1
|
Kitamura H, Kameko M, Kunimoto F, Kotani K. A Low Level of High-Density Lipoprotein Cholesterol Predicts All-Cause Mortality Within 30 Days in Hospitalized Elderly Patients. Cureus 2025; 17:e82805. [PMID: 40406779 PMCID: PMC12097842 DOI: 10.7759/cureus.82805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND Whether low levels of high-density lipoprotein cholesterol (HDL-C) in the blood determine mortality has not been fully elucidated among elderly patients. It is thus a particular concern to see the predictive implication of HDL-C for post-hospitalized mortality in an elderly population. METHODS This study was planned to investigate the HDL-C level at admission to a hospital in 493 patients of ≥70 years of age. The outcome was death from any cause within the first 30 days after admission. Cox proportional hazards models were used for the analyses. In addition, the time-dependent (follow-up period) receiver operating characteristic (ROC) curve analysis of HDL-C was performed for all-cause mortality. RESULTS The median age of patients was 89 years, and the proportion of male patients was 41%. The median HDL-C level at admission was 41 mg/dL. Deaths occurred in 89 patients (18%) during a median follow-up period of 27 days. In a multivariate model, the HDL-C showed a hazard ratio of 0.977 (95% confidence interval (CI) 0.955-0.998). The results of the ROC curve analysis on all-cause mortality demonstrated that the area under the curve value was 0.67 (95% CI 0.60-0.74) and the cut-off value of HDL-C was 31 mg/dL. CONCLUSIONS A low HDL-C level at admission was a predictor of all-cause mortality within 30 days in hospitalized elderly patients. The cut-off value of HDL-C was deemed to be low in considering the reference value in daily practice. When elderly patients are admitted, the HDL-C level could be the focus of attention for the prediction of the prognosis and disease management.
Collapse
Affiliation(s)
- Hirofumi Kitamura
- Department of Laboratory Medicine, Tochigi Prefectural Medical and Social Welfare College, Utsunomiya, JPN
| | - Mitsuaki Kameko
- Department of Medical Technology, Faculty of Medical Science and Technolgy, Gunma Paz University Graduate School of Health Sciences, Takasaki, JPN
| | - Fumio Kunimoto
- Department of Internal Medicine, Gunma Paz Hospital, Numata, JPN
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Jichi Medical University, Shimotsuke, JPN
| |
Collapse
|
2
|
Zhang L, Wang H, Wang Z, Xu J, Wang M, Wang W, He Q, Yu Y, Yuan D, Bu G, Qiu R, Long J. Resveratrol promotes cholesterol efflux from dendritic cells and controls costimulation and T-cell activation in high-fat and lipopolysaccharide-driven atherosclerotic mice. Front Cardiovasc Med 2024; 11:1450898. [PMID: 39759494 PMCID: PMC11695297 DOI: 10.3389/fcvm.2024.1450898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
Cholesterol aggregation in dendritic cells (DCs) triggers an inflammatory response and accelerates the development of atherosclerosis (AS). Resveratrol (RES), a natural compound with anti-inflammatory and cholesterol metabolism regulatory properties, has been shown to influence the maturation and inflammatory functions of DCs. However, its relationship with cholesterol metabolism remains unclear. This study aimed to explore the roles of RES in cholesterol metabolism and inflammatory behaviors of DCs in the context of AS. We analyzed the effect of RES on cholesterol efflux from ApoE-/- bone marrow-derived dendritic cells (BMDCs) using qRT-PCR, Western blot, and cholesterol efflux assays; identified the inflammatory status of RES-treated BMDCs and co-cultured T cells using flow cytometry and ELISA; confirmed the effect of RES on blood lipids, atherosclerotic lesions, cholesterol metabolism, and inflammatory response in high-fat diet and lipopolysaccharide-treated ApoE-/- mice; and explored the potential targets of RES in regulating inflammatory behavior via molecular docking. The results revealed that RES promotes cholesterol efflux, increases the expression of efflux transporter ABCA1, and decreases liver X receptor alpha (LXRα) expression in response to a decrease in intracellular cholesterol in ApoE-/- BMDCs. RES also reduced MHC-II+ cells and downregulated costimulatory molecule CD80 in BMDCs with decreased IL-6 and increased IL-2 production, and suppressed T-cell activation and modulates IL-22 and IL-10 secretion via BMDCs. Furthermore, we confirmed that RES relieves arterial lesions and regulates blood lipids in ApoE-/- mice. RES demonstrated ABCA1 upregulation and LXRα downregulation effects in the aorta and regulated costimulation molecules and Th17/Treg cytokines in the spleen. Furthermore, RES showed multiple hydrogen bonding and low binding energy with ABCA1, suggesting that ABCA1 is a potential target of RES to modulate the inflammatory properties of BMDCs. Our study demonstrated that RES regulates cholesterol efflux and inflammatory behavior in BMDCs, contributing to the control of AS progression and offering new insights for managing inflammatory diseases.
Collapse
Affiliation(s)
- Linhui Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haixia Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zishan Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jianyi Xu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengyuan Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wenxin Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiongshan He
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yun Yu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guirong Bu
- Department of Pharmacy, Wuxi Huishan Traditional Chinese Medicine Hospital, Wuxi, Jiangsu, China
| | - Runze Qiu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Song R, Hu M, Qin X, Qiu L, Wang P, Zhang X, Liu R, Wang X. The Roles of Lipid Metabolism in the Pathogenesis of Chronic Diseases in the Elderly. Nutrients 2023; 15:3433. [PMID: 37571370 PMCID: PMC10420821 DOI: 10.3390/nu15153433] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lipid metabolism plays crucial roles in cellular processes such as hormone synthesis, energy production, and fat storage. Older adults are at risk of the dysregulation of lipid metabolism, which is associated with progressive declines in the physiological function of various organs. With advancing age, digestion and absorption commonly change, thereby resulting in decreased nutrient uptake. However, in the elderly population, the accumulation of excess fat becomes more pronounced due to a decline in the body's capacity to utilize lipids effectively. This is characterized by enhanced adipocyte synthesis and reduced breakdown, along with diminished peripheral tissue utilization capacity. Excessive lipid accumulation in the body, which manifests as hyperlipidemia and accumulated visceral fat, is linked to several chronic lipid-related diseases, including cardiovascular disease, type 2 diabetes, obesity, and nonalcoholic fatty liver disease. This review provides a summary of the altered lipid metabolism during aging, including lipid digestion, absorption, anabolism, and catabolism, as well as their associations with age-related chronic diseases, which aids in developing nutritional interventions for older adults to prevent or alleviate age-related chronic diseases.
Collapse
Affiliation(s)
- Rui Song
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Mengxiao Hu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Xiyu Qin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Lili Qiu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| | - Xiaoxu Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| | - Rong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| | - Xiaoyu Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| |
Collapse
|
4
|
Bogomolov A, Filonov S, Chadaeva I, Rasskazov D, Khandaev B, Zolotareva K, Kazachek A, Oshchepkov D, Ivanisenko VA, Demenkov P, Podkolodnyy N, Kondratyuk E, Ponomarenko P, Podkolodnaya O, Mustafin Z, Savinkova L, Kolchanov N, Tverdokhleb N, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of TATA-Binding Protein for the Promoters of Human Hub Genes for Atherogenesis, Atherosclerosis and Atheroprotection. Int J Mol Sci 2023; 24:ijms24109010. [PMID: 37240358 DOI: 10.3390/ijms24109010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis is a systemic disease in which focal lesions in arteries promote the build-up of lipoproteins and cholesterol they are transporting. The development of atheroma (atherogenesis) narrows blood vessels, reduces the blood supply and leads to cardiovascular diseases. According to the World Health Organization (WHO), cardiovascular diseases are the leading cause of death, which has been especially boosted since the COVID-19 pandemic. There is a variety of contributors to atherosclerosis, including lifestyle factors and genetic predisposition. Antioxidant diets and recreational exercises act as atheroprotectors and can retard atherogenesis. The search for molecular markers of atherogenesis and atheroprotection for predictive, preventive and personalized medicine appears to be the most promising direction for the study of atherosclerosis. In this work, we have analyzed 1068 human genes associated with atherogenesis, atherosclerosis and atheroprotection. The hub genes regulating these processes have been found to be the most ancient. In silico analysis of all 5112 SNPs in their promoters has revealed 330 candidate SNP markers, which statistically significantly change the affinity of the TATA-binding protein (TBP) for these promoters. These molecular markers have made us confident that natural selection acts against underexpression of the hub genes for atherogenesis, atherosclerosis and atheroprotection. At the same time, upregulation of the one for atheroprotection promotes human health.
