1
|
Raji-Amirhasani A, Khaksari M, Soltani Z, Saberi S, Iranpour M, Darvishzadeh Mahani F, Hajializadeh Z, Sabet N. Beneficial effects of time and energy restriction diets on the development of experimental acute kidney injury in Rat: Bax/Bcl-2 and histopathological evaluation. BMC Nephrol 2023; 24:59. [PMID: 36941590 PMCID: PMC10026443 DOI: 10.1186/s12882-023-03104-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
People's lifestyles and, especially, their eating habits affect their health and the functioning of the organs in their bodies, including the kidneys. One's diet influences the cells' responses to stressful conditions such as acute kidney injury (AKI). This study aims to determine the preconditioning effects of four different diets: energy restriction (ER) diet, time restriction (TR) eating, intermittent fasting (IF), and high-fat diet (HF) on histopathological indices of the kidney as well as the molecules involved in apoptosis during AKI. Adult male rats underwent ER, TR, IF, and HF diets for eight weeks. Then, AKI was induced, and renal function indices, histopathological indices, and molecules involved in apoptosis were measured. In animals with AKI, urinary albumin excretion, serum urea, creatinine and, Bax/Bcl-2 ratio increased in the kidney, while renal eGFR decreased. ER and TR diets improved renal parameters and prevented an increase in the Bax/Bcl-2 ratio. The IF diet improved renal parameters but had no effect on the Bax/Bcl-2 ratio. On the other hand, the HF diet worsened renal function and increased the Bax/Bcl-2 ratio. Histopathological examination also showed improved kidney conditions in the ER and TR groups and more damage in the HF group. This study demonstrated that ER and TR diets have renoprotective effects on AKI and possibly cause the resistance of kidney cells to damage by reducing the Bax/Bcl-2 ratio and improving apoptotic conditions.
Collapse
Affiliation(s)
- Alireza Raji-Amirhasani
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shadan Saberi
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pathology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Darvishzadeh Mahani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Hajializadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Sabet
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Ashton KJ, Kiessling CJ, Thompson JLM, Aziz AY, Thomas WG, Headrick JP, Reichelt ME. Early cardiac aging linked to impaired stress-resistance and transcriptional control of stress response, quality control and mitochondrial pathways. Exp Gerontol 2023; 171:112011. [PMID: 36347360 DOI: 10.1016/j.exger.2022.112011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 10/18/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Phenotypic and transcriptomic evidence of early cardiac aging, and associated mechanisms, were investigated in young to middle-aged male mice (C57Bl/6; ages 8, 16, 32, 48 wks). Left ventricular gene expression (profiled via Illumina MouseWG-6 BeadChips), contractile and coronary function, and stress-resistance were assessed in Langendorff perfused hearts under normoxic conditions and following ischemic insult (20 min global ischemia-45 min reperfusion; I-R). Baseline or normoxic contractile function was unaltered by age, while cardiac and coronary 'reserves' (during β-adrenoceptor stimulation; 1 μM isoproterenol) declined by 48 wks. Resistance to I-R injury fell from 16 to 32 wks. Age-dependent transcriptional changes In un-stressed hearts were limited to 104 genes (>1.3-fold; 0.05 FDR), supporting: up-regulated innate defenses (glutathione and xenobiotic metabolism, chemotaxis, interleukins) and catecholamine secretion; and down-regulated extracellular matrix (ECM), growth factor and survival (PI3K/Akt) signaling. In stressed (post-ischemic) myocardium, ∼15-times as many genes (1528) were age-dependent, grouped into 6 clusters (>1.3-fold change; 0.05 FDR): most changing from 16 wks (45 % up/44 % down), a further 5 % declining from 32 wks. Major age-dependent Biological Processes in I-R hearts reveal: declining ATP metabolism, oxidative phosphorylation, cardiac contraction and morphogenesis, phospholipid metabolism and calcineurin signaling; increasing proteolysis and negative control of MAPK; and mixed changes in nuclear transport and angiogenic genes. Pathway analysis supports reductions in: autophagy, stress response, ER protein processing, mRNA surveillance and ribosome/translation genes; with later falls in mitochondrial biogenesis, oxidative phosphorylation and proteasome genes in I-R hearts. Summarizing, early cardiac aging is evident from 16 to 32 wks in male mice, characterized by: declining cardiovascular reserve and stress-resistance, transcriptomic evidence of constitutive stress and altered catecholamine and survival/growth signaling in healthy hearts; and declining stress response, quality control, mitochondrial energy metabolism and cardiac modeling processes in stressed hearts. These very early changes, potentially key substrate for advanced aging, may inform approaches to healthy aging and cardioprotection in the adult heart.
