1
|
Lim L, Hosseinkhah N, Van Buskirk M, Berk A, Loheswaran G, Abbaspour Z, Karimpoor M, Smith A, Ho KF, Pushparaj A, Zahavi M, White A, Rubine J, Zidel B, Henderson C, Clayton RG, Tingley DR, Miller DJ, Karimpoor M, Hamblin MR. Photobiomodulation Treatment with a Home-Use Device for COVID-19: A Randomized Controlled Trial for Efficacy and Safety. Photobiomodul Photomed Laser Surg 2024; 42:393-403. [PMID: 38940733 DOI: 10.1089/pho.2023.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Background: Photobiomodulation therapy (PBMT) using devices to deliver red and/or near-infrared light to tissues has shown promising effects in clinical settings for respiratory diseases, including potential benefits in managing symptoms associated with COVID-19. Objective: To determine if at-home self-administered PBMT for patients with COVID-19 is safe and effective. Methods: This was a randomized controlled trial (RCT) carried out at home during the COVID-19 pandemic (September 2020 to August 2021). The treatment group self-administered the Vielight RX Plus PBMT device (635 nm intranasal and 810 nm chest LEDs) and were monitored remotely. Eligible patients scored 4-7 (out of 7) for severity on the Wisconsin Upper Respiratory Symptom Survey (WURSS-44). Patients were randomized equally to Control group receiving standard-of-care (SOC) only or Treatment group receiving SOC plus PBMT. The device was used for 20 min 2X/day for 5 days and, subsequently, once daily for 30 days. The primary end-point was time-to-recovery (days) based on WURSS-44 question 1, "How sick do you feel today?". Subgroup analysis was performed, and Kaplan-Meier and Cox Proportional Hazards analysis were employed. Results: One hundred and ninety-nine eligible patients (18-65 years old) were divided into two subgroups as follows: 136 patients with 0-7 days of symptoms at baseline and 63 patients with 8-12 days of symptoms. Those with 0-7 days of symptoms at baseline recovered significantly faster with PBMT. The median for Treatment group was 18 days [95% confidence interval (CI), 13-20] versus the Control group 21 days (95% CI, 15-28), p = 0.050. The treatment:control hazard ratio was 1.495 (95% CI, 0.996-2.243), p = 0.054. Patients with symptom duration ≥7 days did not show any significant improvement. No deaths or severe adverse events (SAEs) occurred in the Treatment group, whereas there was 1 death and 3 SAEs requiring hospitalization in the Control group. Conclusions: Patients with ≤7 days of COVID-19 symptoms recovered significantly faster with PBMT compared to SOC. Beyond 7 days, PBMT showed no superiority over SOC. Trial Registration: ClinicalTrials.gov NCT04418505.
Collapse
Affiliation(s)
- Lew Lim
- Vielight Inc., Toronto, ON, Canada
| | | | | | - Andrea Berk
- Impact Clinical Trials Marketing & Management Services, Thornhill, ON, Canada
| | | | | | - Mahta Karimpoor
- Vielight Inc., Toronto, ON, Canada
- Stanford University, Palo Alto, California, USA
| | - Alison Smith
- Vielight Inc., Toronto, ON, Canada
- Roga Life Inc., Toronto, ON, Canada
| | | | - Abhiram Pushparaj
- Ironstone Product Development, Toronto, ON, Canada
- +ROI Regulatory Advisory, Grimsby, ON, Canada
| | | | | | - Jonathan Rubine
- MKR Clinical Research Consultants, Inc., Boynton Beach, Florida, USA
| | - Brian Zidel
- Malton Medical Clinic, Mississauga, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
2
|
Fear EJ, Torkelsen FH, Zamboni E, Chen K, Scott M, Jeffery G, Baseler H, Kennerley AJ. Use of 31 P magnetisation transfer magnetic resonance spectroscopy to measure ATP changes after 670 nm transcranial photobiomodulation in older adults. Aging Cell 2023; 22:e14005. [PMID: 37803929 PMCID: PMC10652330 DOI: 10.1111/acel.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondrial function declines with age, and many pathological processes in neurodegenerative diseases stem from this dysfunction when mitochondria fail to produce the necessary energy required. Photobiomodulation (PBM), long-wavelength light therapy, has been shown to rescue mitochondrial function in animal models and improve human health, but clinical uptake is limited due to uncertainty around efficacy and the mechanisms responsible. Using 31 P magnetisation transfer magnetic resonance spectroscopy (MT-MRS) we quantify, for the first time, the effects of 670 nm PBM treatment on healthy ageing human brains. We find a significant increase in the rate of ATP synthase flux in the brain after PBM in a cohort of older adults. Our study provides initial evidence of PBM therapeutic efficacy for improving mitochondrial function and restoring ATP flux with age, but recognises that wider studies are now required to confirm any resultant cognitive benefits.
