraging at one-year follow-up with virtual absence of "long COVID" symptoms or of COVID-19 re-infection. Our results indicate that the protocols may be a safe and promising approach to challenging COVID-19 disease. Moreover, due its broad spectrum of activity, this approach has the potential to address the prevailing and future COVID-19 variants and other infections transmitted via the upper respiratory tract. Extensive studies with a large cohort are warranted to validate our results.
Collapse
Affiliation(s)
- Juliette Hepburn
- Luminnova Health, 34 Harbour Bay Plaza, East Bay Street, Nassau P.O. Box N-1081, Bahamas
| | | | - René Jean Bensadoun
- Centre De Haute Energie, Department of Oncology Radiology, 10 Boulevard Pasteur, 06000 Nice, France
| | - Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Vaile Benedetto XV, 6, 16132 Genoa, Italy
- Department of Restorative Dental Sciences, UCL-Eastman Dental Institute, Faculty of Medical Sciences, Rockefeller Building, London WC1E 6DE, UK
- Department of Oral Surgery, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
5
|
Femtosecond laser attenuates oxidative stress, inflammation, and liver fibrosis in rats: Possible role of PPARγ and Nrf2/HO-1 signaling. Life Sci 2022; 307:120877. [PMID: 35963297 DOI: 10.1016/j.lfs.2022.120877] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) proteins that occurs in chronic liver injury. Inflammation and oxidative stress play a key role in fibrogenesis which can develop into cirrhosis and carcinoma. Low-level laser therapy (LLLT) has promising therapeutic effects against fibrogenesis; however, the specific underlying mechanism is not fully elucidated. We investigated the potential of LLLT to attenuate carbon tetrachloride (CCl4)-induced liver fibrosis in rats, focusing on oxidative injury, inflammatory response, and the possible role of PPARγ and Nrf2/HO-1 signaling. Rats were given CCl4 and exposed to LLLT twice/week for 6 weeks and blood and liver samples were collected for analysis. CCl4 caused liver injury and fibrosis manifested by hepatocyte injury, steatosis, inflammatory cell infiltration, and accumulation of collagen, elevated serum transaminases and bilirubin, and decreased albumin. ROS, MDA, NO, NF-κB p65, TNF-α, iNOS, TGF-β1, and IL-6 were increased in the liver of CCl4-administered rats. Exposure to LLLT ameliorated histopathological alterations, collagen deposition, and liver function markers, and downregulated hepatic α-SMA, collagen 1A1, and collagen 3A1. In Addition, LLLT decreased ROS, MDA, NO, NF-κB p65, TGF-β1, and pro-inflammatory mediators, and enhanced antioxidant defenses. These effects were associated with upregulated PPARγ, Nrf2, and HO-1, both gene and protein expression. In conclusion, LLLT attenuated liver fibrosis by suppressing ECM production and deposition, oxidative injury and inflammation, and upregulating PPARγ and Nrf2/HO-1 signaling.
Collapse
|
6
|
Martins MG, Martins MIM, de Souza AH, Antunes FTT, Pail PB, de Fátima Wiilland E, Picada JN, da Silva Brum LF. Evaluation of lipolysis and toxicological parameters of low-level laser therapy at different wavelengths and doses in the abdominal subcutaneous tissue. Lasers Med Sci 2021; 37:1235-1244. [PMID: 34297266 DOI: 10.1007/s10103-021-03378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022]
Abstract
Investigate the effects of low-level lasers therapy (LLLT) aiming abdominal lipolysis. Female Wistar rats received applications of LLLT directly in the abdominal skin twice a week (5 weeks). Except the control group (n = 5), animals received treatments with red wavelength 660 nm being (I) R3.3 group (n = 5): 3.3 J/cm2, and (II) R5 group (n = 5): 5 J/cm2, or infrared wavelength 808 nm being (III) IR3.3 group (n = 5): 3.3 J/cm2, and (IV) IR5 group (n = 5): 5 J/cm2. Abdominal subcutaneous and liver tissues were evaluated histologically. Levels of thiobarbituric acid reactive substances (TBARS) and catalase (CAT) activity were analyzed in liver tissue. In the peripheral blood aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, and total cholesterol were investigated. Micronucleus assay was performed in the bone marrow. Except for the IR3.3 group, all treated groups reduced the body weight (p < 0.001). The R5 group reduced the abdominal subcutaneous tissue weight and thickness (p < 0.05), even though all treated groups reduced the number of adipocytes and its size (p < 0.001). No histological changes in the liver. There were no alterations in the triglycerides and LDL levels. The IR5 group increased the total cholesterol levels and decreased the HDL, ALT (both p < 0.05), and AST levels (p < 0.001). The group IR3.3 showed higher levels of ALP (p < 0.01). The R3.3 group increased the TBARS and CAT activity (p < 0.05). No mutagenic effects were found. The red laser treatment at 5 J/cm2 led to lipolysis and did not alter the liver's parameters.