Collapse
Affiliation(s)
- Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Sergey Filonov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Bato Khandaev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna Kazachek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Pavel Demenkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Zakhar Mustafin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Natalya Tverdokhleb
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Olchawa MM, Herrnreiter AM, Skumatz CMB, Krzysztynska-Kuleta OI, Mokrzynski KT, Burke JM, Sarna TJ. The Inhibitory Effect of Blue Light on Phagocytic Activity by ARPE-19 Cells. Photochem Photobiol 2022; 98:1110-1121. [PMID: 35067943 DOI: 10.1111/php.13596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
Chronic exposure of the retina to short wavelength visible light is a risk factor in pathogenesis of age-related macular degeneration. The proper functioning and survival of photoreceptors depends on efficient phagocytosis of photoreceptor outer segments (POS) by retinal pigment epithelium. The purpose of this study was to analyze the phagocytic activity of blue light-treated ARPE-19 cells, and to examine whether the observed effects could be related to altered levels of POS phagocytosis receptor proteins and/or to oxidation of cellular proteins and lipids. POS phagocytosis was measured by flow cytometry. Phagocytosis receptor proteins αv and β5 integrin subunits and Mer tyrosine kinase (MerTK) were quantified by western blotting. The intact functional heterodimer αvβ5 was quantified by immunoprecipitation followed by immunoblotting. Cellular protein and lipid hydroperoxides were analyzed by coumarin boronic acid probe and iodometric assay, respectively. Cell irradiation induced reversible inhibition of specific phagocytosis and transient reductions in phagocytosis receptor proteins. Full recovery of functional heterodimer was apparent. Significant photooxidation of cellular proteins and lipids was observed. The results indicate that transient inhibition of specific phagocytosis by blue light could be related to the reduction in phagocytosis receptor proteins. Such changes may arise from oxidative modifications of cell phagocytic machinery components.
Collapse
Affiliation(s)
- Magdalena M Olchawa
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.,Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Anja M Herrnreiter
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Christine M B Skumatz
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Ophthalmology and Visual Sciences, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Olga I Krzysztynska-Kuleta
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Krystian T Mokrzynski
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Janice M Burke
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Emeritus Professor of Ophthalmology
| | - Tadeusz J Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| |
Collapse
|
6
|
Pedrini S, Hone E, Gupta VB, James I, Teimouri E, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters CL, Rainey-Smith S, Verdile G, Sohrabi HR, Raida MR, Wenk MR, Taddei K, Chatterjee P, Martins I, Laws SM, Martins RN. Plasma High Density Lipoprotein Small Subclass is Reduced in Alzheimer's Disease Patients and Correlates with Cognitive Performance. J Alzheimers Dis 2021; 77:733-744. [PMID: 32741823 PMCID: PMC7592676 DOI: 10.3233/jad-200291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background: The link between cholesterol and Alzheimer’s disease (AD) has received much attention, as evidence suggests high levels of cholesterol might be an AD risk factor. The carriage of cholesterol and lipids through the body is mediated via lipoproteins, some of which, particularly apolipoprotein E (ApoE), are intimately linked with AD. In humans, high density lipoprotein (HDL) is regarded as a “good” lipid complex due to its ability to enable clearance of excess cholesterol via ‘cholesterol reverse transport’, although its activities in the pathogenesis of AD are poorly understood. There are several subclasses of HDL; these range from the newly formed small HDL, to much larger HDL. Objective: We examined the major subclasses of HDL in healthy controls, mild cognitively impaired, and AD patients who were not taking statins to determine whether there were HDL profile differences between the groups, and whether HDL subclass levels correlated with plasma amyloid-β (Aβ) levels or brain Aβ deposition. Methods: Samples from AIBL cohort were used in this study. HDL subclass levels were assessed by Lipoprint while Aβ1–42 levels were assessed by ELISA. Brain Aβ deposition was assessed by PET scan. Statistical analysis was performed using parametric and non-parametric tests. Results: We found that small HDL subclass is reduced in AD patients and it correlates with cognitive performance while plasma Aβ concentrations do not correlate with lipid profile or HDL subfraction levels. Conclusion: Our data indicate that AD patients exhibit altered plasma HDL profile and that HDL subclasses correlate with cognitive performances.
Collapse
Affiliation(s)
- Steve Pedrini
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Eugene Hone
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Veer B Gupta
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Ian James
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Elham Teimouri
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ashley I Bush
- CRC for Mental Health, Carlton South, Victoria, Australia.,The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher C Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, Victoria, Australia.,University of Melbourne Academic unit for Psychiatry of Old Age, St George's Hospital, Kew, Victoria, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Giuseppe Verdile
- School of Biomedical Sciences, Curtin University, Bentley, WA, Australia
| | - Hamid R Sohrabi
- Centre for Healthy Ageing, School of Psychology and Exercise Science, Murdoch University, Murdoch, WA, Australia
| | - Manfred R Raida
- Life Science Institute, Singapore Lipidomics Incubator, National University of Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kevin Taddei
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Pratishtha Chatterjee
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian Martins
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Simon M Laws
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Ralph N Martins
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia.,Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | | |
Collapse
|
7
|
Hisauchi I, Ishikawa T, Ayaori M, Uto-Kondo H, Koshikawa Y, Ukaji T, Nakamura H, Mizutani Y, Taguchi I, Nakajima T, Mutoh M, Ikewaki K. High-Density Lipoprotein Cholesterol Efflux Capacity as a Novel Prognostic Surrogate for Coronary Artery Disease. J Atheroscler Thromb 2021; 28:696-702. [PMID: 32908115 PMCID: PMC8265426 DOI: 10.5551/jat.59279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/03/2020] [Indexed: 01/01/2023] Open
Abstract
AIM We examined the impact of baseline high-density lipoprotein cholesterol efflux capacity (CEC) on major cardiac adverse events (MACE) in patients with coronary artery disease (CAD) during a long-term secondary prevention. METHOD CEC was measured using a cell-based efflux system in (3)[H]-cholesterol-labeled J774 macrophages in apolipoprotein B-depleted plasma between January 2011 and January 2013. Patients with CAD were divided into 2 groups as a boundary CEC value of 1: 0.19 ≤ CEC <1 (impaired CEC group, mean CEC of 0.76±0.16, n=136), and 1 ≤ CEC ≤ 2.08 (enhanced CEC group, 1.20±0.19, n=44). MACE, comprised the incidence of cardiac death, non-fatal myocardial infarction, and any revascularizations (RV) without restenosis approximately 1 year after vascularization, was retrospectively investigated at September 2019. Impact of enhanced CEC on MACE among 22 variables was examined by applying a Cox proportional hazard model. RESULT The frequency of MACE in impaired CEC group (16.9%, mean observational interval of 2111±888 days) was significantly higher than that in enhanced CEC group (2.3%, 2,252±685, p=0.013), largely driven by the significantly higher RV incidence (14.0 % versus 2.3 %, p=0.032). Enhancement of CEC was the significant predictor of MACE (hazard ratio: 0.11; 95% CI: 0.013-0.879; p=0.038). CONCLUSION A baseline CEC level of more than 1 in patients with CAD brought favorable long-term clinical outcomes, suggesting that CEC is a useful prognostic and therapeutic surrogate for secondary prevention of CAD.
Collapse
Affiliation(s)
- Itaru Hisauchi
- Department of Cardiology, Dokkyo Medical University, Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Tetsuya Ishikawa
- Department of Cardiology, Dokkyo Medical University, Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Makoto Ayaori
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Harumi Uto-Kondo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
- Department of Bioscience in Daily Life, Nihon University, Fujisawa, Kanagawa, Japan
| | - Yuri Koshikawa
- Department of Cardiology, Dokkyo Medical University, Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Tomoaki Ukaji
- Department of Cardiology, Dokkyo Medical University, Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Hidehiko Nakamura
- Department of Cardiology, Dokkyo Medical University, Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Yukiko Mizutani
- Department of Cardiology, Dokkyo Medical University, Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Isao Taguchi
- Department of Cardiology, Dokkyo Medical University, Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Takatomo Nakajima
- Division of Cardiology, Saitama Cardiovascular Respiratory Center, Kumagaya, Saitama, Japan
| | - Makoto Mutoh
- Division of Cardiology, Saitama Cardiovascular Respiratory Center, Kumagaya, Saitama, Japan
| | - Katsunori Ikewaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
8
|
The Effect of Antioxidants on Photoreactivity and Phototoxic Potential of RPE Melanolipofuscin Granules from Human Donors of Different Age. Antioxidants (Basel) 2020; 9:antiox9111044. [PMID: 33114498 PMCID: PMC7693403 DOI: 10.3390/antiox9111044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
One of the most prominent age-related changes of retinal pigment epithelium (RPE) is the accumulation of melanolipofuscin granules, which could contribute to oxidative stress in the retina. The purpose of this study was to determine the ability of melanolipofuscin granules from younger and older donors to photogenerate reactive oxygen species, and to examine if natural antioxidants could modify the phototoxic potential of this age pigment. Electron paramagnetic resonance (EPR) oximetry, EPR-spin trapping, and time-resolved detection of near-infrared phosphorescence were employed for measuring photogeneration of superoxide anion and singlet oxygen by melanolipofuscin isolated from younger and older human donors. Phototoxicity mediated by internalized melanolipofuscin granules with and without supplementation with zeaxanthin and α-tocopherol was analyzed in ARPE-19 cells by determining cell survival, oxidation of cellular proteins, organization of the cell cytoskeleton, and the cell specific phagocytic activity. Supplementation with antioxidants reduced aerobic photoreactivity and phototoxicity of melanolipofuscin granules. The effect was particularly noticeable for melanolipofuscin mediated inhibition of the cell phagocytic activity. Antioxidants decreased the extent of melanolipofuscin-dependent oxidation of cellular proteins and disruption of the cell cytoskeleton. Although melanolipofuscin might be involved in chronic phototoxicity of the aging RPE, natural antioxidants could partially ameliorate these harmful effects.
