1
|
King MR, Colla S. Muscle Rehabilitation Techniques and Prevention of Injury. Vet Clin North Am Equine Pract 2025; 41:193-211. [PMID: 39788826 DOI: 10.1016/j.cveq.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Rehabilitation following muscle injury is critical in restoring the equine athlete to full function. Rehabilitation protocols should be tailored to each patient's global functional assessment, taking into account sports-specific demands, goals for return-to-performance, and overall prognosis. Rehabilitation protocols are often designed to modulate pain, enhance repair, improve proprioception, increase flexibility, restore muscle strength, joint range-of-motion, and neuromotor control. This article will review mechanisms of muscle injury, various physical modalities commonly employed in the rehabilitation period following muscle injury, and injury prevention.
Collapse
Affiliation(s)
- Melissa R King
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Colorado State University Veterinary Teaching Hospital, Equine Orthopaedic Research Center, 2250 Gillette Drive, Fort Collins, CO 80523, USA.
| | - Sandro Colla
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Colorado State University Veterinary Teaching Hospital, Equine Orthopaedic Research Center, 2250 Gillette Drive, Fort Collins, CO 80523, USA
| |
Collapse
|
2
|
Liang S, Shang S, Tan A, Zhang W, Zhou B, Mei X, Li L. Comparative efficacy and safety of the novel Picosecond Alexandrite Laser and the traditional combined Q-switched and long-pulse Nd: YAG lasers in melasma treatment: a randomized evaluator-blinded trial. Lasers Med Sci 2025; 40:29. [PMID: 39843829 PMCID: PMC11754324 DOI: 10.1007/s10103-025-04286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Melasma significantly impacts life quality, and while various laser therapies show promise, rigorous comparative studies, especially between the novel Picosecond Alexandrite Laser (PSAL) and the traditional combined modality of Q-switched and Long-pulse Nd: YAG Lasers (QLNYL), are notably lacking. This study aims to fill this gap by evaluating the efficacy and safety of these modalities, providing insights into their comparative advantages for clinical practice. In a prospective, evaluator-blinded study, 40 participants with Fitzpatrick Skin Types (FST) III and IV underwent three treatment sessions at four-week intervals with either PSAL or QLNYL. Efficacy was primarily assessed by changes in Melasma Area and Severity Index (MASI) scores at baseline, 4, 8, 12, and 24 weeks, along with patient satisfaction evaluations at the 12- and 24-week marks, and safety assessments conducted throughout the study. Both groups experienced significant reductions in MASI scores post-treatment. Overall, the improvement in MASI scores in the QLNYL group significantly surpassed that in the PSAL group (P = 0.010). Patient satisfaction was comparably high between groups, and no significant differences were noted in safety profiles. The PSAL group showed a slightly higher incidence of adverse reactions (not significant) and significantly higher pain scores (P = 0.018). Recurrence rates at the 24-week follow-up were 10.5% for PSAL and 0% for QLNYL, with no significant difference. Both PSAL and QLNYL proved effective in treating melasma, with the traditional combined modality of QLNYL demonstrating superior efficacy in FST III-IV. Safety profiles were similar comparable.
Collapse
Affiliation(s)
- Surong Liang
- Department of Dermatology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuai Shang
- Department of Dermatology, Peking University Shougang Hospital, Beijing, China
| | - Ansheng Tan
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wensi Zhang
- Department of Gastroenterology, China-Japanese Friendship Hospital, Beijing, China
| | - Boyang Zhou
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xueling Mei
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Linfeng Li
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Fekrazad S, Farzad-Mohajeri S, Mashhadiabbas F, Daghighi H, Arany PR, Fekrazad R. Bone Regeneration of Rat Critical-Sized Calvarial Defects by the Combination of Photobiomodulation and Adipose-Derived Mesenchymal Stem Cells. J Lasers Med Sci 2024; 15:e31. [PMID: 39193112 PMCID: PMC11348449 DOI: 10.34172/jlms.2024.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/01/2024] [Indexed: 08/29/2024]
Abstract
Introduction: This study explored the synergistic effects of low-level laser therapy (LLLT) and adipose-derived stem cells (ADSCs) on cranial bone regeneration in rats, addressing the limitations of autogenous grafts and advancing bone tissue engineering with innovative photobiomodulation (PBM) applications. Methods: Sixty Wistar rats were allocated to 5 separate groups randomly; (1) natural bovine bone mineral (NBBM); (2) NBBM+LLLT; (3) NBBM+allogenic ADSCs; (4) NBBM+allogenic ADSCs+LLLT; (5) Only defects. 8-mm calvarial defects were made in each rat in the surgical procedure. A diode laser was applied with the following parameters (continuous mode, power of 100mW, wavelength of 808nm, and 4 J/cm2 energy density) immediately after the procedure and every other day. Bone samples were obtained and assessed histomorphometrically and histologically after staining with hematoxylin and eosin (H&E). Results: Different volumes of bony material were observed in two weeks; 2.94%±1.00 in group 1, 5.1%±1.92 in group 2, 7.11%±2.82 in group 3, 7.34%±2.31 in group 4, and 2.01%±0.83 in group 5 (P<0.05). On the other hand, foreign body residuals were up by 23% in the groups with scaffolding by the end of 2 weeks. Four weeks of observation led to 6.74 %±1.95, 13.24%±1.98, 15.76%±1.19, 15.92%±3.4, and 3.11%±1.00 bone formation in groups 1 to 5, respectively (P<0.05). Generally, the difference between groups 2-4 was not statistically significant based on different types of bone and the extent of inflammation. Conclusion: Bearing in mind the limitations of our research, it was demonstrated that ADSCs in combination with PBM have promising effects on bone tissue regeneration in sizeable bony defects. Furthermore, this study also showed that PBM usage improved the newly regenerated bone quality.