Collapse
Affiliation(s)
- Marcia Gerhardt Martins
- Department of Genetics and Applied Toxicology, Lutheran University of Brazil, Canoas, RS, 92425-900, Brazil
| | - Maria Isabel Morgan Martins
- Master's Program in Health Promotion, Human Development and Society, Lutheran University of Brazil, RS, 92425-900, Canoas, Brazil
| | - Alessandra Hubner de Souza
- Graduate Program in Cellular and Molecular Biology Applied To Health, Lutheran University of Brazil, Av. Farroupilha, nº 8001, Bairro São José, RS, CEP 92425-900, Canoas, Brazil
| | - Flavia Tasmin Techera Antunes
- Graduate Program in Cellular and Molecular Biology Applied To Health, Lutheran University of Brazil, Av. Farroupilha, nº 8001, Bairro São José, RS, CEP 92425-900, Canoas, Brazil.
| | - Priscilla Batista Pail
- Department of Cosmetics and Aesthetic, Lutheran University of Brazil, Canoas, RS, 92425-900, Brazil
| | - Elenir de Fátima Wiilland
- Department of Genetics and Applied Toxicology, Lutheran University of Brazil, Canoas, RS, 92425-900, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, Lutheran University of Brazil, Avenida Farroupilha, 8001, Canoas, RS, CEP 92425900, Brazil
| | | |
Collapse
|
7
|
Photobiomodulation-Underlying Mechanism and Clinical Applications. J Clin Med 2020; 9:jcm9061724. [PMID: 32503238 PMCID: PMC7356229 DOI: 10.3390/jcm9061724] [Citation(s) in RCA: 326] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study is to explore the possibilities for the application of laser therapy in medicine and dentistry by analyzing lasers' underlying mechanism of action on different cells, with a special focus on stem cells and mechanisms of repair. The interest in the application of laser therapy in medicine and dentistry has remarkably increased in the last decade. There are different types of lasers available and their usage is well defined by different parameters, such as: wavelength, energy density, power output, and duration of radiation. Laser irradiation can induce a photobiomodulatory (PBM) effect on cells and tissues, contributing to a directed modulation of cell behaviors, enhancing the processes of tissue repair. Photobiomodulation (PBM), also known as low-level laser therapy (LLLT), can induce cell proliferation and enhance stem cell differentiation. Laser therapy is a non-invasive method that contributes to pain relief and reduces inflammation, parallel to the enhanced healing and tissue repair processes. The application of these properties was employed and observed in the treatment of various diseases and conditions, such as diabetes, brain injury, spinal cord damage, dermatological conditions, oral irritation, and in different areas of dentistry.
Collapse
|
8
|
Abdel-Magied N, Elkady AA, Abdel Fattah SM. Effect of Low-Level Laser on Some Metals Related to Redox State and Histological Alterations in the Liver and Kidney of Irradiated Rats. Biol Trace Elem Res 2020; 194:410-422. [PMID: 31313245 DOI: 10.1007/s12011-019-01779-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
Low-level laser therapy (LLLT) is a type of medicine that uses laser light at low levels to activate the cellular chromophores and the initiation of cellular signaling. This study aimed to evaluate the photomodulation effect of LLL against ionizing radiation (IR)-induced metal disorders related to redox state in the liver and kidney of male rats. Rats were divided into 4 groups (control, LLLT, IR (7Gy), IR+LLLT). The results showed that LLLT 870 nm one time for 3 days post-irradiation revealed redistribution of iron (Fe), copper (Cu), zinc (Zn),calcium (Ca), magnesium (Mg), manganese (Mn), and selenium (Se) in the liver and kidney tissues. Moreover, LLLT attenuated the oxidative stress manifested by a marked reduction of hydrogen peroxide (H2O2), 4-hydroxynonenal (4-HNE), total oxidant state (TOS), and oxidative stress index (OSI) associated with a significant increase in total antioxidant status (TAS), glutathione (GSH) content, and glutathione peroxide (GPx), glutathione reductase (GRx), superoxide dismutase(SOD), and catalase (CAT) activities. Moreover, LLLT displayed an increase in glutathione-S-transferase (GSH-T) and ceruloplasmin activities and a decrease in the activity of gamma-glutamyl transferase (γ-GT). Besides, LLLT significantly attenuated the histological changes in the liver and kidney tissues, denoted by a reduction in the necrotic and degenerative changes of hepatocytes and an improvement in the corpuscles and tubules of the kidney. In conclusion, LLLT could be used as an adjuvant treatment post-exposure to radiation, while it is not beneficial to use it on the normal tissue.