Collapse
|
9
|
Morgan AE, Mc Auley MT. Cholesterol Homeostasis: An In Silico Investigation into How Aging Disrupts Its Key Hepatic Regulatory Mechanisms. BIOLOGY 2020; 9:E314. [PMID: 33007859 PMCID: PMC7599957 DOI: 10.3390/biology9100314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
The dysregulation of intracellular cholesterol homeostasis is associated with several age-related diseases, most notably cardiovascular disease (CVD). Research in this area has benefitted from using computational modelling to study the inherent complexity associated with the regulation of this system. In addition to facilitating hypothesis exploration, the utility of modelling lies in its ability to represent an array of rate limiting enzymatic reactions, together with multiple feedback loops, which collectively define the dynamics of cholesterol homeostasis. However, to date no model has specifically investigated the effects aging has on this system. This work addresses this shortcoming by explicitly focusing on the impact of aging on hepatic intracellular cholesterol homeostasis. The model was used to investigate the experimental findings that reactive oxygen species induce the total activation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR). Moreover, the model explored the impact of an age-related decrease in hepatic acetyl-CoA acetyltransferase 2 (ACAT2). The model suggested that an increase in the activity of HMGCR does not have as significant an impact on cholesterol homeostasis as a decrease in hepatic ACAT2 activity. According to the model, a decrease in the activity of hepatic ACAT2 raises free cholesterol (FC) and decreases low-density lipoprotein cholesterol (LDL-C) levels. Increased acetyl CoA synthesis resulted in a reduction in the number of hepatic low-density lipoprotein receptors, and increased LDL-C, FC, and cholesterol esters. The rise in LDL-C was restricted by elevated hepatic FC accumulation. Taken together these findings have important implications for healthspan. This is because emerging clinical data suggest hepatic FC accumulation is relevant to the pathogenesis of non-alcoholic fatty liver disease (NAFLD), which is associated with an increased risk of CVD. These pathophysiological changes could, in part, help to explain the phenomenon of increased mortality associated with low levels of LDL-C which have been observed in certain studies involving the oldest old (≥85 years).
Collapse
Affiliation(s)
| | - Mark Tomás Mc Auley
- Faculty of Science and Engineering, University of Chester, Thornton Science Park, Chester CH2 4NU, UK;
| |
Collapse
|
10
|
Maranhão RC, Pala D, Freitas FR. Lipoprotein removal mechanisms and aging: implications for the cardiovascular health of the elderly. Curr Opin Endocrinol Diabetes Obes 2020; 27:104-109. [PMID: 32011347 DOI: 10.1097/med.0000000000000529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The speed of removal from the plasma of apolipoprotein B-containing lipoproteins, for example, chylomicrons, VLDL and LDL is determinant of the plasma concentration of these lipoproteins, is influenced by genetic features and ambient factors, and has implications in atherogenesis. As aging increases the clinical complications of atherosclerosis, it is important to appraise the status of the removal mechanisms in elderly individuals. RECENT FINDINGS Removal of triglyceride-rich lipoproteins remnants is delayed but the triglyceride breakdown is unchanged in elderly individuals. The discovery of PCSK9, enzyme that degrades LDL receptors, and the recent observation that PCSK9 is elevated in the elderly raises another hypothesis to account for the increased LDL-cholesterol levels in the elderly. The removal of cholesterol from cells by HDL, the first step of cholesterol reverse transport is also less efficient in the elderly, which may compromise the body cholesterol homeostasis. SUMMARY Aging determines reduction of the efficiency of lipoprotein plasma removal mechanisms, which is implicated in increased incidence of cardia complications. Moreover, aging is frequently accompanied by physical activity reduction, weight gain, and metabolic disturbances that can further decrease the efficacy of the removal mechanisms. This knowledge is important for promoting cardiovascular health in the elderly and prolonging survival.
Collapse
Affiliation(s)
- Raul C Maranhão
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
- Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniela Pala
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
| | - Fatima R Freitas
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
| |
Collapse
|
11
|
Levy D, Reichert CO, Bydlowski SP. Paraoxonases Activities and Polymorphisms in Elderly and Old-Age Diseases: An Overview. Antioxidants (Basel) 2019; 8:antiox8050118. [PMID: 31052559 PMCID: PMC6562914 DOI: 10.3390/antiox8050118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is defined as the accumulation of progressive organ dysfunction. There is much evidence linking the involvement of oxidative stress in the pathogenesis of aging. With increasing age, susceptibility to the development of diseases related to lipid peroxidation and tissue injury increases, due to chronic inflammatory processes, and production of reactive oxygen species (ROS) and free radicals. The paraoxonase (PON) gene family is composed of three members (PON1, PON2, PON3) that share considerable structural homology and are located adjacently on chromosome 7 in humans. The most studied member product is PON1, a protein associated with high-density lipoprotein with paraoxonase/esterase activity. Nevertheless, all the three proteins prevent oxidative stress. The major aim of this review is to highlight the importance of the role of PON enzymes in the aging process, and in the development of the main diseases present in the elderly: cardiovascular disease, diabetes mellitus, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Débora Levy
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
| | - Cadiele Oliana Reichert
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
| | - Sérgio Paulo Bydlowski
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
- Center of Innovation and Translacional Medicine (CIMTRA), Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
- Instituto Nacional de Ciencia e Tecnologia em Medicina Regenerativa (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, RJ, Brazil.
| |
Collapse
|
12
|
Olchawa M, Krzysztynska-Kuleta O, Duda M, Pawlak A, Pabisz P, Czuba-Pelech B, Sarna T. In vitro phototoxicity of rhodopsin photobleaching products in the retinal pigment epithelium (RPE). Free Radic Res 2019; 53:456-471. [DOI: 10.1080/10715762.2019.1603377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Magdalena Olchawa
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Olga Krzysztynska-Kuleta
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
- Laboratory of Imaging and Atomic Force Spectroscopy, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mariusz Duda
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
- Laboratory of Imaging and Atomic Force Spectroscopy, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Pawlak
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Pawel Pabisz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Barbara Czuba-Pelech
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Tadeusz Sarna
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| |
Collapse
|
13
|
Morton J, Bao S, Vanags LZ, Tsatralis T, Ridiandries A, Siu CW, Ng KM, Tan JTM, Celermajer DS, Ng MKC, Bursill CA. Strikingly Different Atheroprotective Effects of Apolipoprotein A-I in Early- Versus Late-Stage Atherosclerosis. ACTA ACUST UNITED AC 2018; 3:187-199. [PMID: 30062204 PMCID: PMC6059906 DOI: 10.1016/j.jacbts.2017.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 01/23/2023]
Abstract
The atheroprotective effects of apoA-I are dependent on the plaque stage from which apoA-I is infused. The atheroprotective effects of apoA-I infusions are also impaired in older mice with a greater disease milieu. Ex vivo studies with mouse HDL found an impairment in HDL functionality with increasing disease/age of the mice as well as a reduced ability of apoA-I infusions to improve the atheroprotective functions of HDL. Our study provides understanding regarding the disparity between the very positive results of HDL/apoA-I raising in preclinical studies, largely performed in younger animals with early-stage disease, and the large-scale HDL-raising clinical trials in more elderly patients with established plaque that have failed to show benefit.