Collapse
Affiliation(s)
- Sepehr Fekrazad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Mashhadiabbas
- Oral and Maxillofacial Pathology, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hooman Daghighi
- Students’ Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Praveen R. Arany
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, USA
| | - Reza Fekrazad
- Radiation Sciences Research Center, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research, Network (USERN), Tehran, Iran
| |
Collapse
|
4
|
Tanideh N, Ali Behnam M, Mohit Ghiri S, Koohi-Hosseinabadi O, Khajeh-Zadeh H, Zare S, Azarpira N, Akbarzadeh A, Ashkani-Esfahani S, Ebrahimi A, Habibzadeh A. The effects of combined and independent low-level laser and mesenchymal stem cell therapy on induced knee osteoarthritis: An animal study. Knee 2024; 47:208-218. [PMID: 38422741 DOI: 10.1016/j.knee.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/30/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Mesenchymal stem cell (MSC) injection has emerged as a novel treatment for knee osteoarthritis (OA). In addition, low-level laser therapy (LLLT) has been reported to delay the progression of OA. Thus, the current study on animal models of OA investigated the effectiveness of these methods when administered independently and combined. METHODS Twenty-five guinea pig models of OA were randomly sorted into five study groups. The test groups received intra-articular MSC, LLLT, and a combination of these therapeutics for 8 weeks. Radiological and histopathologic evaluations were carried out for the test groups and the control after the completion of treatments. RESULTS The MSC-treated groups showed better outcomes in terms of all radiological and histological indexes compared with the control, apart from subchondral bone (P < 0.05). Similarly, but to a different extent, the LLLT-treated group showed better results than the controls (P < 0.05). The combination of MSC therapy and LLLT improved the cartilage, surface, matrix, space width, osteophytes, and radiologic OA scores more effectively than each of these methods alone (P < 0.05). CONCLUSIONS According to our results, the combination of intra-articular MSC and LLLT can effectively improve OA in animal models. Further preclinical and clinical studies are recommended to assess the effectiveness of these therapeutics alone and in combination.
Collapse
Affiliation(s)
- Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Pharmacology Department, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Mohammad Ali Behnam
- Nano Opto-Electronic Research Center, Electrical and Electronics Engineering Department, Shiraz University of Technology, Shiraz, Islamic Republic of Iran
| | - Sheida Mohit Ghiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Omid Koohi-Hosseinabadi
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Hossein Khajeh-Zadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Armin Akbarzadeh
- Bone and Joints Diseases Research Center, Department of Orthopedic Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Soheil Ashkani-Esfahani
- Foot & Ankle Research and Innovation Laboratory (FARIL), Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alireza Ebrahimi
- Foot & Ankle Research and Innovation Laboratory (FARIL), Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Adrina Habibzadeh
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Islamic Republic of Iran.
| |
Collapse
|
5
|
Colbath AC, Frye CW. Interactions Between Biologic Therapies and Other Treatment Modalities. Vet Clin North Am Equine Pract 2023; 39:515-523. [PMID: 37442732 DOI: 10.1016/j.cveq.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Biologic therapies are becoming increasingly utilized by veterinarians. The literature regarding the interaction of biologic therapies with other therapeutics is still in its infancy. Initial studies have examined the effects of exercise, stress, various pharmaceutical interventions, extracorporeal shockwave, therapeutic laser, and hyperbaric oxygen on biologic therapies. Continued research is imperative as owners and veterinarians increasingly choose a multimodal approach to injury and illness. Further, understanding the effects of concurrently administered treatments and pharmaceuticals as well as the health status of the horse is imperative to providing the optimal therapeutic outcome.