Collapse
Affiliation(s)
- Nadia Abdel-Magied
- Radiation Biology Research Department, National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt.
| | - Ahmed A Elkady
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt
| | - Salma M Abdel Fattah
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt
| |
Collapse
|
9
|
Araújo TG, Oliveira AG, Franchi Teixeira AR. Low-Power Laser Irradiation (LPLI): A Clinical Point of View on a Promising Strategy to Improve Liver Regeneration. J Lasers Med Sci 2018; 9:223-227. [PMID: 31119014 DOI: 10.15171/jlms.2018.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The capacity of the liver to regenerate is an important clinical issue after major hepatectomies and makes the difference between life and death in some cases of post-operative malfunction when the liver remnant is too small or has an impaired regenerative capacity. Several approaches have been tested to stimulate hepatic regeneration after post-operative hepatic failure syndrome; however, they have produced controversial results. A quick, simple, and harmless method that can be used intraoperatively and capable of promoting an increased regenerative capacity of the remaining liver would be very welcome. Thus, based on the data in the literature, we presented low-power laser irradiation (LPLI) as a quick, simple, and harmless method to improve liver regeneration after major hepatectomies. This article highlights the current evidence about the effects of LPLI on liver regeneration, and also suggests laser therapy as an important tool for regenerative stimulation in clinical practice.
Collapse
Affiliation(s)
- Tiago Gomes Araújo
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Physiology and Pharmacology, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Alexandre Gabarra Oliveira
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil.,Institute of Biosciences Institute, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | | |
Collapse
|
10
|
Godoy YPA, Gerson S, Pinto MS, Boff MF, Mascarenhas MÁ, Cardoso VV. FUNCTIONAL AND CELLULAR EVALUATION OF THE LIVER AFTER LOW-POWER LASER STIMULATION DURING SURGERY. ABCD-ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA 2017; 30:122-126. [PMID: 29257848 PMCID: PMC5543791 DOI: 10.1590/0102-6720201700020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/23/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND Partial hepatectomy is a surgical intervention of the liver that can trigger its regenerative process, where the residual lobes deflagrate a compensatory hyperplasia, causing its restoration almost to the original volume. Nevertheless, depending on the extent of liver damage its regeneration might be impaired. The low-power laser has been studied with beneficial results. AIM To investigate the possible functional and mutagenic damage arising from the use of low-power laser used in liver regeneration after partial hepatectomy. METHODS Fifteen male adult Wistar rats were hepatectomizated in 70% and laser irradiated or not with dose of 70 J/cm2, 650 nm, 100 mW, directly on the remaining liver, during the perioperative period. These animals were divided into four groups: G1 (control, 7 days); G2 (laser, 7 days); G3 (control, 14 days); G4 (laser, 14 days). Were analyzed the liver weight; number of hepatocytes; deposition of collagen fibers; liver function tests: serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma glutamyl transferase, bilirubin and micronucleus test in peripheral blood erythrocyte. RESULTS The liver weight was greater in G3 and G4 (p=0.001 and p=0.002) compared to other groups. The deposition of collagen fibers in G1 was statistically higher than the other groups (p=0.01). In tests of liver function and micronucleus test was not found significant differences between the studied groups. CONCLUSION Low-power laser stimulation did not cause loss of liver function or mutagenic damage.