Preclinical studies have shown benefit of apolipoprotein A-I (apoA-I)/high-density lipoprotein (HDL) raising in atherosclerosis; however, this has not yet translated into a successful clinical therapy. Our studies demonstrate that apoA-I raising is more effective at reducing early-stage atherosclerosis than late-stage disease, indicating that the timing of HDL raising is a critical factor in its atheroprotective effects. To date, HDL-raising clinical trials have only been performed in aged patients with advanced atherosclerotic disease. Our findings therefore provide insight, related to important temporal aspects of HDL raising, as to why the clinical trials have thus far been largely neutral.
Collapse
Key Words
- Bcl-xL, B-cell lymphoma-extra large
- HCAEC, human coronary artery endothelial cell
- HDL, high-density lipoprotein
- HFD, high-fat diet
- LDL, low-density lipoprotein
- LVApoAI, lentivirus overexpressing apolipoprotein A-I
- LVGFP, lentivirus overexpressing green fluorescence protein
- MCP, monocyte chemoattractant protein
- SAA, serum amyloid amylase
- SMC, smooth muscle cell
- SNP, single-nucleotide polymorphism
- TNF, tumor necrosis factor
- VCAM, vascular cell adhesion molecule
- apoA-I, apolipoprotein A-I
- apoE−/−, apolipoprotein E deficient
- atherosclerosis
- cholesterol
- high-density lipoproteins
- micro-CT, micro-computed tomography
- rHDL, reconstituted high-density lipoprotein
Collapse
Affiliation(s)
- Jamie Morton
- Immunobiology Group, The Heart Research Institute, Sydney, Australia.,Department of Medicine, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Shisan Bao
- Discipline of Pathology, University of Sydney, Sydney, Australia
| | - Laura Z Vanags
- Immunobiology Group, The Heart Research Institute, Sydney, Australia.,Department of Medicine, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Tania Tsatralis
- Immunobiology Group, The Heart Research Institute, Sydney, Australia
| | - Anisyah Ridiandries
- Immunobiology Group, The Heart Research Institute, Sydney, Australia.,Department of Medicine, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Chung-Wah Siu
- Division of Cardiology, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Kwong-Man Ng
- Division of Cardiology, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Joanne T M Tan
- Immunobiology Group, The Heart Research Institute, Sydney, Australia.,Department of Medicine, Sydney Medical School, University of Sydney, Sydney, Australia
| | - David S Celermajer
- Immunobiology Group, The Heart Research Institute, Sydney, Australia.,Department of Medicine, Sydney Medical School, University of Sydney, Sydney, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Martin K C Ng
- Immunobiology Group, The Heart Research Institute, Sydney, Australia.,Department of Medicine, Sydney Medical School, University of Sydney, Sydney, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Christina A Bursill
- Immunobiology Group, The Heart Research Institute, Sydney, Australia.,Department of Medicine, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
14
|
Chalmers AD, Bursill CA, Myerscough MR. Nonlinear dynamics of early atherosclerotic plaque formation may determine the efficacy of high density lipoproteins (HDL) in plaque regression. PLoS One 2017; 12:e0187674. [PMID: 29161303 PMCID: PMC5697811 DOI: 10.1371/journal.pone.0187674] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/24/2017] [Indexed: 01/27/2023] Open
Abstract
We use a computational model to explore the effect of foam cell accumulation on plaque regression following an increase in high density lipoprotein (HDL) influx into the plaque. Atherosclerotic plaque formation is the outcome of cellular and cytokine responses to low density lipoproteins (LDL) that penetrate the artery wall following an injury to the endothelium and become modified. We modelled the cells and cytokines that are most important in plaque formation using partial differential equations. The model includes monocytes and macrophages, foam cells, macrophage chemoattractants, endothelium-stimulating cytokines, modified low density lipoproteins (mod LDL) and HDL. We included interactions both at the endothelium surface and inside the artery wall. The model predicts that when HDL influx into a well-established plaque with large numbers of foam cells is increased, the plaque may not regress but may continue to grow at a slower rate. If HDL influx is increased when a model plaque is recently established and has fewer foam cells, then the plaque does regress. If modLDL influx into the plaque is lowered at the same time that HDL influx increased or the capacity of the HDL to remove cholesterol from foam cells is increased, then the plaque is more likely to regress. The predictions of the model are in qualitative agreement with experimental studies in mice and rabbits. The results suggest that the intrinsic dynamics of reverse cholesterol transport by HDL are important in determining the success of HDL raising in promoting plaque regression.
Collapse
Affiliation(s)
- Alexander D. Chalmers
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
| | - Christina A. Bursill
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Mary R. Myerscough
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
15
|
Olchawa MM, Furso JA, Szewczyk GM, Sarna TJ. Lipofuscin-mediated photic stress inhibits phagocytic activity of ARPE-19 cells; effect of donors' age and antioxidants. Free Radic Res 2017; 51:799-811. [PMID: 28969450 DOI: 10.1080/10715762.2017.1380307] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The risk of chronic oxidative stress in the retinal pigment epithelium (RPE) increases with age due to accumulation of the photoreactive age pigment lipofuscin (LFG). Here, we asked whether sublethal and weakly lethal photic stress, induced by irradiation of ARPE-19 cells containing phagocytised LFG, affected the cell specific phagocytic activity, which is critically important for proper functioning and survival of the retina, and if natural antioxidants could modify the observed outcomes. ARPE-19 cells preloaded with LFG isolated from human donors of different age or containing LFG enriched with zeaxanthin and α-tocopherol (LFG-A), were irradiated with blue light. Phagocytosis of fluorescein-5-isothiocyanate (FITC)-labelled photoreceptor outer segments was determined by flow cytometry. Photoreactivity of LFG and LFG-A was analysed by measuring photoconsumption of oxygen and photogeneration of singlet oxygen mediated by the granules. LFG-mediated photic stress in ARPE-19 cells induced significant inhibition of their specific phagocytosis. The inhibitory effect increased with age of LFG donors and was reduced by enrichment of the granules with antioxidants. Oxygen consumption and generation of singlet oxygen induced by the photoexcited LFG increased with donor's age and was partially quenched by antioxidants. Although the phototoxic potential of lipofuscin increased with age, natural antioxidants reduced photoreactivity of LFG and their efficiency to induce oxidative stress. This study has demonstrated, for the first time, that mild oxidative stress, mediated by the age pigment lipofuscin, impairs specific phagocytic activity of RPE, and that natural antioxidants can protect this important cellular function by reducing lipofuscin photoreactivity.
Collapse
Affiliation(s)
- Magdalena M Olchawa
- a Department of Biophysics, Faculty of Biochemistry , Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| | - Justyna A Furso
- a Department of Biophysics, Faculty of Biochemistry , Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| | - Grzegorz M Szewczyk
- a Department of Biophysics, Faculty of Biochemistry , Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| | - Tadeusz J Sarna
- a Department of Biophysics, Faculty of Biochemistry , Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| |
Collapse
|
16
|
Kamtchueng Simo O, Ikhlef S, Berrougui H, Khalil A. Advanced glycation end products affect cholesterol homeostasis by impairing ABCA1 expression on macrophages. Can J Physiol Pharmacol 2017; 95:977-984. [PMID: 28704619 DOI: 10.1139/cjpp-2017-0170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reverse cholesterol transport (RCT), which is intimately linked to high-density lipoproteins (HDLs), plays a key role in cholesterol homeostasis and the prevention of atherosclerosis. The goal of the present study was to investigate the effect of aging and advanced glycation end products (AGEs) on RCT as well as on other factors that may affect the antiatherogenic property of HDLs. The transfer of macrophage-derived cholesterol to the plasma and liver and then to the feces for elimination was significantly lower in aged mice than in young mice. Chronic injection of d -galactose (D-gal) or AGEs also significantly reduced RCT (65.3% reduction in [3H]cholesterol levels in the plasma of D-gal-treated mice after 48 h compared with control mice, P < 0.01). The injection of both D-gal and aminoguanidine hydrochloride increased [3H]cholesterol levels in the plasma, although the levels were lower than those of control mice. The in vitro incubation of HDLs with dicarbonyl compounds increased the carbonyl and conjugated diene content of HDLs and significantly reduced PON1 paraoxonase activity (87.4% lower than control HDLs, P < 0.0001). Treating J774A.1 macrophages with glycated fetal bovine serum increased carbonyl formation (39.5% increase, P < 0.003) and reduced ABCA1 protein expression and the capacity of macrophages to liberate cholesterol (69.1% decrease, P < 0.0001). Our results showed, for the first time, that RCT is altered with aging and that AGEs contribute significantly to this alteration.