Collapse
Affiliation(s)
- Elizabeth J. Fear
- Hull York Medical SchoolUniversity of YorkYorkUK
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | | | - Elisa Zamboni
- Department of PsychologyUniversity of YorkYorkUK
- School of PsychologyUniversity of NottinghamNottinghamUK
| | | | - Martin Scott
- Department of PsychologyUniversity of YorkYorkUK
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Glenn Jeffery
- Faculty of Brain SciencesInstitute of Ophthalmology, UCLLondonUK
| | - Heidi Baseler
- Hull York Medical SchoolUniversity of YorkYorkUK
- Department of PsychologyUniversity of YorkYorkUK
| | - Aneurin J. Kennerley
- Department of ChemistryUniversity of YorkYorkUK
- Institute of SportManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
3
|
Meng QT, Song WQ, Churilov LP, Zhang FM, Wang YF. Psychophysical therapy and underlying neuroendocrine mechanisms for the rehabilitation of long COVID-19. Front Endocrinol (Lausanne) 2023; 14:1120475. [PMID: 37842301 PMCID: PMC10570751 DOI: 10.3389/fendo.2023.1120475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
With the global epidemic and prevention of the COVID-19, long COVID-19 sequelae and its comprehensive prevention have attracted widespread attention. Long COVID-19 sequelae refer to that three months after acute COVID-19, the test of SARS-CoV-2 is negative, but some symptoms still exist, such as cough, prolonged dyspnea and fatigue, shortness of breath, palpitations and insomnia. Its pathological mechanism is related to direct viral damage, immunopathological response, endocrine and metabolism disorders. Although there are more effective methods for treating COVID-19, the treatment options available for patients with long COVID-19 remain quite limited. Psychophysical therapies, such as exercise, oxygen therapy, photobiomodulation, and meditation, have been attempted as treatment modalities for long COVID-19, which have the potential to promote recovery through immune regulation, antioxidant effects, and neuroendocrine regulation. Neuroendocrine regulation plays a significant role in repairing damage after viral infection, regulating immune homeostasis, and improving metabolic activity in patients with long COVID-19. This review uses oxytocin as an example to examine the neuroendocrine mechanisms involved in the psychophysical therapies of long COVID-19 syndrome and proposes a psychophysical strategy for the treatment of long COVID-19.
Collapse
Affiliation(s)
- Qing-Tai Meng
- WU Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wu-Qi Song
- WU Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, China
| | - Leonid P. Churilov
- Department of Experimental Tuberculosis, St. Petersburg State Research Institute of Phthisiopulmonology, Saint-Petersburg, Russia
| | - Feng-Min Zhang
- WU Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, Harbin Medical University, Harbin, China
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Bowen R, Arany PR. Use of either transcranial or whole-body photobiomodulation treatments improves COVID-19 brain fog. JOURNAL OF BIOPHOTONICS 2023; 16:e202200391. [PMID: 37018063 DOI: 10.1002/jbio.202200391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
There is increasing recognition of post-COVID-19 sequelae involving chronic fatigue and brain fog, for which photobiomodulation (PBM) therapy has been utilized. This open-label, pilot, human clinical study examined the efficacy of two PBM devices, for example, a helmet (1070 nm) for transcranial (tPBM) and a light bed (660 and 850 nm) for whole body (wbPBM), over a 4-week period, with 12 treatments for two separate groups (n = 7 per group). Subjects were evaluated with a neuropsychological test battery, including the Montreal Cognitive Assessment (MoCA), the digit symbol substitution test (DSST), the trail-making tests A and B, the physical reaction time (PRT), and a quantitative electroencephalography system (WAVi), both pre- and post- the treatment series. Each device for PBM delivery was associated with significant improvements in cognitive tests (p < 0.05 and beyond). Changes in WAVi supported the findings. This study outlines the benefits of utilizing PBM therapy (transcranial or whole-body) to help treat long-COVID brain fog.