Collapse
Affiliation(s)
| | - Simone Gerson
- Methodist University Center - IPA, Laboratory of Toxicology and Mutagenesis, Porto Alegre, RS
| | - Milene Santana Pinto
- Methodist University Center - IPA, Laboratory of Toxicology and Mutagenesis, Porto Alegre, RS
| | | | | | - Valesca Veiga Cardoso
- Methodist University Center - IPA, Laboratory of Toxicology and Mutagenesis, Porto Alegre, RS
| |
Collapse
|
11
|
Cury V, de Lima TM, Prado CM, Pinheiro N, Ariga SKK, Barbeiro DF, Moretti AI, Souza HP. Low level laser therapy reduces acute lung inflammation without impairing lung function. JOURNAL OF BIOPHOTONICS 2016; 9:1199-1207. [PMID: 26381933 DOI: 10.1002/jbio.201500113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/04/2015] [Accepted: 08/24/2015] [Indexed: 06/05/2023]
Abstract
Acute lung injury is a condition characterized by exacerbate inflammatory reaction in distal airways and lung dysfunction. Here we investigate the treatment of acute lung injury (ALI) by low level laser therapy (LLLT), an effective therapy used for the treatment of patients with inflammatory disorders or traumatic injuries, due to its ability to reduce inflammation and promote tissue regeneration. However, studies in internal viscera remains unclear. C57BL/6 mice were treated with intratracheal lipopolysaccharide (LPS) (5 mg/kg) or phosphate buffer saline (PBS). Six hours after instillation, two groups were irradiated with laser at 660 nm and radiant exposure of 10 J/cm2 . Intratracheal LPS inoculation induced a marked increase in the number of inflammatory cells in perivascular and alveolar spaces. There was also an increase in the expression and secretion of cytokines (TNF-α, IL-1β, IL-6,) and chemokine (MCP-1). The LLLT application induced a significant decrease in both inflammatory cells influx and inflammatory mediators secretion. These effects did not affect lung mechanical properties, since no change was observed in tissue resistance or elastance. In conclusion LLLT is able to reduce inflammatory reaction in lungs exposed to LPS without affecting the pulmonary function and recovery.
Collapse
Affiliation(s)
- Vivian Cury
- University of São Paulo, School of Medicine, Emergency Medicine Department, Av. Dr. Arnaldo, 455, Sala 3189, São Paulo - SP, Brazil
| | - Thais Martins de Lima
- University of São Paulo, School of Medicine, Emergency Medicine Department, Av. Dr. Arnaldo, 455, Sala 3189, São Paulo - SP, Brazil
| | - Carla Maximo Prado
- Federal University of Sao Paulo, Biological Science Department, São Paulo - SP, Brazil
| | - Nathalia Pinheiro
- University of São Paulo, School of Medicine, Emergency Medicine Department, Av. Dr. Arnaldo, 455, Sala 3189, São Paulo - SP, Brazil
| | - Suely K K Ariga
- University of São Paulo, School of Medicine, Emergency Medicine Department, Av. Dr. Arnaldo, 455, Sala 3189, São Paulo - SP, Brazil
| | - Denise F Barbeiro
- University of São Paulo, School of Medicine, Emergency Medicine Department, Av. Dr. Arnaldo, 455, Sala 3189, São Paulo - SP, Brazil
| | - Ana I Moretti
- University of São Paulo, Department of Cardio-Pulmonary, São Paulo - SP, Brazil
| | - Heraldo P Souza
- University of São Paulo, School of Medicine, Emergency Medicine Department, Av. Dr. Arnaldo, 455, Sala 3189, São Paulo - SP, Brazil
| |
Collapse
|
12
|
Sassoli C, Chellini F, Squecco R, Tani A, Idrizaj E, Nosi D, Giannelli M, Zecchi-Orlandini S. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment. Lasers Surg Med 2015; 48:318-32. [PMID: 26660509 DOI: 10.1002/lsm.22441] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. MATERIALS AND METHODS NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. RESULTS Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the expression of Smad3, the TGF-β1 downstream signaling molecule. CONCLUSION Low intensity irradiation with 635 ± 5 nm diode laser inhibited TGF-β1/Smad3-mediated fibroblast-myofibroblast transition and this effect involved the modulation of TRPC1 ion channels. These data contribute to support the potential anti-fibrotic effect of LLLT and may offer further informations for considering this therapy as a promising therapeutic tool for the treatment of tissue fibrosis.