Collapse
Affiliation(s)
| | - Souade Ikhlef
- a Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada.,b Department of Biology, University Sultan moulay Slimane, Beni Mellal, Morocco
| | - Hicham Berrougui
- a Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada.,b Department of Biology, University Sultan moulay Slimane, Beni Mellal, Morocco
| | - Abdelouahed Khalil
- a Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada.,c Department of Medicine, Geriatrics Service, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
17
|
Olchawa MM, Herrnreiter AM, Pilat AK, Skumatz CMB, Niziolek-Kierecka M, Burke JM, Sarna TJ. Zeaxanthin and α-tocopherol reduce the inhibitory effects of photodynamic stress on phagocytosis by ARPE-19 cells. Free Radic Biol Med 2015; 89:873-82. [PMID: 26482868 PMCID: PMC4847939 DOI: 10.1016/j.freeradbiomed.2015.10.411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 12/18/2022]
Abstract
Zeaxanthin and α-tocopherol have been previously shown to efficiently protect liposomal membrane lipids against photosensitized peroxidation, and to protect cultured RPE cells against photodynamic killing. Here the protective action of combined zeaxanthin and α-tocopherol was analyzed in ARPE-19 cells subjected to photodynamic (PD) stress mediated by rose Bengal (RB) or merocyanine-540 (MC-540) at sub-lethal levels. Stress-induced cytotoxicity was analyzed by the MTT assay. The peroxidation of membrane lipids was determined by HPLC-EC (Hg) measurements of cholesterol hydroperoxides using cholesterol as a mechanistic reporter molecule. The specific phagocytosis of FITC-labeled photoreceptor outer segments (POS) isolated from bovine retinas was measured by flow cytometry, and the levels of phagocytosis receptor proteins αv integrin subunit, β5 integrin subunit and MerTK were quantified by Western blot analysis. Cytotoxicity measures confirmed that PD stress levels used for phagocytosis analysis were sub-lethal and that antioxidant supplementation protected against higher, lethal PD doses. Sub-lethal PD stress mediated by both photosensitizers induced the accumulation of 5α-OOH and 7α/β-OOH cholesterol hydroperoxides and the addition of the antioxidants substantially inhibited their accumulation. Antioxidant delivery prior to PD stress also reduced the inhibitory effect of stress on POS phagocytosis and partially reduced the stress-induced diminution of phagocytosis receptor proteins. The use of a novel model system where oxidative stress was induced at sub-lethal levels enable observations that would not be detectable using lethal stress models. Moreover, novel observations about the protective effects of zeaxanthin and α-tocopherol on photodynamic damage to ARPE-19 cell membranes and against reductions in the abundance of receptor proteins involved in POS phagocytosis, a process essential for photoreceptor survival, supports the importance of the antioxidants in protecting of the retina against photooxidative injury.
Collapse
Affiliation(s)
- Magdalena M Olchawa
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Anja M Herrnreiter
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anna K Pilat
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Christine M B Skumatz
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Magdalena Niziolek-Kierecka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Janice M Burke
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tadeusz J Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| |
Collapse
|
18
|
Laye MJ, Tran V, Jones DP, Kapahi P, Promislow DEL. The effects of age and dietary restriction on the tissue-specific metabolome of Drosophila. Aging Cell 2015; 14:797-808. [PMID: 26085309 PMCID: PMC4568967 DOI: 10.1111/acel.12358] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 11/28/2022] Open
Abstract
Dietary restriction (DR) is a robust intervention that extends lifespan and slows the onset of age-related diseases in diverse organisms. While significant progress has been made in attempts to uncover the genetic mechanisms of DR, there are few studies on the effects of DR on the metabolome. In recent years, metabolomic profiling has emerged as a powerful technology to understand the molecular causes and consequences of natural aging and disease-associated phenotypes. Here, we use high-resolution mass spectroscopy and novel computational approaches to examine changes in the metabolome from the head, thorax, abdomen, and whole body at multiple ages in Drosophila fed either a nutrient-rich ad libitum (AL) or nutrient-restricted (DR) diet. Multivariate analysis clearly separates the metabolome by diet in different tissues and different ages. DR significantly altered the metabolome and, in particular, slowed age-related changes in the metabolome. Interestingly, we observed interacting metabolites whose correlation coefficients, but not mean levels, differed significantly between AL and DR. The number and magnitude of positively correlated metabolites was greater under a DR diet. Furthermore, there was a decrease in positive metabolite correlations as flies aged on an AL diet. Conversely, DR enhanced these correlations with age. Metabolic set enrichment analysis identified several known (e.g., amino acid and NAD metabolism) and novel metabolic pathways that may affect how DR effects aging. Our results suggest that network structure of metabolites is altered upon DR and may play an important role in preventing the decline of homeostasis with age.
Collapse
Affiliation(s)
| | - ViLinh Tran
- Division of Pulmonary Allergy & Critical Care Medicine Department of Medicine Emory University Atlanta GA USA
- Department of Medicine Clinical Biomarkers Laboratory Emory University Atlanta GA USA
| | - Dean P. Jones
- Division of Pulmonary Allergy & Critical Care Medicine Department of Medicine Emory University Atlanta GA USA
- Department of Medicine Clinical Biomarkers Laboratory Emory University Atlanta GA USA
| | | | - Daniel E. L. Promislow
- Department of Pathology University of Washington Seattle WA USA
- Department of Biology University of Washington Seattle WA USA
| |
Collapse
|
19
|
Extra Virgin Olive Oil Polyphenols Promote Cholesterol Efflux and Improve HDL Functionality. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:208062. [PMID: 26495005 PMCID: PMC4606102 DOI: 10.1155/2015/208062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/27/2015] [Accepted: 07/02/2015] [Indexed: 01/07/2023]
Abstract
Results of the present work give evidence from the beneficial role of extra virgin olive of oil (EVOO) consumption towards oxidative stress and cardiovascular diseases. Polyphenols contained in EVOO are responsible for inhibiting lipoproteins oxidative damages and promoting reverse cholesterol transport process via ABCA1 pathway.
Collapse
|
20
|
Jung S, Kim M, Lee YJ, Lee SH, Lee JH. Associations between metabolomic-identified changes of biomarkers and arterial stiffness in subjects progressing to impaired fasting glucose. Clin Endocrinol (Oxf) 2015; 83:196-204. [PMID: 25990250 DOI: 10.1111/cen.12821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/22/2014] [Accepted: 05/13/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We investigated correlations between age-related changes in circulating metabolites and arterial stiffness in impaired fasting glucose (IFG). DESIGN, SUBJECTS, MEASUREMENT This prospective cohort study included 602 healthy, normal fasting glucose (NFG) subjects (30-65 years old) who underwent triennial medical evaluation. After 3 years, 9·3% of subjects developed IFG (n = 56). Age, gender, BMI and fasting glucose were used to match the remaining NFG subjects (n = 546) that were included for the control group (NFG group, n = 80). RESULTS After 3 years, levels of fasting glucose, insulin and malondialdehyde, and brachial-ankle pulse wave velocity (baPWV) were significantly greater in the IFG group than in the NFG group after adjusting for baseline values. The IFG group had a greater increase in lactosylceramide (P = 0·001, q < 0·05) and a greater reduction in phosphatidylcholine (PC) (18:0/20:4) than the NFG group. Multiple linear regression analysis showed that the change in baPWV was independently and positively associated with changes in fasting glucose and lactosylceramide. In all subjects, lactosylceramide levels positively correlated with changes in baPWV and fasting glucose, while premenopausal women were not shown, and negatively correlated with changes in PC and LDL particle size. CONCLUSIONS This study indicates that age-related increase in circulating lactosylceramide is an independent predictor of increased arterial stiffness in subjects with impaired fasting glucose.