Collapse
Affiliation(s)
- Robert Bowen
- Shepherd University, Shepherdstown, West Virginia, USA
- West Virginia University, Martinsburg, West Virginia, USA
| | - Praveen R Arany
- Shepherd University, Shepherdstown, West Virginia, USA
- University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
5
|
Pereira PC, de Lima CJ, Fernandes AB, Zângaro RA, Villaverde AB. Cardiopulmonary and hematological effects of infrared LED photobiomodulation in the treatment of SARS-COV2. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112619. [PMID: 36495670 PMCID: PMC9721157 DOI: 10.1016/j.jphotobiol.2022.112619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND COVID-19 disease is caused by SARS-CoV-2 which can trigger acute respiratory syndrome, which presents with dense alveolar and interstitial infiltrates and pulmonary edema, causing severe hypoxemia and significant alteration to pulmonary mechanics with reduced pulmonary compliance. The photobiomodulation technique alters cellular and molecular metabolism, showing promising results regarding the reduction of acute pulmonary inflammation. OBJECTIVE To compare the photomodulation technique using near-infrared LED to conventional respiratory physiotherapy treatment in patients with COVID-19 in reversing acute conditions, reducing hospitalization time, and decreasing the need for oxygen therapy. METHODOLOGY The cohort was comprised of 30 patients undergoing COVID-19 treatment who were divided and allocated into two equal groups randomly: the LED group (LED), treated with infrared LED at 940 nm and conventional therapy, and the control group (CON), who received conventional treatment (antibiotic therapy for preventing superimposed bacterial infections, and physiotherapy) with LED irradiation off. Phototherapy used a vest with an array of 300 LEDs (940 nm) mounted on a 36 cm × 58 cm area and positioned in the patient's anterior thoracic and abdominal regions. The total power was 6 W, with 15 min irradiation time. Cardiopulmonary functions and blood count were monitored before and after treatment. The patients were treated daily for 7 days. Statistical analysis was conducted using a two-tailed unpaired Student's t-test at a significance level of α = 0.05. RESULTS Post-treatment, the LED group showed a reduction in hospital discharge time and a statistically significant improvement for the following cardiopulmonary functions: Partial Oxygen Saturation, Tidal Volume, Maximum Inspiratory, and Expiratory Pressures, Respiratory Frequency, Heart Rate, and Systolic Blood Pressure (p < 0.05). Regarding blood count, it was observed that post-treatment, the LED group presented with significant differences in the count of leukocytes, neutrophils, and lymphocytes. CONCLUSION Photobiomodulation therapy can be used as a complement to conventional treatment of COVID-19, promoting the improvement of cardiopulmonary functions, and minimization of respiratory symptoms.
Collapse
Affiliation(s)
- Pâmela Camila Pereira
- Anhembi Morumbi University (UAM), Institute of Biomedical Engineering, Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil,University Center of Itajubá – (FEPI), Rua Dr. Antônio Braga Filho 687, Bairro Varginha, CEP: 37501-002 Itajubá, MG, Brazil
| | - Carlos José de Lima
- Anhembi Morumbi University (UAM), Institute of Biomedical Engineering, Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil,Center of Innovation, Technology and Education – (CITE), Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil
| | - Adriana Barrinha Fernandes
- Anhembi Morumbi University (UAM), Institute of Biomedical Engineering, Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil,Center of Innovation, Technology and Education – (CITE), Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil
| | - Renato Amaro Zângaro
- Anhembi Morumbi University (UAM), Institute of Biomedical Engineering, Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil,Center of Innovation, Technology and Education – (CITE), Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil
| | - Antonio Balbin Villaverde
- Anhembi Morumbi University (UAM), Institute of Biomedical Engineering, Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil,Center of Innovation, Technology and Education – (CITE), Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil,Corresponding author at: Center of Innovation, Technology and Education – CITE, Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil
| |
Collapse
|
6
|
Miachon MD, Pinto NC, Zamuner SR, Chavantes MC. Analysis of the Potential of Blood Transvascular Sublingual with Light-Emitting Diode Irradiation in COVID-19 Patients: A Pilot Clinical Study. Photobiomodul Photomed Laser Surg 2022; 40:622-631. [DOI: 10.1089/photob.2021.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Mateus Domingues Miachon
- Post-Graduate Department in Medical School, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Nathali Cordeiro Pinto
- Heart Institute, Clinical Hospital, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Sao Paulo, Brazil