Collapse
Affiliation(s)
- Aimee C Colbath
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, 930 Campus Road, Box 30, Ithaca, NY 14853, USA.
| | - Christopher W Frye
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, 930 Campus Road, Box 25, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Mansano BSDM, da Rocha VP, Teixeira ILA, de Oliveira HA, Vieira SS, Antonio EL, Tucci PJF, Serra AJ. Light-emitting Diode Can Enhance the Metabolism and Paracrine Action of Mesenchymal Stem Cells. Photochem Photobiol 2023; 99:1420-1428. [PMID: 36807286 DOI: 10.1111/php.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
This study investigated the influence of red light-emitting diodes (LED, 630 nm) on different irradiation parameters and the number of applications on mesenchymal stem cells derived from adipose tissue (AdMSCs) metabolism and paracrine factors. The AdMSCs were irradiated with a LEDbox device (output power: 2452.5 mW; laser beam: 163.5 cm2 ; irradiance: 15 mW cm-2 ) using radiant exposures of 0.5, 2, and 4 J cm-2 , respectively. AdMSCs were irradiated once or every 48 h up to three irradiations. All molecular analyses were performed 24 h after the last irradiation. LED did not induce changes in cell count, DNA damage, and oxidative stress. A significant repercussion of the LED has been noticed after three irradiations with 4 J cm-2 . AdMSCs had higher levels of IL-6, IGF-1, and NOx index. A higher ATP content and MMT/Resazurin assay were identified in AdMSCs irradiated three times with 4 J cm-2 . Mitochondrial basal respiration, maximal respiration and proton leak under metabolic stress were reduced by 0.5 and 2 J cm-2 irradiations. These data showed that three LED irradiations with 4 J cm-2 may be a suitable parameter for future AdMSCs therapy because of its improved metabolic activity, ATP content, and IL-6, IGF-1, and nitric oxide secretion.
Collapse
Affiliation(s)
| | - Vitor Pocani da Rocha
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo, SP, Brazil
| | | | | | - Stella Souza Vieira
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo, SP, Brazil
- Base Hospital Foundation, Medicine School of São José do Rio Preto, Sao Paulo, SP, Brazil
| | - Ednei Luiz Antonio
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo, SP, Brazil
| | | | - Andrey Jorge Serra
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Zdziechowski A, Gluba-Sagr A, Rysz J, Woldańska-Okońska M. Why Does Rehabilitation Not (Always) Work in Osteoarthritis? Does Rehabilitation Need Molecular Biology? Int J Mol Sci 2023; 24:ijms24098109. [PMID: 37175818 PMCID: PMC10179350 DOI: 10.3390/ijms24098109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Osteoarthritis (OA) is a common disease among the human population worldwide. OA causes functional impairment, leads to disability and poses serious socioeconomic burden. The rehabilitation offers a function-oriented method to reduce the disability using diverse interventions (kinesiotherapy, physical therapy, occupational therapy, education, and pharmacotherapy). OA as a widespread disease among elderly patients is often treated by rehabilitation specialists and physiotherapists, however the results of rehabilitation are sometimes unsatisfactory. The understanding of molecular mechanisms activated by rehabilitation may enable the development of more effective rehabilitation procedures. Molecular biology methods may prove crucial in rehabilitation as the majority of rehabilitation procedures cannot be estimated in double-blinded placebo-controlled trials commonly used in pharmacotherapy. This article attempts to present and estimate the role of molecular biology in the development of modern rehabilitation. The role of clinicians in adequate molecular biology experimental design is also described.
Collapse
Affiliation(s)
- Adam Zdziechowski
- Department of Internal Diseases, Rehabilitation and Physical Medicine, Medical University, 90-700 Łódź, Poland
| | - Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Łódź, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Łódź, Poland
| | - Marta Woldańska-Okońska
- Department of Internal Diseases, Rehabilitation and Physical Medicine, Medical University, 90-700 Łódź, Poland
| |
Collapse
|
8
|
Carr BJ. Regenerative Medicine and Rehabilitation Therapy in the Canine. Vet Clin North Am Small Anim Pract 2023; 53:801-827. [PMID: 36997410 DOI: 10.1016/j.cvsm.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Regenerative medicine is used in the canine to optimize tissue healing and treat osteoarthritis and soft tissue injuries. Rehabilitation therapy is also often implemented in the treatment and management of musculoskeletal conditions in the canine. Initial experimental studies have shown that regenerative medicine and rehabilitation therapy may work safely and synergistically to enhance tissue healing. Although additional study is required to define optional rehabilitation therapy protocols after regenerative medicine therapy in the canine, certain fundamental principles of rehabilitation therapy still apply to patients treated with regenerative medicine.