Collapse
Affiliation(s)
- Chiara Sassoli
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Flaminia Chellini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Roberta Squecco
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - Alessia Tani
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Eglantina Idrizaj
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - Daniele Nosi
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Marco Giannelli
- Odontostomatologic Laser Therapy Center, Via dell' Olivuzzo 162, 50143, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
13
|
Emel'yanov AN, Kir'yanova VV. [The application of stem cells, visible and infrared light in regenerative medicine. Part 1]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2015; 92:51-62. [PMID: 25876436 DOI: 10.17116/kurort2015151-62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The present article was designed to overview the experimental studies of visible and infrared light irradiation of human and animal stem cells (SC) in vitro and in vivo for the evaluation of its photobiomodulatory effects. The results will be used to elaborate substantiation for the choice of the parameters of SC light irradiation and to develop recommendations for the application of this method in regenerative medicine (RM). BACKGROUND The clinical application of light irradiation is a matter of contrsy, in the first place due to the difficulties encountered in the rational choice of irradiation parameters. The theoretical substantiation of such choice remains a stumbling block too despite the long history of photoghromotherapy. There is thus far no reliable theoretical basis for the adequate choice of such irradiation parameters as power density, radiation dose, and exposure time. The experiences with the light application for the purpose of regenerative medicine have never been summarized. RESULTS The present review encompasses 78 articles selected for the basic analysis that report the studies with the use of a variety of SC types. The analysis has demonstrated that clinical investigations into the influence of light on the stem cells are still in their infancy. It was shown that the irradiation parameters need to be chosen taking into consideration the type of the stem cells. Different authors report the achievement of the maximum SC proliferation and differentiation rates at energy densities as high as 50 mW/sq.cm, small radiation doses (around 1 J/sq.cm) and exposure time (on the order of seconds). CONCLUSION The general conclusion for Parts 1 and II of this communication will be presented in the next issue of this journal (number 2, 2015).
Collapse
Affiliation(s)
- A N Emel'yanov
- GBOU VPO 'Severo-Zapadnyj gosudarstvennyj meditsinskij universitet im. I.I. Mechnikova' Minzdrava Rossii, ul. Kirochnaja, 41, Sankt-Peterburg, Rossijskaja Federatsija, 191015
| | - V V Kir'yanova
- GBOU VPO 'Severo-Zapadnyj gosudarstvennyj meditsinskij universitet im. I.I. Mechnikova' Minzdrava Rossii, ul. Kirochnaja, 41, Sankt-Peterburg, Rossijskaja Federatsija, 191015
| |
Collapse
|
14
|
Emelyanov AN, Kiryanova VV. Photomodulation of proliferation and differentiation of stem cells by the visible and infrared light. Photomed Laser Surg 2015; 33:164-74. [PMID: 25692649 DOI: 10.1089/pho.2014.3830] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The aim of this article is to review experimental studies of visible and infrared light irradiation of human and animal stem cells (SCs) in vitro and in vivo to assess photobiomodulation effects on their proliferation and differentiation. BACKGROUND DATA The clinical application of light irradiation remains controversial, primarily because of the complexity of the rational choice of irradiation parameters. In laboratories, the theoretical justification underlying the choice of irradiation parameters also remains a challenge. METHODS A systematic review was completed of original research articles that investigated the effects of light irradiation on human and animal SCs in vitro and in vivo (to June 2014). Relevant articles were sourced from PubMed and MEDLINE(®). The search terms were laser (light) therapy (irradiation), stem cells, and phototherapy, stem cells. RESULTS The analysis revealed the importance of cell type when choosing the cell irradiation parameters. The influence of wavelength on the SC proliferation rate seemed to be nonsignificant. The high values of increased proliferation or differentiation were obtained using high power density, low energy density, and short exposure time. SC exposure to light without inducers did not lead to their differentiation. The maximum differentiation was achieved using irradiation parameters different from the ones needed to achieve the maximum proliferation of the same cells. CONCLUSIONS Increased power density and reduced energy density were needed to increase the SC response. Based on the analysis, we have presented a graph of the cell response to generalized photostimulus, and introduced the concepts of "photostress" and "photoshock" to describe the stages of this response.