| | - Stella Regina Zamuner
- Graduate and Post-Graduate Department in Medical School, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Maria Cristina Chavantes
- Graduate and Post-Graduate Department in Medical School, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Gubarev YA, Lebedeva NS, Yurina ES, Mamardashvili GM, Zaitceva SV, Zdanovich SA, Koifman OI. Prospects for the use of macrocyclic photosensitizers for inactivation of SARS-CoV-2: selection of compounds leaders based on the molecular docking data. J Biomol Struct Dyn 2022:1-10. [DOI: 10.1080/07391102.2022.2079562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yury A. Gubarev
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russia
| | - Natalia Sh. Lebedeva
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russia
| | - Elena S. Yurina
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russia
| | | | - Svetlana V. Zaitceva
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russia
| | - Sergey A. Zdanovich
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russia
| | - Oskar I. Koifman
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russia
- Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
| |
Collapse
|
8
|
Narrative Review of Russian, Ukrainian and English-Language Publications Investigating the Effects of Photobiomodulation on Red Blood Cell Physiology. Photobiomodul Photomed Laser Surg 2022; 40:98-111. [DOI: 10.1089/photob.2021.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
9
|
Rapozzi V, Juarranz A, Habib A, Ihan A, Strgar R. Is haem the real target of COVID-19? Photodiagnosis Photodyn Ther 2021; 35:102381. [PMID: 34119708 PMCID: PMC8192263 DOI: 10.1016/j.pdpdt.2021.102381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023]
Abstract
Although a vaccination campaign has been launched in many countries, the COVID-19 pandemic is not under control. The main concern is the emergence of new variants of SARS-CoV-2; therefore, it is important to find approaches to prevent or reduce the virulence and pathogenicity of the virus. Currently, the mechanism of action of SARS-CoV-2 is not fully understood. Considering the clinical effects that occur during the disease, attacking the human respiratory and hematopoietic systems, and the changes in biochemical parameters (including decreases in haemoglobin [Hb] levels and increases in serum ferritin), it is clear that iron metabolism is involved. SARS-CoV-2 induces haemolysis and interacts with Hb molecules via ACE2, CD147, CD26, and other receptors located on erythrocytes and/or blood cell precursors that produce dysfunctional Hb. A molecular docking study has reported a potential link between the virus and the beta chain of haemoglobin and attack on haem. Considering that haem is involved in miRNA processing by binding to the DGCR8-DROSHA complex, we hypothesised that the virus may check this mechanism and thwart the antiviral response.
Collapse
Affiliation(s)
| | - Angeles Juarranz
- Department of Biology, University Autonoma of Madrid, Madrid 28049, Spain
| | - Ahsan Habib
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Alojz Ihan
- Institute for Microbiology and Immunology, Medical Faculty of Ljubljana, Slovenia
| | - Rebeka Strgar
- Institution of Applicative Biophotonics, Technological Park Ljubljana, Slovenia
| |
Collapse
|
10
|
Choi W, Baik KY, Jeong S, Park S, Kim JE, Kim HB, Chung JH. Photobiomodulation as an antioxidant substitute in post-thawing trauma of human stem cells from the apical papilla. Sci Rep 2021; 11:17329. [PMID: 34462607 PMCID: PMC8405638 DOI: 10.1038/s41598-021-96841-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
Cryopreservation, the most common method of preserving stem cells, requires post-processing because it produces trauma to the cells. Post-thawing trauma typically induces cell death, elevates reactive oxygen species (ROS) concentration, and lowers mitochondrial membrane potential (MMP). Although this trauma has been solved using antioxidants, we attempted to use photobiomodulation (PBM) instead of chemical treatment. We used a 950-nm near-infrared LED to create a PBM device and chose a pulsed-wave mode of 30 Hz and a 30% duty cycle. Near-infrared radiation (NIR) at 950 nm was effective in reducing cell death caused by hydrogen peroxide induced-oxidative stress. Cryodamage also leads to apoptosis of cells, which can be avoided by irradiation at 950 nm NIR. Irradiation as post-processing for cryopreservation had an antioxidant effect that reduced both cellular and mitochondrial ROS. It also increased mitochondrial mass and activated mitochondrial activity, resulting in increased MMP, ATP generation, and increased cytochrome c oxidase activity. In addition, NIR increased alkaline phosphatase (ALP) activity, a biomarker of differentiation. As a result, we identified that 950 nm NIR PBM solves cryodamage in human stem cells from the apical papilla, indicating its potential as an alternative to antioxidants for treatment of post-thawing trauma, and further estimated its mechanism.