Collapse
|
9
|
Jammes M, Contentin R, Cassé F, Galéra P. Equine osteoarthritis: Strategies to enhance mesenchymal stromal cell-based acellular therapies. Front Vet Sci 2023; 10:1115774. [PMID: 36846261 PMCID: PMC9950114 DOI: 10.3389/fvets.2023.1115774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that eventually leads to the complete degradation of articular cartilage. Articular cartilage has limited intrinsic capacity for self-repair and, to date, there is no curative treatment for OA. Humans and horses have a similar articular cartilage and OA etiology. Thus, in the context of a One Health approach, progress in the treatment of equine OA can help improve horse health and can also constitute preclinical studies for human medicine. Furthermore, equine OA affects horse welfare and leads to significant financial losses in the equine industry. In the last few years, the immunomodulatory and cartilage regenerative potentials of mesenchymal stromal cells (MSCs) have been demonstrated, but have also raised several concerns. However, most of MSC therapeutic properties are contained in their secretome, particularly in their extracellular vesicles (EVs), a promising avenue for acellular therapy. From tissue origin to in vitro culture methods, various aspects must be taken into consideration to optimize MSC secretome potential for OA treatment. Immunomodulatory and regenerative properties of MSCs can also be enhanced by recreating a pro-inflammatory environment to mimic an in vivo pathological setting, but more unusual methods also deserve to be investigated. Altogether, these strategies hold substantial potential for the development of MSC secretome-based therapies suitable for OA management. The aim of this mini review is to survey the most recent advances on MSC secretome research with regard to equine OA.
Collapse
Affiliation(s)
- Manon Jammes
- BIOTARGEN, UNICAEN, Normandie University, Caen, France
| | | | | | | |
Collapse
|
10
|
Zielińska P, Soroko-Dubrovina M, Śniegucka K, Dudek K, Čebulj-Kadunc N. Effects of High-Intensity Laser Therapy (HILT) on Skin Surface Temperature and Vein Diameter in Healthy Racehorses with Clipped and Non-Clipped Coat. Animals (Basel) 2023; 13:ani13020216. [PMID: 36670756 PMCID: PMC9854543 DOI: 10.3390/ani13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to investigate the differences in the effects of high-intensity laser therapy (HILT) on skin surface temperature and vein diameter in the carpal joint region in racehorses with clipped and non-clipped treatment areas. The study included 20 Thoroughbreds split into two equal groups: clipped coat and non-clipped coat. Horses underwent thermographic examination to detect changes in skin surface temperature at the medial surface of the carpal joint, followed by ultrasonographic examination to assess changes in the diameter of the medial palmar vein before and after HILT. The increase in skin surface temperature after HILT was significantly lower in the group with clipped coat than in the non-clipped group. The group with clipped coat showed a greater increase in vessel diameter. There was a significantly weak negative correlation between the changes in average skin surface temperature and vein diameter in both groups. In conclusion, an efficient photothermal effect can be achieved in skin with a non-clipped coat and clipping the treatment area increases photobiostimulation of the tissue, while reducing the photothermal effect. Further research is needed to specify the parameters for the treatment of skin with clipped and non-clipped coat in order to perform effective laser therapy.
Collapse
Affiliation(s)
- Paulina Zielińska
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Plac Grunwaldzki 51, 50-366 Wrocław, Poland
| | - Maria Soroko-Dubrovina
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38C, 51-630 Wrocław, Poland
- Correspondence:
| | - Karolina Śniegucka
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38C, 51-630 Wrocław, Poland
| | - Krzysztof Dudek
- Center for Statistical Analysis, Wroclaw Medical University, Marcinkowskiego 2-6, 50-368 Wrocław, Poland
| | - Nina Čebulj-Kadunc
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Fekrazad S, Sohrabi M, Fekrazad R. Angiogenetic and anti-inflammatory effects of photobiomodulation on bone regeneration in rat: A histopathological, immunohistochemical, and molecular analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112599. [PMID: 36493717 DOI: 10.1016/j.jphotobiol.2022.112599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/27/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Post-surgical bone defects require new alternative approaches for a better healing process. For this matter, photobiomodulation therapy (PBMT) has been used in order to improve the process of healing, pain, and inflammation reduction and tissue rejuvenation. This study is set to evaluate the effect of PBMT on angiogenic and inflammatory factors for bone regeneration in rat post-surgical cranial defects. Thirty male Wistar rats were distributed accidentally into two groups (Subdivided into 3 groups according to their follow-up durations). During operation, an 8-mm critical-sized calvarial defect was made in each rat. A continuous diode laser was used (power density 100 mW/cm2, wavelength 810 nm, the energy density of 4 J/cm2). Bone samples were assessed histomorphometrically and histologically after hematoxylin and eosin (H&E) staining. ALP, PTGIR, OCN, and IL-1 levels were measured by RT-PCR. VEGF expression was studied by immunohistochemistry analysis. The level of IL-1 expression decreased significantly in the PBMT group compared to the control after 7 days (p < 0.05), while, the PTGIR level was improved significantly compared to the control group after 7 days. Furthermore, levels of OCN and ALP improved after PBM use; however, the alterations were not statistically meaningful (p > 0.05). Evaluation with IHC displayed a significant rise in VEGF expression after 3 days in the PBMT group compared to the control (p > 0.05). In this study's conditions, the results showed a meaningful alteration in osteogenic, inflammatory, and angiogenic mediators in post-surgical calvarial defect following PBMT. It appears that PBM can accelerate angiogenesis in the bone healing procedure which can be helpful in bone tissue engineering.