Collapse
Affiliation(s)
- Artem Nikolaevich Emelyanov
- 1 Laboratory of High Laser and Magnetic Technology, North-Western State Medical University , St. Petersburg, Russia
| | | |
Collapse
|
15
|
Low-power laser irradiation fails to improve liver regeneration in elderly rats at 48 h after 70 % resection. Lasers Med Sci 2014; 30:2003-8. [PMID: 24880927 DOI: 10.1007/s10103-014-1598-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/20/2014] [Indexed: 01/17/2023]
Abstract
The liver regeneration is an important clinical issue after major hepatectomies. Unfortunately, many organs (including the liver) exhibit age-related impairments regarding their regenerative capacity. Recent studies found that low-power laser irradiation (LPLI) has a stimulatory effect on the liver regeneration process. However, its effects in elderly remain unknown. Thus, this study aimed to investigate the main molecular mechanisms involved in liver regeneration of partially hepatectomized elderly rats exposed to LPLI. The effects of 15 min of LPLI (wavelength of 632.8 nm; fluence of 0.97 J/cm(2); total energy delivered of 3.6 J) were evaluated in hepatectomized elderly Wistar male rats. Afterwards, through immunoblotting approaches, the protein expression and phosphorylation levels of hepatocyte growth factor (HGF), Met, Akt and Erk 1/2 signaling pathways as well as the proliferating cell nuclear antigen (PCNA) were investigated. It was observed that LPLI was not able to improve liver regeneration in elderly rats as evidenced by the lack of improvement of HGF and PCNA protein expression or phosphorylation levels of Met, Akt and Erk 1/2 in the remnant livers. In sum, this study demonstrated that the main molecular pathway, i.e. HGF/Met → Akt and Erk 1/2 → PCNA, involved in the hepatic regeneration process was not improved by LPLI in elderly hepatectomized rats, which in turn rules out LPLI as an adjuvant therapy, as observed in this protocol of liver regeneration evaluation (i.e. at 48 h after 70 % resection), in elderly.
Collapse
|
16
|
Tuby H, Hertzberg E, Maltz L, Oron U. Long-term safety of low-level laser therapy at different power densities and single or multiple applications to the bone marrow in mice. Photomed Laser Surg 2013; 31:269-73. [PMID: 23675984 DOI: 10.1089/pho.2012.3395] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The purpose of this study was to determine the long-term safety effect of low-level laser therapy (LLLT) to the bone marrow (BM) in mice. BACKGROUND DATA LLLT has been shown to have a photobiostimulatory effect on various cellular processes and on stem cells. It was recently shown that applying LLLT to BM in rats post-myocardial infarction caused a marked reduction of scar tissue formation in the heart. METHODS Eighty-three mice were divided into five groups: control sham-treated and laser-treated at measured density of either 4, 10, 18, or 40 mW/cm(2) at the BM level. The laser was applied to the exposed flat medial part of the tibia 8 mm from the knee joint for 100 sec. Mice were monitored for 8 months and then killed, and histopathology was performed on various organs. RESULTS No histological differences were observed in the liver, kidneys, brain or BM of the laser-treated mice as compared with the sham-treated, control mice. Moreover, no neoplasmic response in the tissues was observed in the laser-treated groups as compared with the control, sham-treated mice. There were no significant histopathological differences among the same organs under different laser treatment regimes in response to the BM-derived mesenchymal stem cell proliferation following LLLT to the BM. CONCLUSIONS LLLT applied multiple times either at the optimal dose (which induces photobiostimulation of stem cells in the BM), or at a higher dose (such as five times the optimal dose), does not cause histopathological changes or neoplasmic response in various organs in mice, as examined over a period of 8 months.
Collapse
Affiliation(s)
- Hana Tuby
- Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University Tel-Aviv, Israel
| | | | | | | |
Collapse
|
17
|
Liver regeneration following partial hepatectomy is improved by enhancing the HGF/Met axis and Akt and Erk pathways after low-power laser irradiation in rats. Lasers Med Sci 2013; 28:1511-7. [PMID: 23334786 DOI: 10.1007/s10103-013-1264-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/02/2013] [Indexed: 12/29/2022]
Abstract
A simple, easy, and safe procedure aiming to improve liver regeneration could be of great clinical benefit in critical situations such as major hepatectomy, trauma, or hemorrhage. Low-power laser irradiation (LPLI) has come into a wide range of use in clinical practice by inducing regeneration in healthy and injured tissues. However, the effect of LPLI on the process of liver regeneration, especially those related to the molecular mechanisms, is not fully understood. Thus, the aim of the present study was to investigate the main molecular mechanisms involved in liver regeneration of partially hepatectomized rats exposed to LPLI. We used Wistar male rats, which had their remaining liver irradiated or not with LPLI (wavelength of 632.8 nm and fluence of 65 mW/cm(2)) for 15 min after a 70% hepatectomy. We subsequently investigated hepatocyte growth factor (HGF), Met, Akt, and Erk 1/2 signaling pathways through protein expression and phosphorylation analyses along with cell proliferation (proliferating cell nuclear antigen (PCNA) and Ki-67) using immunoblotting and histological studies. Our results show that LPLI can improve liver regeneration as shown by increased HGF protein expression and the phosphorylation levels of Met, Akt, and Erk 1/2 accompanied by higher levels of the PCNA and Ki-67 protein in the remnant livers. In summary, our results suggest that LPLI may play a clinical role as a simple, fast, and easy-to-perform strategy in order to enhance the liver regenerative capacity of a small liver remnant after hepatectomy.