Collapse
Affiliation(s)
- Saem Jung
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Minjoo Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
| | - Young Ju Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Sang-Hyun Lee
- Department of Family Practice, National Health Insurance Corporation Ilsan Hospital, Goyang, Korea
| | - Jong Ho Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
| |
Collapse
|
21
|
Ishikawa T, Ayaori M, Uto-Kondo H, Nakajima T, Mutoh M, Ikewaki K. High-density lipoprotein cholesterol efflux capacity as a relevant predictor of atherosclerotic coronary disease. Atherosclerosis 2015; 242:318-22. [PMID: 26246268 DOI: 10.1016/j.atherosclerosis.2015.06.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 05/15/2015] [Accepted: 06/10/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND We examined the clinical relevance of high-density lipoprotein cholesterol (HDL-C) efflux capacity from macrophage (cholesterol efflux capacity) as a predictor of atherosclerotic coronary artery disease (CAD) in comparison with that of conventional coronary and lipid risk variables in Japanese daily practice. METHODS AND RESULTS Fasting blood sampling, including 6 routinely measured dyslipidemia-related variables, was performed at the time of coronary angiography (CAG) or multi-slice coronary computed tomography (MSCT) between January 2011 and January 2013. CAD, defined as native coronary atherosclerosis stenosis >50% by CAG or MSCT, was identified in 182 patients (CAD group), but not in 72 patients (non-CAD group). Cholesterol efflux capacity, measured using a cell-based efflux system in (3)[H]-cholesterol-labeled J774 macrophages in apolipoprotein B-depleted plasma, was significantly impaired in the CAD group compared with the non-CAD group (0.86 ± 0.26 vs. 1.02 ± 0.38; p = 0.001). After adjusting 15 patient and dyslipidemia-related variables using a propensity score matching analysis produced 55 patients in each arm, cholesterol efflux capacity in the CAD group remained to be significant compared with the non-CAD group (0.83 ± 0.24 vs. 0.97 ± 0.36; p = 0.019). Stepwise logistic regression analysis using a backward method after the baseline adjustment showed that cholesterol efflux capacity (odds ratio [OR]: 0.23; 95% confidence interval [CI]: 0.056-0.91; p = 0.037) was the single predictor of CAD, while other variables including HDL-C (p = 0.088) and apolipoprotein (apo) A-I (p = 0.681) were removed owing to those insignificance. The area under the receiver operating characteristic curve after the baseline adjustment was 0.67 (95% CI: 0.51-0.73, p = 0.048 by Hosmer-Lemeshow goodness-of-fit statistics). CONCLUSIONS The present observational study conducted under daily clinical practice confirmed that cholesterol efflux capacity is a clinically relevant predictor of CAD among the conventional coronary risk factors and dyslipidemia-related variables.
Collapse
Affiliation(s)
- Tetsuya Ishikawa
- Division of Cardiology, Saitama Cardiovascular Respiratory Center, Kumagaya, Saitama, Japan.
| | - Makoto Ayaori
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Harumi Uto-Kondo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takatomo Nakajima
- Division of Cardiology, Saitama Cardiovascular Respiratory Center, Kumagaya, Saitama, Japan
| | - Makoto Mutoh
- Division of Cardiology, Saitama Cardiovascular Respiratory Center, Kumagaya, Saitama, Japan
| | - Katsunori Ikewaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
22
|
Wang Y, Meng C, Wei Q, Shi F, Mao D. Expression and regulation of scavenger receptor class B type 1 in the rat ovary and uterus during the estrous cycle. Acta Histochem 2015; 117:297-304. [PMID: 25817199 DOI: 10.1016/j.acthis.2015.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 01/19/2023]
Abstract
Scavenger receptor class B type 1 (SR-B1) preferentially mediates the selective uptake of high density lipoprotein-cholesterol ester and the delivery of cholesterol for steroidogenesis. Although multiple analyses have investigated the function of SR-B1 in the liver, adrenal and ovary, its expression in rat ovary and uterus during the estrous cycle is lacking. In the present study, real-time PCR, western blot and immunohistochemistry (IHC) were used to investigate SR-B1 expression in the rat ovary and uterus during the estrous cycle. The results demonstrated that ovarian SR-B1 expression was in a stage-dependent manner, continuously increased from proestrus and kept elevated during metoestrus, while uterine SR-B1 expression decreased from proestrus to diestrus. To determine whether ovarian and uterine SR-B1 expression were affected by sex steroid hormones, immature rats were treated with 17 β-estradiol (E2), progesterone (P4), or their antagonists from postnatal days 24-26. Results showed that the levels of SR-B1 mRNA and protein were significantly up-regulated by E2 in both the ovary and uterus. IHC results showed that SR-B1 was primarily localized in the oocytes, theca internal cells (T-I) of follicles, interstitial cells (IC) as well as corpus luteum (CL), but not granulosa cells (GC) in the ovary during the estrous cycle. Uterine SR-B1 was highly expressed in the endometrial luminal epithelial cells (LEC) and glandular epithelial cells (GEC) as well as in the circular muscle (CM) cells, and weak staining in stromal cells (SC) through estrous cycle. Taken together, SR-B1 expression in the ovary and uterus across the estrous cycle demonstrate that SR-B1 may be involved in uterine function, follicular development as well as luteal function.
Collapse
|
23
|
Safwat MH, El-Sawalhi MM, Mausouf MN, Shaheen AA. Ozone ameliorates age-related oxidative stress changes in rat liver and kidney: effects of pre- and post-ageing administration. BIOCHEMISTRY (MOSCOW) 2015; 79:450-8. [PMID: 24954596 DOI: 10.1134/s0006297914050095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ageing process is known to be accompanied by increased oxidative stress and compromised antioxidant defenses. Controlled ozone administration has been shown to be effective in various pathophysiological conditions with an underlying oxidative burden. However, its effect on the biochemical alterations associated with the ageing process has been rarely studied. Therefore, the present work was carried out to study the role of ozone in counteracting the state of oxidative stress associated with ageing in rat liver and kidneys using two experimental models. In the pre-ageing model, ozone was administered prior to the onset of ageing at adulthood and continued after the start of the ageing process (3-month-old rats until the age of 15 months). While in the post-ageing model, ozone was administered after ageing has begun and lasted for one month (14-month-old rats until the age of 15 months). The pre-ageing ozone administration effectively reduced lipid and protein oxidation markers, namely, malondialdehyde and protein carbonyl levels and decreased lipofuscin pigment deposition in rat liver and kidneys. Moreover, it significantly restored hepatic and renal reduced glutathione (GSH) contents and normalized cytosolic hepatic glutathione peroxidase activity. Similar but less pronounced effects were observed in the post-ageing ozone-treated group. Nevertheless, in the latter model ozone administration failed to significantly affect liver and kidney lipofuscin levels, as well as kidney GSH contents. These data provide evidences for potentially positive effects of pre-ageing ozone therapy in neutralizing chronic oxidative stress associated with ageing in rat liver and kidneys.
Collapse
Affiliation(s)
- M H Safwat
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | | | | | | |
Collapse
|
24
|
Low HDL cholesterol but not high LDL cholesterol is independently associated with subclinical coronary atherosclerosis in healthy octogenarians. Aging Clin Exp Res 2015; 27:61-7. [PMID: 24906678 DOI: 10.1007/s40520-014-0249-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
AIM OF THE STUDY Although low-density lipoprotein cholesterol (LDL-C) has been consistently demonstrated a predictor of atherosclerotic disease in a large spectrum of clinical settings, among individuals aged of 80 years or older this concept is uncertain. This study was evaluated in a carefully selected population if the association between LDL-C and coronary atherosclerotic burden remains significant in the very elderly. METHODS Individuals aged of 80 years or older (n = 208) who spontaneously sought primary prevention care and have never manifested cardiovascular disease, malnutrition, neoplastic or consumptive disease were enrolled for a cross-sectional analysis. Medical evaluation, anthropometric measurements, blood tests and cardiac computed tomography were obtained. RESULTS In analyses adjusted for age, gender, diabetes, systolic and diastolic blood pressure, smoking and statin therapy, no association was found between coronary calcium score (CCS) and LDL-C [1.79 (0.75-4.29)]. There was no association between triglycerides and CCS. The association between high-density lipoprotein cholesterol (HDL-C) and CCS was significant and robust in unadjusted [0.32 (0.15-0.67)] as well as in the fully adjusted analysis [0.34 (0.15-0.75)]. CONCLUSION The present study confirms in a healthy cohort of individuals aged of 80 years or more that while the association between LDL-C and coronary atherosclerosis weakens with aging, the opposite occurs with the levels of HDL-C.
Collapse
|
25
|
Abstract
One of the greatest challenges in biology is to improve the understanding of the mechanisms which underpin aging and how these affect health. The need to better understand aging is amplified by demographic changes, which have caused a gradual increase in the global population of older people. Aging western populations have resulted in a rise in the prevalence of age-related pathologies. Of these diseases, cardiovascular disease is the most common underlying condition in older people. The dysregulation of lipid metabolism due to aging impinges significantly on cardiovascular health. However, the multifaceted nature of lipid metabolism and the complexities of its interaction with aging make it challenging to understand by conventional means. To address this challenge computational modeling, a key component of the systems biology paradigm is being used to study the dynamics of lipid metabolism. This mini-review briefly outlines the key regulators of lipid metabolism, their dysregulation, and how computational modeling is being used to gain an increased insight into this system.