Collapse
Affiliation(s)
- Woori Choi
- Department of Biosystems Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ku Youn Baik
- Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Seung Jeong
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangbae Park
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Eun Kim
- Department of Biosystems Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jong Hoon Chung
- Department of Biosystems Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Comments on New Integrative Photomedicine Equipment for Photobiomodulation and COVID-19. PHOTONICS 2021. [DOI: 10.3390/photonics8080303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Up to now it has not yet been scientifically proven whether the technical methods of photonics in the field of photobiomodulation (PBM), photodynamic therapy (PDT), and laser acupuncture in connection with COVID-19 have achieved effective medical success. As part of this short technical note, an overview of the current scientific status is given and new equipment from our own research area is briefly presented. Although there are still many unanswered questions, it seems to be emerging that PBM and PDT in connection with the corresponding photosensitizers may make it appear worthwhile to perform experimental and clinical studies, primarily as so-called home therapy studies. In any case, the technical requirements for this are already in progress.
Collapse
|
12
|
De Marchi T, Frâncio F, Ferlito JV, Weigert R, de Oliveira C, Merlo AP, Pandini DL, Pasqual-Júnior BA, Giovanella D, Tomazoni SS, Leal-Junior EC. Effects of Photobiomodulation Therapy Combined with Static Magnetic Field in Severe COVID-19 Patients Requiring Intubation: A Pragmatic Randomized Placebo-Controlled Trial. J Inflamm Res 2021; 14:3569-3585. [PMID: 34335043 PMCID: PMC8318710 DOI: 10.2147/jir.s318758] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/10/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose We aimed to investigate the effects of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) on the length of intensive care unit (ICU) stay and mortality rate of severe COVID-19 patients requiring invasive mechanical ventilation and assess its role in preserving respiratory muscles and modulating inflammatory processes. Patients and Methods We conducted a prospectively registered, triple-blinded, randomized, placebo-controlled trial of PBMT-sMF in severe COVID-19 ICU patients requiring invasive mechanical ventilation. Patients were randomly assigned to receive either PBMT-sMF or a placebo daily throughout their ICU stay. The primary outcome was length of ICU stay, defined by either discharge or death. The secondary outcomes were survival rate, diaphragm muscle function, and the changes in blood parameters, ventilatory parameters, and arterial blood gases. Results Thirty patients were included and equally randomized into the two groups. There were no significant differences in the length of ICU stay (mean difference, MD = −6.80; 95% CI = −18.71 to 5.11) between the groups. Among the secondary outcomes, significant differences were observed in diaphragm thickness, fraction of inspired oxygen, partial pressure of oxygen/fraction of inspired oxygen ratio, C-reactive protein levels, lymphocyte count, and hemoglobin (p < 0.05). Conclusion Among severe COVID-19 patients requiring invasive mechanical ventilation, the length of ICU stay was not significantly different between the PBMT-sMF and placebo groups. In contrast, PBMT-sMF was significantly associated with reduced diaphragm atrophy, improved ventilatory parameters and lymphocyte count, and decreased C-reactive protein levels and hemoglobin count. Trial Registration Number (Clinical Trials.gov) NCT04386694.