Collapse
Affiliation(s)
- Sepehr Fekrazad
- Department of General Surgery, Subdivision of Surgical Oncology, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Sohrabi
- Department of Pediatrics, Dental School, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, AJA University of Medical Sciences - International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
12
|
Ahmadi F, Dalirsani Z, Tayarani-Najaran Z, Ebrahimzadeh-Bideskan A, Shafieian R. A Comparative Analysis of Photobiomodulation-Mediated Biological Effects of Single Versus Double Irradiation on Dental Pulp Stem Cells: An In Vitro Study. Photobiomodul Photomed Laser Surg 2022; 40:334-342. [PMID: 35559714 DOI: 10.1089/photob.2021.0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: In recent years, fractionated irradiation protocols, rather than a simple plan of exposure, have been proposed as a more effective method in the field of tissue regeneration. Thus, this study aimed at a comparative analysis of single versus double irradiation of an 808-nm diode laser, in terms of dental pulp stem cells' (DPSCs) viability and proliferation in vitro. Methods: Subcultured DPSCs were either irradiated, or not (control group), with energy densities of 3, 7, and 12 J·cm-2 in a single- or double-session manner (24 h apart). On 0, 12, 24, 48, and 72 h postirradiation, cell viability and proliferation were evaluated through Trypan Blue and alamarBlue assays, respectively. Results: During the first 48 h postirradiation, the highest rates of DPSC proliferation were assigned to double irradiation at 3 or single exposure to 7 J⋅cm-2, with no cytotoxic effects on cell viability. Inversely, single irradiation at 12, or a double session of exposure to 7 or 12 J⋅cm-2, led to a significant descent in the rates of proliferation and cell viability. Conclusions: Within the limitations of this study, evidence suggests a positive impact on the biological responses of DPSCs following double session of exposure to lower energy densities as well as a single irradiation at a higher energy dosage.
Collapse
Affiliation(s)
- Farahnaz Ahmadi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Dalirsani
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Stem Cells and Regenerative Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Huang Y, Zhai X, Ma T, Zhang M, Pan H, Weijia Lu W, Zhao X, Sun T, Li Y, Shen J, Yan C, Du Y. Rare earth-based materials for bone regeneration: Breakthroughs and advantages. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Amaroli A, Pasquale C, Zekiy A, Benedicenti S, Marchegiani A, Sabbieti MG, Agas D. Steering the multipotent mesenchymal cells towards an anti-inflammatory and osteogenic bias via photobiomodulation therapy: How to kill two birds with one stone. J Tissue Eng 2022; 13:20417314221110192. [PMID: 35832724 PMCID: PMC9272199 DOI: 10.1177/20417314221110192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022] Open
Abstract
The bone marrow-derived multipotent mesenchymal cells (MSCs) have captured scientific interest due to their multi-purpose features and clinical applications. The operational dimension of MSCs is not limited to the bone marrow reservoir, which exerts bone-building and niche anabolic tasks; they also meet the needs of quenching inflammation and restoring inflamed tissues. Thus, the range of MSC activities extends to conditions such as neurodegenerative diseases, immune disorders and various forms of osteopenia. Steering these cells towards becoming an effective therapeutic tool has become mandatory. Many laboratories have employed distinct strategies to improve the plasticity and secretome of MSCs. We aimed to present how photobiomodulation therapy (PBM-t) can manipulate MSCs to render them an extraordinary anti-inflammatory and osteogenic instrument. Moreover, we discuss the outcomes of different PBM-t protocols on MSCs, concluding with some perplexities and complexities of PBM-t in vivo but encouraging and feasible in vitro solutions.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy.,Department of Orthopedic Dentistry, Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Angelina Zekiy
- Department of Orthopedic Dentistry, Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | | | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| |
Collapse
|
15
|
Gazor R, Asgari M, Abdollajhifar MA, Kiani P, Zare F, Fadaei Fathabady F, Norouzian M, Amini A, Khosravipour A, Atashgah RB, Kazemi M, Chien S, Bayat M. Simultaneous Treatment of Photobiomodulation and Demineralized Bone Matrix With Adipose-Derived Stem Cells Improve Bone Healing in an osteoporotic bone defect. J Lasers Med Sci 2021; 12:e41. [PMID: 34733764 PMCID: PMC8558716 DOI: 10.34172/jlms.2021.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022]
Abstract
Introduction: The ability of simultaneous treatment of critical-sized femoral defects (CSFDs) with photobiomodulation (PBM) and demineralized bone matrix (DBM) with or without seeded adipose-derived stem cells (ASCs) to induce bone reconstruction in ovariectomized induced osteoporotic (OVX) rats was investigated. Methods: The OVX rats with CSFD were arbitrarily separated into 6 groups: control, scaffold (S, DBM), S + PBM, S + alendronate (ALN), S + ASCs, and S + PBM + ASCs. Each group was assessed by cone beam computed tomography (CBCT) and histological examinations. Results: In the fourth week, CBCT and histological analyses revealed that the largest volume of new bone formed in the S + PBM and S + PBM + ASC groups. The S + PBM treatment relative to the S and S + ALN treatments remarkably reduced the CSFD (Mann-Whitney test, P = 0.009 and P = 0.01). Furthermore, S + PBM + ASCs treatment compared to the S and S + ALN treatments significantly decreased CSFD (Mann Whitney test, P = 0.01). In the eighth week, CBCT analysis showed that extremely enhanced bone regeneration occurred in the CSFD of the S + PBM group. Moreover, the CSFD in the S + PBM group was substantially smaller than S, S + ALN and S + ASCs groups (Mann Whitney test, P = 0.01, P = 0.02 and P = 0.009). Histological observations showed more new bone formation in the treated CSFD of S + PBM + ASCs and S + PBM groups. Conclusion: The PBM plus DBM with or without ASCs significantly enhanced bone healing in the CSFD in OVX rats compared to control, DBM alone, and ALN plus DBM groups. The PBM plus DBM with or without ASCs significantly decreased the CSFD area compared to either the solo DBM or ALN plus DBM treatments.