Collapse
Affiliation(s)
- Mark T. Mc Auley
- Faculty of Science and Engineering, Department of Chemical Engineering, Thornton Science Park, University of Chester, UK
| | - Kathleen M. Mooney
- Faculty of Health and Social Care, Edge Hill University, Ormskirk, Lancashire, UK
| |
Collapse
|
26
|
Kelishadi R, Haghjooy Javanmard S, Tajadini MH, Mansourian M, Motlagh ME, Ardalan G, Ban M. Genetic association with low concentrations of high density lipoprotein-cholesterol in a pediatric population of the Middle East and North Africa: The CASPIAN-III study. Atherosclerosis 2014; 237:273-8. [DOI: 10.1016/j.atherosclerosis.2014.08.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 07/22/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023]
|
27
|
Larbi A, Fortin C, Dupuis G, Berrougui H, Khalil A, Fulop T. Immunomodulatory role of high-density lipoproteins: impact on immunosenescence. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9712. [PMID: 25216565 PMCID: PMC4162887 DOI: 10.1007/s11357-014-9712-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
Natural aging is accompanied by a dysregulation of the host immune response that has well-known clinical consequences but poorly defined underlying causes. It has previously been reported that advancing age is associated with an increase in membrane cholesterol level in T cells. The aim of this study was to investigate whether high-density lipoprotein (HDL) can modulate the age-related accumulation of membrane cholesterol in T cells and impact on their subsequent responsiveness. Our data reveal that cholesterol metabolism, influx, and efflux are altered in T cells with aging, which may in part explain the increase in membrane cholesterol level observed in T cells in elderly individuals. HDL was unable to promote reverse cholesterol transport in T cells from elderly subjects with the same efficiency as was observed in T cells from young subjects besides unchanged ABCA-1 and SR-BI expressions. HDL exhibited a short-acting co-stimulatory effect by enhancing T cell production of interleukin-2 (IL-2). Moreover, HDL from healthy normolipemic individuals exerted differential effects on T cell proliferation that depended on the age of the HDL donor. Finally, HDL modulated TCR/CD28 activation by inducing sustained signaling through pLck, pERK, and pAkt. These data suggest that HDL has immunomodulatory effects on T cells that are influenced by age.
Collapse
Affiliation(s)
- Anis Larbi
- />Singapore Immunology Network (SIgN), Biopolis, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Carl Fortin
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| | - Gilles Dupuis
- />Clinical Research Center, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Canada
| | - Hicham Berrougui
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| | - Abdelouahed Khalil
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| | - Tamas Fulop
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
28
|
Athyros VG, Katsiki N, Doumas M, Karagiannis A, Mikhailidis DP. Effect of tobacco smoking and smoking cessation on plasma lipoproteins and associated major cardiovascular risk factors: a narrative review. Curr Med Res Opin 2013; 29:1263-74. [PMID: 23879722 DOI: 10.1185/03007995.2013.827566] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cigarette smoking, active or passive, kills about 6 million people each year worldwide. Cardiovascular disease (CVD) is responsible for 40% of all smoking-related deaths, lung cancer accounts for 20% of all smoking-related deaths, and chronic obstructive pulmonary disease is related to another 20% of deaths. In this narrative review we consider the relationship between cigarette smoking and CVD. We discuss disease states and/or CVD risk factors related to smoking, such as dyslipidaemia, vascular inflammation, endothelial dysfunction, arterial stiffness, insulin resistance, type 2 diabetes mellitus (T2DM), chronic kidney disease (CKD), and non-alcoholic fatty liver disease (NAFLD) as well as their complex interrelations. Smoking cessation can correct abnormalities related to smoking; however, success rates are relatively low. In cases of inability to quit, measures to minimize the adverse effects of smoking specifically related to CVD should be taken. Smokers should receive best practice treatment, according to guidelines, as for non-smokers.
Collapse
Affiliation(s)
- Vassilios G Athyros
- Second Prop. Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital , Thessaloniki , Greece
| | | | | | | | | |
Collapse
|
29
|
Guo YQ, Li YF, Wang ZH. Effects of β3-adrenoceptor on scavenger receptor class B type 1 and its signal transduction pathway in apolipoprotein E knockout mice. Eur J Pharmacol 2013; 714:295-302. [DOI: 10.1016/j.ejphar.2013.07.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
|
30
|
Martínez-Beamonte R, Lou-Bonafonte JM, Martínez-Gracia MV, Osada J. Sphingomyelin in high-density lipoproteins: structural role and biological function. Int J Mol Sci 2013; 14:7716-41. [PMID: 23571495 PMCID: PMC3645712 DOI: 10.3390/ijms14047716] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/20/2013] [Accepted: 03/29/2013] [Indexed: 11/16/2022] Open
Abstract
High-density lipoprotein (HDL) levels are an inverse risk factor for cardiovascular diseases, and sphingomyelin (SM) is the second most abundant phospholipid component and the major sphingolipid in HDL. Considering the marked presence of SM, the present review has focused on the current knowledge about this phospholipid by addressing its variable distribution among HDL lipoparticles, how they acquire this phospholipid, and the important role that SM plays in regulating their fluidity and cholesterol efflux from different cells. In addition, plasma enzymes involved in HDL metabolism such as lecithin-cholesterol acyltransferase or phospholipid transfer protein are inhibited by HDL SM content. Likewise, HDL SM levels are influenced by dietary maneuvers (source of protein or fat), drugs (statins or diuretics) and modified in diseases such as diabetes, renal failure or Niemann-Pick disease. Furthermore, increased levels of HDL SM have been shown to be an inverse risk factor for coronary heart disease. The complexity of SM species, described using new lipidomic methodologies, and their distribution in different HDL particles under many experimental conditions are promising avenues for further research in the future.
Collapse
Affiliation(s)
- Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza E-50013, Spain; E-Mail:
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
| | - Jose M. Lou-Bonafonte
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
- Departamento de Farmacología y Fisiología, Facultad de Ciencias de la Salud y del Deporte, Universidad de Zaragoza, Huesca E-22002, Spain
| | - María V. Martínez-Gracia
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza E-50013, Spain; E-Mail:
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-976-761-644; Fax: +34-976-761-612
| |
Collapse
|
31
|
Flannery C, Dufour S, Rabøl R, Shulman GI, Petersen KF. Skeletal muscle insulin resistance promotes increased hepatic de novo lipogenesis, hyperlipidemia, and hepatic steatosis in the elderly. Diabetes 2012; 61:2711-7. [PMID: 22829450 PMCID: PMC3478531 DOI: 10.2337/db12-0206] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aging is closely associated with muscle insulin resistance, hyperlipidemia, nonalcoholic fatty liver disease (NAFLD), and type 2 diabetes. We examined the hypothesis that muscle insulin resistance in healthy aging promotes increased hepatic de novo lipogenesis (DNL) and hyperlipidemia by altering the distribution pattern of postprandial energy storage. Healthy, normal weight, sedentary elderly subjects pair-matched to young subjects were given two high-carbohydrate meals followed by ¹³C/¹H magnetic resonance spectroscopy measurements of postprandial changes in muscle and liver glycogen and lipid content, and assessment of DNL using ²H₂O. Net muscle glycogen synthesis was reduced by 45% (P < 0.007) in the elderly subjects compared with the young, reflecting severe muscle insulin resistance. Net liver glycogen synthesis was similar between groups (elderly, 143 ± 23 mmol/L vs. young, 138 ± 13 mmol/L; P = NS). Hepatic DNL was more than twofold higher in the elderly than in the young subjects (elderly, 14.5 ± 1.4% vs. young, 6.9 ± 0.7%; P = 0.00015) and was associated with approximately threefold higher postprandial hepatic triglyceride (TG) content (P < 0.005) and increased fasting plasma TGs (elderly, 1.19 ± 0.18 mmol/L vs. young, 0.74 ± 0.11 mmol/L; P = 0.02). These results strongly support the hypothesis that muscle insulin resistance in aging promotes hyperlipidemia and NAFLD by altering the pattern of postprandial carbohydrate storage away from muscle glycogen and into hepatic DNL.