Collapse
Affiliation(s)
- Thiago De Marchi
- University Center of Bento Gonçalves (UNICNEC), Bento Gonçalves, Rio Grande do Sul, Brazil.,Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Fabiano Frâncio
- University Center of Bento Gonçalves (UNICNEC), Bento Gonçalves, Rio Grande do Sul, Brazil.,Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | - Renata Weigert
- Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | - Ana Paula Merlo
- Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | | | | | - Shaiane Silva Tomazoni
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,ELJ Consultancy, Scientific Consultants, São Paulo, Brazil
| | - Ernesto Cesar Leal-Junior
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil.,Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,ELJ Consultancy, Scientific Consultants, São Paulo, Brazil
| |
Collapse
|
13
|
De Marchi T, Frâncio F, Ferlito JV, Weigert R, de Oliveira C, Merlo AP, Pandini DL, Pasqual-Júnior BA, Giovanella D, Tomazoni SS, Leal-Junior EC. Effects of Photobiomodulation Therapy Combined with Static Magnetic Field in Severe COVID-19 Patients Requiring Intubation: A Pragmatic Randomized Placebo-Controlled Trial. J Inflamm Res 2021; 14:3569-3585. [PMID: 34335043 DOI: 10.1101/2020.12.02.20237974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/10/2021] [Indexed: 05/28/2023] Open
Abstract
PURPOSE We aimed to investigate the effects of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) on the length of intensive care unit (ICU) stay and mortality rate of severe COVID-19 patients requiring invasive mechanical ventilation and assess its role in preserving respiratory muscles and modulating inflammatory processes. PATIENTS AND METHODS We conducted a prospectively registered, triple-blinded, randomized, placebo-controlled trial of PBMT-sMF in severe COVID-19 ICU patients requiring invasive mechanical ventilation. Patients were randomly assigned to receive either PBMT-sMF or a placebo daily throughout their ICU stay. The primary outcome was length of ICU stay, defined by either discharge or death. The secondary outcomes were survival rate, diaphragm muscle function, and the changes in blood parameters, ventilatory parameters, and arterial blood gases. RESULTS Thirty patients were included and equally randomized into the two groups. There were no significant differences in the length of ICU stay (mean difference, MD = -6.80; 95% CI = -18.71 to 5.11) between the groups. Among the secondary outcomes, significant differences were observed in diaphragm thickness, fraction of inspired oxygen, partial pressure of oxygen/fraction of inspired oxygen ratio, C-reactive protein levels, lymphocyte count, and hemoglobin (p < 0.05). CONCLUSION Among severe COVID-19 patients requiring invasive mechanical ventilation, the length of ICU stay was not significantly different between the PBMT-sMF and placebo groups. In contrast, PBMT-sMF was significantly associated with reduced diaphragm atrophy, improved ventilatory parameters and lymphocyte count, and decreased C-reactive protein levels and hemoglobin count. TRIAL REGISTRATION NUMBER CLINICAL TRIALSGOV NCT04386694.
Collapse
Affiliation(s)
- Thiago De Marchi
- University Center of Bento Gonçalves (UNICNEC), Bento Gonçalves, Rio Grande do Sul, Brazil
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Fabiano Frâncio
- University Center of Bento Gonçalves (UNICNEC), Bento Gonçalves, Rio Grande do Sul, Brazil
- Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | - Renata Weigert
- Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | - Ana Paula Merlo
- Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | | | | | - Shaiane Silva Tomazoni
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- ELJ Consultancy, Scientific Consultants, São Paulo, Brazil
| | - Ernesto Cesar Leal-Junior
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- ELJ Consultancy, Scientific Consultants, São Paulo, Brazil
| |
Collapse
|
14
|
Sharun K, Tiwari R, Dhama K. COVID-19 and sunlight: Impact on SARS-CoV-2 transmissibility, morbidity, and mortality. Ann Med Surg (Lond) 2021; 66:102419. [PMID: 34094531 PMCID: PMC8164734 DOI: 10.1016/j.amsu.2021.102419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has already affected millions of people worldwide. There are reports of SARS-CoV-2 transmission as a consequence of environmental contamination. The SARS-CoV-2 laden infective droplets can actively persist on the surface of different materials for several hours to days. Sunlight can affect the stability of SARS-CoV-2 in these aerosols and thereby have an impact on the decay rate of the virus. Solar radiation might play an important role in inactivating SARS-CoV-2 that persists in different surfaces and the environment. Among the different climatological factors, ultraviolet radiation was found to have an important role in determining the spread of SARS-CoV-2. Although ultraviolet radiation C (UVC), UVB, UVA, visible light, and infrared radiation possess germicidal properties, human CoVs including the recently emerged SARS-CoV-2 are inherently sensitive to UVC. However, the successful decontamination using other wavebands requires higher dosages and longer administration times. Furthermore, studies have also identified association between COVID-19 fatalities and the latitude. The intensity of sunlight is highest near the equator, and therefore populations in these regions with more regular exposure to sunlight are less susceptible to vitamin D deficiency. This article has analyzed the potential impact of sunlight in reducing SARS-CoV-2 transmissibility, morbidity, and mortality. It is evident that there exists an interesting link between sunlight exposure, latitude, and vitamin D status with COVID-19 incidence, fatality and recovery rates that requires further investigation.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| |