Collapse
Affiliation(s)
- Rouhallah Gazor
- Department of Anatomy and Cell Biology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehrdad Asgari
- Department of Anatomy and Cell Biology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; And Department of Maxillofacial Radiology, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| | - Mohammad-Amin Abdollajhifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pejman Kiani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Khosravipour
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rahimeh B. Atashgah
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 13169- 43551, Iran
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, Kentucky; USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, Kentucky; USA
| |
Collapse
|
16
|
Khorsandi K, Hosseinzadeh R, Abrahamse H, Fekrazad R. Biological Responses of Stem Cells to Photobiomodulation Therapy. Curr Stem Cell Res Ther 2021; 15:400-413. [PMID: 32013851 DOI: 10.2174/1574888x15666200204123722] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/26/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stem cells have attracted the researchers interest, due to their applications in regenerative medicine. Their self-renewal capacity for multipotent differentiation, and immunomodulatory properties make them unique to significantly contribute to tissue repair and regeneration applications. Recently, stem cells have shown increased proliferation when irradiated with low-level laser therapy or Photobiomodulation Therapy (PBMT), which induces the activation of intracellular and extracellular chromophores and the initiation of cellular signaling. The purpose of this study was to evaluate this phenomenon in the literature. METHODS The literature investigated the articles written in English in four electronic databases of PubMed, Scopus, Google Scholar and Cochrane up to April 2019. Stem cell was searched by combining the search keyword of "low-level laser therapy" OR "low power laser therapy" OR "low-intensity laser therapy" OR "photobiomodulation therapy" OR "photo biostimulation therapy" OR "LED". In total, 46 articles were eligible for evaluation. RESULTS Studies demonstrated that red to near-infrared light is absorbed by the mitochondrial respiratory chain. Mitochondria are significant sources of reactive oxygen species (ROS). Mitochondria play an important role in metabolism, energy generation, and are also involved in mediating the effects induced by PBMT. PBMT may result in the increased production of (ROS), nitric oxide (NO), adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP). These changes, in turn, initiate cell proliferation and induce the signal cascade effect. CONCLUSION The findings of this review suggest that PBMT-based regenerative medicine could be a useful tool for future advances in tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran;
and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, NRF SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Radiation Sciences Research Center, Laser Research
Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
17
|
Zhu Q, Xiao S, Hua Z, Yang D, Hu M, Zhu YT, Zhong H. Near Infrared (NIR) Light Therapy of Eye Diseases: A Review. Int J Med Sci 2021; 18:109-119. [PMID: 33390779 PMCID: PMC7738953 DOI: 10.7150/ijms.52980] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022] Open
Abstract
Near infrared (NIR) light therapy, or photobiomodulation therapy (PBMT), has gained persistent worldwide attention in recent years as a new novel scientific approach for therapeutic applications in ophthalmology. This ongoing therapeutic adoption of NIR therapy is largely propelled by significant advances in the fields of photobiology and bioenergetics, such as the discovery of photoneuromodulation by cytochrome c oxidase and the elucidation of therapeutic biochemical processes. Upon transcranial delivery, NIR light has been shown to significantly increase cytochrome oxidase and superoxide dismutase activities which suggests its role in inducing metabolic and antioxidant beneficial effects. Furthermore, NIR light may also boost cerebral blood flow and cognitive functions in humans without adverse effects. In this review, we highlight the value of NIR therapy as a novel paradigm for treatment of visual and neurological conditions, and provide scientific evidence to support the use of NIR therapy with emphasis on molecular and cellular mechanisms in eye diseases.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| | - Shuyuan Xiao
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| | - Zhijuan Hua
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| | - Dongmei Yang
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming 650021, China
| | - Min Hu
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming 650021, China
| | | | - Hua Zhong