Collapse
|
18
|
Oliveira-Junior MC, Monteiro AS, Leal-Junior ECP, Munin E, Osório RAL, Ribeiro W, Vieira RP. Low-level laser therapy ameliorates CCl4-induced liver cirrhosis in rats. Photochem Photobiol 2013; 89:173-178. [PMID: 22827550 DOI: 10.1111/j.1751-1097.2012.01211.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/16/2012] [Indexed: 01/12/2023]
Abstract
This study investigated the effects of low-level laser therapy (LLLT) in the liver function, structure and inflammation in a experimental model of carbon tetrachloride (CCl(4))-induced liver cirrhosis. Wistar rats were divided into Control, LLLT, CCl(4) and CCl(4) +LLLT groups. CCl(4) groups received CCl(4) (0.4 g kg(-1); i.p.), three times a week, for 12 weeks. A 830 nm LLLT was performed with a continuous wave, 35 mW, 2.5 J cm(-2) per point, applied to four points of the liver (right and left upper and lower extremities, in the four lobes of the liver) for 2 weeks. Liver structure and inflammation (cirrhotic areas, collagen deposition, inflammation, density of Kupffer and hepatic stellate cells) and function (aspartate aminotransferase, alkaline phosphatase, gamma glutamyltransferase, lactate dehydrogenase, total proteins and globulins) were evaluated. LLLT significantly reduced CCl(4)-increased aspartate aminotransferase (P < 0.001), alkaline phosphatase (P < 0.001), gamma-glutamyl transferase (P < 0.001) and lactate dehydrogenase (P < 0.01) activity, as well as total proteins (P < 0.05) and globulins (P < 0.01). LLLT also reduced the number of cirrhotic areas, the collagen accumulation and the hepatic inflammatory infiltrate. Of note, LLLT reduced CCl(4)-increased number of Kupffer cells (P < 0.05) and hepatic stellate cells (P < 0.05). We conclude that LLLT presents beneficial effects on liver function and structure in an experimental model of CCl(4)-induced cirrhosis.
Collapse
|
19
|
Shining light on nanotechnology to help repair and regeneration. Biotechnol Adv 2012; 31:607-31. [PMID: 22951919 DOI: 10.1016/j.biotechadv.2012.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/10/2012] [Accepted: 08/11/2012] [Indexed: 12/27/2022]
Abstract
Phototherapy can be used in two completely different but complementary therapeutic applications. While low level laser (or light) therapy (LLLT) uses red or near-infrared light alone to reduce inflammation, pain and stimulate tissue repair and regeneration, photodynamic therapy (PDT) uses the combination of light plus non-toxic dyes (called photosensitizers) to produce reactive oxygen species that can kill infectious microorganisms and cancer cells or destroy unwanted tissue (neo-vascularization in the choroid, atherosclerotic plaques in the arteries). The recent development of nanotechnology applied to medicine (nanomedicine) has opened a new front of advancement in the field of phototherapy and has provided hope for the development of nanoscale drug delivery platforms for effective killing of pathological cells and to promote repair and regeneration. Despite the well-known beneficial effects of phototherapy and nanomaterials in producing the killing of unwanted cells and promoting repair and regeneration, there are few reports that combine all three elements i.e. phototherapy, nanotechnology and, tissue repair and regeneration. However, these areas in all possible binary combinations have been addressed by many workers. The present review aims at highlighting the combined multi-model applications of phototherapy, nanotechnology and, reparative and regeneration medicine and outlines current strategies, future applications and limitations of nanoscale-assisted phototherapy for the management of cancers, microbial infections and other diseases, and to promote tissue repair and regeneration.