Collapse
|
15
|
The Effect of Er:YAG Lasers on the Reduction of Aerosol Formation for Dental Workers. MATERIALS 2021; 14:ma14112857. [PMID: 34073474 PMCID: PMC8198823 DOI: 10.3390/ma14112857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022]
Abstract
Infection prevention in dental practice plays a major role, especially during the COVID-19 pandemic. This study aimed to measure the quantity of aerosol released during various dental procedures (caries and prosthetic treatment, debonding of orthodontic brackets, root canal irrigation) while employing the Er:YAG lasers combined with a high-volume evacuator, HVE or salivary ejector, SE. The mandibular second premolar was extracted due to standard orthodontic therapy and placed in a dental manikin, to simulate typical treatment conditions. The particle counter was used to measure the aerosol particles (0.3–10.0 μm) at three different sites: dental manikin and operator’s and assistant’s mouth area. The study results showed that caries’ treatment and dental crown removal with a high-speed handpiece and the use of the SE generated the highest aerosol quantity at each measured site. All three tested Er:YAG lasers significantly reduced the number of aerosol particles during caries’ treatment and ceramic crown debonding compared the conventional handpieces, p < 0.05. Furthermore, the Er:YAG lasers generated less aerosol during orthodontic bracket debonding and root canal irrigation in contrast to the initial aerosol quantity measured in the dental office. The use of the Er:YAG lasers during dental treatments significantly generates less aerosol in the dental office setting, which reduces the risk of transmission of viruses or bacteria.
Collapse
|
16
|
Dourmishev L, Guleva D. Ultraviolet diagnostic and treatment modalities in the coronavirus disease 2019 pandemic. Clin Dermatol 2021; 39:446-450. [PMID: 34518002 PMCID: PMC7849497 DOI: 10.1016/j.clindermatol.2021.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultraviolet (UV) therapy is an effective and well-tolerated therapeutic method for various dermatologic conditions due to its antiproliferative and immunosuppressive effects. Contemporary phototherapy includes broadband UVB, narrowband UVB, UVA1, PUVA, and excimer laser therapy. The coronavirus disease 2019 pandemic has resulted in the closure of many patient care facilities, including phototherapy units worldwide. Home phototherapy, thalassotherapy, and other UV therapy modalities are an alternative for many patients with chronic dermatoses. We highlighted possible interactions of UV therapy effects and the coronavirus disease 2019 pandemic, and focused on organization and measures against transmission of infections in phototherapy units. Dermatology departments have reopened their units, assessing the risks and benefits for patients, optimizing safety regulations, and adhering to the rules for disinfection.
Collapse
Affiliation(s)
- Lyubomir Dourmishev
- Department of Dermatology and Venereology, Medical University - Sofia, Sofia, Bulgaria.
| | - Dimitrina Guleva
- Department of Dermatology and Venereology, Medical University - Sofia, Sofia, Bulgaria
| |
Collapse
|
17
|
Unal Y, Demirkilic U, Balik I, Aydin K, Zor MH, Bozkurt AK. Pilot Study of Application of Combined Transbronchial and Intravenous Ultraviolet C (UVC) and Laser Beam Application for the Treatment of Critical COVID-19 Infection. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2021. [DOI: 10.29333/jcei/10811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
18
|
Abstract
Die Zahl hochrangiger Publikationen zur Photobiomodulation steigt weltweit überproportional an und es ist daher auch leicht nachvollziehbar, dass die Therapieoption auch bei der Behandlung von COVID-19 als komplementäres Verfahren zur Pandemiebekämpfung methodisch erweitert und getestet werden soll. Um den gegenwärtigen Stand des Wissens zur Thematik zu erheben, wurde eine aktuelle Recherche zu klinischen laufenden Forschungsprojekten und den ersten vorliegenden Ergebnissen initiiert. Seitens der gewählten Methode wurde dabei die Variante einer möglichen selbst durchführbaren „Heim-Behandlung“ in den Fokus der Recherche gestellt. Drei aktuelle Studiendesigns sollen in diesem Übersichtsreport näher beschrieben und diskutiert werden. Die drei beschriebenen Studienvorhaben entsprechen zwar nicht alle den seitens einer „good scientific practice“ notwendigen Anforderungen, sollen aber dennoch aufgrund der Aktualität hier kurz vorgestellt werden. Wenngleich die Designs durchaus wissenschaftlich beurteilbare Ergebnisse erwarten lassen, kann derzeit (noch) kein wissenschaftlicher Schluss gezogen werden, dass sich die drei Verfahren zur Behandlung von COVID-19 als geeignet erweisen. Gründe dafür sind, dass bei zwei der drei Studien noch keine Ergebnisse vorliegen und eine Pilotstudie grobe formale wissenschaftliche Mängel aufweist, die es gilt, in Folgeuntersuchungen zu vermeiden.