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| |
Collapse
|
18
|
In Vitro Cytological Responses against Laser Photobiomodulation for Periodontal Regeneration. Int J Mol Sci 2020; 21:ijms21239002. [PMID: 33256246 PMCID: PMC7730548 DOI: 10.3390/ijms21239002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease is a chronic inflammatory disease caused by periodontal bacteria. Recently, periodontal phototherapy, treatment using various types of lasers, has attracted attention. Photobiomodulation, the biological effect of low-power laser irradiation, has been widely studied. Although many types of lasers are applied in periodontal phototherapy, molecular biological effects of laser irradiation on cells in periodontal tissues are unclear. Here, we have summarized the molecular biological effects of diode, Nd:YAG, Er:YAG, Er,Cr:YSGG, and CO2 lasers irradiation on cells in periodontal tissues. Photobiomodulation by laser irradiation enhanced cell proliferation and calcification in osteoblasts with altering gene expression. Positive effects were observed in fibroblasts on the proliferation, migration, and secretion of chemokines/cytokines. Laser irradiation suppressed gene expression related to inflammation in osteoblasts, fibroblasts, human periodontal ligament cells (hPDLCs), and endothelial cells. Furthermore, recent studies have revealed that laser irradiation affects cell differentiation in hPDLCs and stem cells. Additionally, some studies have also investigated the effects of laser irradiation on endothelial cells, cementoblasts, epithelial cells, osteoclasts, and osteocytes. The appropriate irradiation power was different for each laser apparatus and targeted cells. Thus, through this review, we tried to shed light on basic research that would ultimately lead to clinical application of periodontal phototherapy in the future.
Collapse
|
19
|
Wan Z, Zhang P, Lv L, Zhou Y. NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review. Theranostics 2020; 10:11837-11861. [PMID: 33052249 PMCID: PMC7546009 DOI: 10.7150/thno.49784] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, the rapid development of biomaterials has induced great interest in the precisely targeted treatment of bone-related diseases, including bone cancers, infections, and inflammation. Realizing noninvasive therapeutic effects, as well as improving bone tissue regeneration, is essential for the success of bone‑related disease therapies. In recent years, researchers have focused on the development of stimuli-responsive strategies to treat bone-related diseases and to realize bone regeneration. Among the various external stimuli for targeted therapy, near infrared (NIR) light has attracted considerable interests due to its high tissue penetration capacity, minimal damage toward normal tissues, and easy remote control properties. The main objective of this systematic review was to reveal the current applications of NIR light-assisted phototherapy for bone-related disease treatment and bone tissue regeneration. Database collection was completed by June 1, 2020, and a total of 81 relevant studies were finally included. We outlined the various therapeutic applications of photothermal, photodynamic and photobiomodulation effects under NIR light irradiation for bone‑related disease treatment and bone regeneration, based on the retrieved literatures. In addition, the advantages and promising applications of NIR light-responsive drug delivery systems for spatiotemporal-controlled therapy were summarized. These findings have revealed that NIR light-assisted phototherapy plays an important role in bone-related disease treatment and bone tissue regeneration, with significant promise for further biomedical and clinical applications.
Collapse
|
20
|
Pereira FLC, Ferreira MVL, da Silva Mendes P, Rossi FM, Alves MP, Alves BLP. Use of a High-Power Laser for Wound Healing: A Case Report. J Lasers Med Sci 2020; 11:112-114. [PMID: 32099637 DOI: 10.15171/jlms.2020.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: The use of low-level laser therapy to treat wounds and accelerate tissue healing has extensively been studied in recent years. The aim of this article is to describe a clinical case using an unfocused high-power laser instead of a low-power laser for therapy. Case Report: In the present article, we present the use of a high-power diode laser to treat an extensive knee injury that occurred after surgical treatment for total prosthesis due to border ischemia resulting from prolonged use of autostatic retractors. Conclusion: It is possible to use an unfocused high-power laser at a decreased intensity to accelerate healing as an adjuvant in the treatment of complicated wounds. This procedure results in reduced application time and cost and an excellent tissue response pattern similar to that reported in the literature with low-power lasers.