Collapse
|
20
|
de Villiers JA, Houreld NN, Abrahamse H. Influence of low intensity laser irradiation on isolated human adipose derived stem cells over 72 hours and their differentiation potential into smooth muscle cells using retinoic acid. Stem Cell Rev Rep 2012; 7:869-82. [PMID: 21373882 DOI: 10.1007/s12015-011-9244-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Human adipose derived stem cells (hADSCs), with their impressive differentiation potential, may be used in autologous cell therapy or grafting to replace damaged tissues. Low intensity laser irradiation (LILI) has been shown to influence the behaviour of various cells, including stem cells. AIMS This study aimed to investigate the effect of LILI on hADSCs 24, 48 or 72 h post-irradiation and their differentiation potential into smooth muscle cells (SMCs). METHODOLOGY hADSCs were exposed to a 636 nm diode laser at a fluence of 5 J/cm(2). hADSCs were differentiated into SMCs using retinoic acid (RA). Morphology was assessed by inverted light and differential interference contrast (DIC) microscopy. Proliferation and viability of hADSCs was assessed by optical density (OD), Trypan blue staining and adenosine triphosphate (ATP) luminescence. Expression of stem cell markers, β1-integrin and Thy-1, and SMC markers, smooth muscle alpha actin (SM-αa), desmin, smooth muscle myosin heavy chain (SM-MHC) and smoothelin, was assessed by immunofluorescent staining and real-time reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS Morphologically, hADSCs did not show any differences and there was an increase in viability and proliferation post-irradiation. Immunofluorescent staining showed expression of β1-integrin and Thy-1 72 h post-irradiation. RT-PCR results showed a down regulation of Thy-1 48 h post-irradiation. Differentiated SMCs were confirmed by morphology and expression of SMC markers. CONCLUSION LILI at a wavelength of 636 nm and a fluence of 5 J/cm(2) does not induce differentiation of isolated hADSCs over a 72 h period, and increases cellular viability and proliferation. hADSCs can be differentiated into SMCs within 14 days using RA.
Collapse
Affiliation(s)
- Jennifer Anne de Villiers
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | | | | |
Collapse
|
21
|
The Translation Procedure of Low-Level Laser Therapy in Acute Ischemic Stroke: A Nonpharmaceutics Noninvasive Method. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Moreira MS, Velasco IT, Ferreira LS, Ariga SKK, Abatepaulo F, Grinberg LT, Marques MM. Effect of laser phototherapy on wound healing following cerebral ischemia by cryogenic injury. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 105:207-15. [PMID: 22024356 DOI: 10.1016/j.jphotobiol.2011.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 08/09/2011] [Accepted: 09/28/2011] [Indexed: 11/29/2022]
Abstract
Laser phototherapy emerges as an alternative or auxiliary therapy for acute ischemic stroke, traumatic brain injury, degenerative brain disease, spinal cord injury, and peripheral nerve regeneration, but its effects are still controversial. We have previously found that laser phototherapy immunomodulates the response to focal brain damage. Following direct cortical cryogenic injury the effects of laser phototherapy on inflammation and repair was assessed after cryogenic injury (CI) to the central nervous system (CNS) of rats. The laser phototherapy was carried out with a 780 nm AlGaAs diode laser. The irradiation parameters were: power of 40 mW, beam area of 0.04 cm(2), energy density of 3 J/cm(2) (3s) in two points (0.12 J per point). Two irradiations were performed at 3 h-intervals, in contact mode. Rats (20 non-irradiated - controls and 20 irradiated) were used. The wound healing in the CNS was followed in 6 h, 1, 7 and 14 days after the last irradiation. The size of the lesions, the neuron cell viability percentages and the amount of positive GFAP labeling were statistically compared by ANOVA complemented by Tukey's test (p<0.05). The distribution of lymphocytes, leukocytes and macrophages were also analyzed. CI created focal lesions in the cortex represented by necrosis, edema, hemorrhage and inflammatory infiltrate. The most striking findings were: lased lesions showed smaller tissue loss than control lesions in 6 h. During the first 24 h the amount of viable neurons was significantly higher in the lased group. There was a remarkable increase in the amount of GFAP in the control group by 14 days. Moreover, the lesions of irradiated animals had fewer leukocytes and lymphocytes in the first 24 h than controls. Considering the experimental conditions of this study it was concluded that laser phototherapy exerts its effect in wound healing following CI by controlling the brain damage, preventing neuron death and severe astrogliosis that could indicate the possibility of a better clinical outcome.
Collapse
Affiliation(s)
- Maria S Moreira
- School of Dentistry, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | | | | | | | | | | | | |
Collapse
|