Collapse
Affiliation(s)
- Gerhard Litscher
- Medizinische Universität Graz, Auenbruggerplatz 39, EG19, 8036 Graz, Österreich
| |
Collapse
|
19
|
Liebert A, Bicknell B, Markman W, Kiat H. A Potential Role for Photobiomodulation Therapy in Disease Treatment and Prevention in the Era of COVID-19. Aging Dis 2020; 11:1352-1362. [PMID: 33269093 PMCID: PMC7673843 DOI: 10.14336/ad.2020.0901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is an evolving pandemic that has far reaching global effects, with a combination of factors that makes the virus difficult to contain. The symptoms of infection can be devastating or at the least very debilitating for vulnerable individuals. It is clear that the elderly are at most risk of the adverse impacts of the virus, including hospitalization and death. Others at risk are those with comorbidities such as cardiovascular disease and metabolic conditions and those with a hyper-excitable immune response. Treatment options for those with acute responses to the virus are limited and there is an urgent need for potential strategies that can mitigate these severe effects. One potential avenue for treatment that has not been explored is the microbiome gut/lung axis. In addition to those severely affected by their acute reaction to the virus, there is also a need for treatment options for those that are slow to recover from the effects of the infection and also those who have been adversely affected by the measures put in place to arrest the spread of the virus. One potential treatment option is photobiomodulation (PBM) therapy. PBM has been shown over many years to be a safe, effective, non-invasive and easily deployed adjunctive treatment option for inflammatory conditions, pain, tissue healing and cellular energy. We have also recently demonstrated the effectiveness of PBM to alter the gut microbiome. PBM therapy is worthy of consideration as a potential treatment for those most vulnerable to COVID-19, such as the elderly and those with comorbidities. The treatment may potentially be advantageous for those infected with the virus, those who have a slow recovery from the effects of the virus and those who have been denied their normal exercise/rehabilitation programs due to the isolation restrictions that have been imposed to control the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
- Research and Governance, Adventist Hospital Group, Wahroonga, Australia.
- SYMBYX Pty Ltd, Artarmon, Australia.
| | - Brian Bicknell
- SYMBYX Pty Ltd, Artarmon, Australia.
- Faculty of Health Science, Australian Catholic University, North Sydney, Australia.
| | - Wayne Markman
- SYMBYX Pty Ltd, Artarmon, Australia.
- School of Business, University of Technology, Sydney, Australia.
| | - Hosen Kiat
- Cardiac Health Institute, Sydney, Australia.
- Faculty of Medicine, University of NSW, Kensington, Australia.
- Faculty of Medicine, health and Human Sciences, Macquarie University, Macquarie Park, Australia
| |
Collapse
|
20
|
Fornaini C, Merigo E, Huffer KW, Arany P. At-Home Photobiomodulation Treatments for Supportive Cancer Care During the COVID-19 Pandemic. Photobiomodul Photomed Laser Surg 2020; 39:81-82. [PMID: 32905736 DOI: 10.1089/photob.2020.4923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Carlo Fornaini
- UFR Odontologie, UPR Micoralis, University Côte d'Azur, Nice Cedex, France
| | - Elisabetta Merigo
- UFR Odontologie, UPR Micoralis, University Côte d'Azur, Nice Cedex, France
| | | | - Praveen Arany
- Department of Oral Biology & Biomedical Engineering, University of Buffalo, Buffalo, New York, USA
| |
Collapse
|