Collapse
|
21
|
Shojaee A, Parham A. Strategies of tenogenic differentiation of equine stem cells for tendon repair: current status and challenges. Stem Cell Res Ther 2019; 10:181. [PMID: 31215490 PMCID: PMC6582602 DOI: 10.1186/s13287-019-1291-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tendon injuries, as one of the most common orthopedic disorders, are the major cause of early retirement or wastage among sport horses which mainly affect the superficial digital flexor tendon (SDFT). Tendon repair is a slow process, and tendon tissue is often replaced by scar tissue. The current treatment options are often followed by an incomplete recovery that increases the susceptibility to re-injury. Recently, cell therapy has been used in veterinary medicine to treat tendon injuries, although the risk of ectopic bone formation after cell injection is possible in some cases. In vitro tenogenic induction may overcome the mentioned risk in clinical application. Moreover, a better understanding of treatment strategies for musculoskeletal injuries in horse may have future applications for human and vice versa. This comprehensive review outlines the current strategies of stem cell therapy in equine tendon injury and in vitro tenogenic induction of equine stem cell.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. .,Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
22
|
Hosseinpour S, Fekrazad R, Arany PR, Ye Q. Molecular impacts of photobiomodulation on bone regeneration: A systematic review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:147-159. [PMID: 31002851 DOI: 10.1016/j.pbiomolbio.2019.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Photobiomodulation (PBM) encompasses a light application aimed to increase healing process, tissue regeneration, and reducing inflammation and pain. PBM is specifically aimed to modify the expression of cellular molecules; however, PBM impacts on cellular and molecular pathways especially in bone regenerative medicine have been investigated in scattered different studies. The purpose of the current study is to systematically review evidence on molecular impact of PBM on bone regeneration. A comprehensive electronic search in Medline, Scopus, EMBASE, EBSCO, Cochrane library, web of science, and google scholar was conducted from January 1975 to October 2018 limited to English language publications on administrations of photobiomodulation for bone regeneration which evaluated biological factors. In addition, hand search of selected journals was done to retrieve all articles. This systematic review was performed based on PRISMA guideline. Among these studies, five articles reported in vitro results, twelve articles were in vivo, and three of them were clinical trials. The data tabulated according to the type of markers (osteogenic markers, angiogenic markers, growth factors, and inflammation mediators). PBM's effects depend on many parameters which energy density is more important than the others. PBM can significantly enhance expression of osteocalcin, collagen, RUNX-2, vascular endothelial growth factor, bone morphogenic proteins, and COX-2. Although since the heterogeneity of the studies and their limitations, an evidence-based decision for definite therapeutic application of PBM is still unattainable, the findings of our review can help other researchers to ameliorate their study design and elect more efficient approach for their investigation.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia; Department of Periodontology, Dental Faculty - Laser Research Center in Medical Sciences, AJA University of Medical Sciences, 19839, Fatemi, Tehran, Iran.
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Laser Research Center in Medical Sciences, AJA University of Medical Sciences, 19839, Fatemi, Tehran, Iran; International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Praveen R Arany
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, NY, 14214, USA.
| | - Qingsong Ye
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.
| |
Collapse
|
23
|
Hochman L. Photobiomodulation Therapy in Veterinary Medicine: A Review. Top Companion Anim Med 2018; 33:83-88. [PMID: 30243364 DOI: 10.1053/j.tcam.2018.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
Abstract
Laser therapy, or photobiomodulation, has rapidly grown in popularity in human and veterinary medicine. With a number of proposed indications and broad, sometimes anecdotal, use in practice, research interest has expanded aimed at providing scientific support. Recent studies have shown that laser therapy alters the inflammatory and immune response as well as promotes healing for a variety of tissue types. This review will cover the history of the modality, basic principles, proposed mechanisms of action, evidence-based clinical indications, and will guide the practitioner through its application in practice.
Collapse
Affiliation(s)
- Lindsay Hochman
- University of Florida, College of Veterinary Medicine, Integrative Medicine Service, Gainesville, FL, USA.
| |
Collapse
|
24
|
Can photobiomodulation associated with implantation of mesenchymal adipose-derived stem cells attenuate the expression of MMPs and decrease degradation of type II collagen in an experimental model of osteoarthritis? Lasers Med Sci 2018. [PMID: 29520686 DOI: 10.1007/s10103-018-2466-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study aimed to determine whether photobiomodulation therapy (PBMT) could improve the bioavailability and chondroprotective benefits of mesenchymal stem cells injected into the knees of rats used as an experimental model of osteoarthritis (OA) as well as reduce the expression of matrix metalloproteinases (MMPs) and degradation of type II collagen (COL2-1) in the cartilage. Adipose-derived stem/stromal cells (ADSCs) were collected from three male Fischer 344 rats and characterized by flow cytometry. Fifty female Fischer 344 rats were distributed into five groups of 10 animals each. These groups were as follows: control, OA, OA PBMT, OA ADSC, and OA ADSC PBMT. OA was induced in the animals using a 4% papain solution. Animals from the OA ADSC and OA ADSC PBMT groups received an intra-articular injection of 10 × 106 ADSCs and were treated with PBMT by irradiation (wavelength: 808 nm, power: 50 mW, energy: 42 J, energy density: 71.2 J/cm2, spot size: 0.028). Euthanasia was performed 7 days after the first treatment. The use of PBMT alone and the injection of ADSCs resulted in downregulation of pro-inflammatory cytokines and MPs in cartilage compared to the OA group. PBMT and ADSCs caused upregulation of tissue inhibitors of MPs 1 and 2 and mRNA and protein expression of COL2-1 in cartilage compared to the OA group. The intra-articular injection of ADSCs and PBMT prevented joint degeneration resulting from COL2-1 degradation and modulated inflammation by downregulating cytokines and MMPs in the OA group.
Collapse
|