Collapse
Affiliation(s)
- Clare Flannery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Sylvie Dufour
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | - Rasmus Rabøl
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Kitt Falk Petersen
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Corresponding author: Kitt Falk Petersen,
| |
Collapse
|
32
|
Wang Y, Guo T, Zhao S, Li Z, Mao Y, Li H, Wang X, Wang R, Xu W, Song R, Jin L, Li X, Irwin DM, Niu G, Tan H. Expression of the human glucokinase gene: important roles of the 5' flanking and intron 1 sequences. PLoS One 2012; 7:e45824. [PMID: 23029263 PMCID: PMC3447760 DOI: 10.1371/journal.pone.0045824] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/24/2012] [Indexed: 02/07/2023] Open
Abstract
Background Glucokinase plays important tissue-specific roles in human physiology, where it acts as a sensor of blood glucose levels in the pancreas, and a few other cells of the gut and brain, and as the rate-limiting step in glucose metabolism in the liver. Liver-specific expression is driven by one of the two tissue-specific promoters, and has an absolute requirement for insulin. The sequences that mediate regulation by insulin are incompletely understood. Methodology/Principal Findings To better understand the liver-specific expression of the human glucokinase gene we compared the structures of this gene from diverse mammals. Much of the sequence located between the 5′ pancreatic beta-cell-specific and downstream liver-specific promoters of the glucokinase genes is composed of repetitive DNA elements that were inserted in parallel on different mammalian lineages. The transcriptional activity of the liver-specific promoter 5′ flanking sequences were tested with and without downstream intronic sequences in two human liver cells lines, HepG2 and L-02. While glucokinase liver-specific 5′ flanking sequences support expression in liver cell lines, a sequence located about 2000 bases 3′ to the liver-specific mRNA start site represses gene expression. Enhanced reporter gene expression was observed in both cell lines when cells were treated with fetal calf serum, but only in the L-02 cells was expression enhanced by insulin. Conclusions/Significance Our results suggest that the normal liver L-02 cell line may be a better model to understand the regulation of the liver-specific expression of the human glucokinase gene. Our results also suggest that sequences downstream of the liver-specific mRNA start site have important roles in the regulation of liver-specific glucokinase gene expression.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Tingting Guo
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Shuyong Zhao
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Zhixin Li
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Yiqing Mao
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Hui Li
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Xi Wang
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Rong Wang
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Wei Xu
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Rongjing Song
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Ling Jin
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
| | - Xiuli Li
- Department of Pharmacology, Chifeng College, Chifeng, China
| | - David M. Irwin
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (HT); (DMI)
| | - Gang Niu
- Beijing N&N Genetech Company, Beijing, China
| | - Huanran Tan
- Department of Pharmacology, Peking University, Health Science Center, Beijing, China
- * E-mail: (HT); (DMI)
| |
Collapse
|
33
|
Jones K, Timchenko L, Timchenko NA. The role of CUGBP1 in age-dependent changes of liver functions. Ageing Res Rev 2012; 11:442-9. [PMID: 22446383 DOI: 10.1016/j.arr.2012.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 12/14/2022]
Abstract
Aging liver is characterized by alterations of liver biology and by a reduction of many functions which are important for the maintenance of body homeostasis. The main dysfunctions include appearance of enlarged hepatocytes, impaired liver regeneration after partial hepatectomy (PH), development of hepatic steatosis, reduction of secretion of proteins and alterations in the hepatic sinusoid. RNA binding proteins are involved in the regulation of gene expression in all tissues including regulation of biological processes in the liver. This review is focused on the role of a conserved, multi-functional RNA-binding protein, CUGBP1, in the development of aging phenotype in the liver. CUGBP1 has been identified as a protein which binds to RNA CUG repeats expanded in Myotonic Dystrophy type 1 (DM1). CUGBP1 is highly expressed in the liver and regulates translation of proteins which are critical for maintenance of liver functions. In livers of young mice, CUGBP1 forms complexes with eukaryotic translation initiation factor eIF2 and supports translation of C/EBPβ and HDAC1 proteins, which are involved in liver growth, differentiation and liver cancer. Aging changes several signaling pathways which lead to the elevation of the CUGBP1-eIF2α complex and to an increase of translation of C/EBPβ and HDAC1. These proteins form multi-protein complexes with additional transcription factors and with chromatin remodeling proteins causing epigenetic alterations of gene expression in livers of old mice. It appears that CUGBP1-mediated translational elevation of HDAC1 is one of the key events in the epigenetic changes in livers of old mice, leading to the development of age-associated dysfunctions of the liver. This review will also discuss a possible role of CUGBP1 in liver dysfunction in patients affected with DM1.
Collapse
|
34
|
Berrougui H, Momo CN, Khalil A. Health benefits of high-density lipoproteins in preventing cardiovascular diseases. J Clin Lipidol 2012; 6:524-33. [PMID: 23312048 DOI: 10.1016/j.jacl.2012.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 03/02/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
Plasma levels of high-density lipoprotein (HDL) are strongly and inversely correlated with atherosclerotic cardiovascular diseases. However, it is becoming clear that a functional HDL is a more desirable target than simply increasing HDL-cholesterol levels. The best known antiatherogenic function of HDL particles relates to their ability to promote reverse cholesterol transport from peripheral cells. However, HDL also possesses antioxidant, anti-inflammatory, and antithrombotic effects. This review focuses on the state of knowledge regarding assays of HDL heterogeneity and function and their relationship to cardiovascular diseases.
Collapse
Affiliation(s)
- Hicham Berrougui
- Research Centre on Aging, Sherbrooke University Geriatric Institute, Sherbrooke, QC, Canada J1H 4C4.
| | | | | |
Collapse
|
35
|
Kumar P, Kale RK, Baquer NZ. Estradiol modulates membrane-linked ATPases, antioxidant enzymes, membrane fluidity, lipid peroxidation, and lipofuscin in aged rat liver. J Aging Res 2011; 2011:580245. [PMID: 22007298 PMCID: PMC3191768 DOI: 10.4061/2011/580245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/11/2011] [Accepted: 07/08/2011] [Indexed: 12/19/2022] Open
Abstract
Free radical production and oxidative stress are known to increase in liver during aging, and may contribute to the oxidative damage. These changes increase during menopausal condition in females when the level of estradiol is decreased. The objective of this study was to observe the changes in activities of membrane linked ATPases (Na+K+ ATPase, Ca2+ ATPase), antioxidant enzymes (superoxide dismutase, glutathione-S-transferase), lipid peroxidation levels, lipofuscin content and membrane fluidity occurring in livers of female rats of 3, 12 and 24 months age groups, and to see whether these changes are restored to 3 months control levels rats after exogenous administration of 17-β-estradiol (E2). The aged rats (12 and 24 months) were given subcutaneous injection of E2 (0.1 μg/g body weight) daily for one month. The results obtained in the present work revealed that normal aging was associated with significant decrease in the activities of membrane linked ATPases, antioxidant enzymes, membrane fluidity and an increase in lipid peroxidation and lipofuscin content in livers of aging female rats. The present study showed that E2 treatment reversed the changes to normal levels. E2 treatment may be beneficial in preventing some of the age related changes in the liver by increasing antioxidant defenses.
Collapse
Affiliation(s)
- Pardeep Kumar
- School of Life Sciences, Jawaharlal Nehru University, 110067 New Delhi, India
| | | | | |
Collapse
|
36
|
|
37
|
Upmeier E, Lavonius S, Heinonen P, Viitanen M, Isoaho H, Arve S, Lehtonen A. Longitudinal changes in serum lipids in older people the Turku elderly study 1991-2006. Age Ageing 2011; 40:280-3. [PMID: 21252037 DOI: 10.1093/ageing/afq180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Eveliina Upmeier
- Department of Geriatrics, Turku City Hospital and University of Turku, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
38
|
Kostara CE, Papathanasiou A, Cung MT, Elisaf MS, Goudevenos J, Bairaktari ET. Evaluation of established coronary heart disease on the basis of HDL and non-HDL NMR lipid profiling. J Proteome Res 2010; 9:897-911. [PMID: 20020777 DOI: 10.1021/pr900783x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A (1)H NMR-based lipid profiling approach was used to investigate the prediction of coronary heart disease (CHD) and examine the confounding effect of factors such as gender, triglycerides, HDL-cholesterol and age levels on the prediction of disease. The HDL and non-HDL lipid profiles in 47 patients with triple vessel disease (TVD) and 41 patients with normal coronary arteries (NCA) both documented angiographically were generated. The presence of CHD was predicted with a sensitivity and specificity of 52% and 75% for HDL model and 78% and 80% for non-HDL, respectively. The lipid constituents of HDL lipoproteins which contributed to the separation between the two groups were the saturated fatty acids, cholesterol, total omega-3 fatty acids, degree of unsaturation, diallylic protons from polyunsaturated fatty acids, linoleic acid and, to a lesser extent, the number of fatty acids, triglycerides, unsaturated fatty acids and phosphatidylcholine. Respectively, for non-HDL, lipoproteins were the saturated fatty acids, number of fatty acids, cholesterol, unsaturated fatty acids and phosphatidylcholine. Gender, triglycerides, HDL-cholesterol and age influenced the lipid constituents of HDL and non-HDL lipoproteins that contributed to the separation between subgroups and confounded the predictive power of the models. NMR-based lipid profiling analysis could contribute to the identification of noninvasive markers for the presence and the development of the disease.
Collapse
Affiliation(s)
- Christina E Kostara
- Laboratory of Clinical Chemistry, and Department of Internal Medicine, Medical School, University of Ioannina, 451 10, Ioannina, Greece
| | | | | | | | | | | |
Collapse
|