Collapse
Affiliation(s)
- Kevin J Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Can J Kiessling
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Jamie-Lee M Thompson
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Aliah Y Aziz
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - John P Headrick
- School of Medical Science, Griffith University, Southport, QLD, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
AMPK Activation Is Indispensable for the Protective Effects of Caloric Restriction on Left Ventricular Function in Postinfarct Myocardium. BIOLOGY 2022; 11:biology11030448. [PMID: 35336822 PMCID: PMC8945456 DOI: 10.3390/biology11030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Background: Caloric restriction (CR) extends lifespan in many species, including mammals. CR is cardioprotective in senescent myocardium by correcting pre-existing mitochondrial dysfunction and apoptotic activation. Furthermore, it confers cardioprotection against acute ischemia-reperfusion injury. Here, we investigated the role of AMP-activated protein kinase (AMPK) in mediating the cardioprotective CR effects in failing, postinfarct myocardium. Methods: Ligation of the left coronary artery or sham operation was performed in rats and mice. Four weeks after surgery, left ventricular (LV) function was analyzed by echocardiography, and animals were assigned to different feeding groups (control diet or 40% CR, 8 weeks) as matched pairs. The role of AMPK was investigated with an AMPK inhibitor in rats or the use of alpha 2 AMPK knock-out mice. Results: CR resulted in a significant improvement in LV function, compared to postinfarct animals receiving control diet in both species. The improvement in LV function was accompanied by a reduction in serum BNP, decrease in LV proapoptotic activation, and increase in mitochondrial biogenesis in the LV. Inhibition or loss of AMPK prevented most of these changes. Conclusions: The failing, postischemic heart is protected from progressive loss of LV systolic function by CR. AMPK activation is indispensable for these protective effects.
Collapse
|
4
|
Budiono BP, See Hoe LE, Peart JN, Vider J, Ashton KJ, Jacques A, Haseler LJ, Headrick JP. Effects of voluntary exercise duration on myocardial ischaemic tolerance, kinase signaling and gene expression. Life Sci 2021; 274:119253. [PMID: 33647270 DOI: 10.1016/j.lfs.2021.119253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
AIM Exercise is cardioprotective, though optimal interventions are unclear. We assessed duration dependent effects of exercise on myocardial ischemia-reperfusion (I-R) injury, kinase signaling and gene expression. METHODS Responses to brief (2 day; 2EX), intermediate (7 and 14 day; 7EX and 14EX) and extended (28 day; 28EX) voluntary wheel running (VWR) were studied in male C57Bl/6 mice. Cardiac function, I-R tolerance and survival kinase signaling were assessed in perfused hearts. KEY FINDINGS Mice progressively increased running distances and intensity, from 2.4 ± 0.2 km/day (0.55 ± 0.04 m/s) at 2-days to 10.6 ± 0.4 km/day (0.72 ± 0.06 m/s) after 28-days. Myocardial mass and contractility were modified at 14-28 days VWR. Cardioprotection was not 'dose-dependent', with I-R tolerance enhanced within 7 days and not further improved with greater VWR duration, volume or intensity. Protection was associated with AKT, ERK1/2 and GSK3β phosphorylation, with phospho-AMPK selectively enhanced with brief VWR. Gene expression was duration-dependent: 7 day VWR up-regulated glycolytic (Pfkm) and down-regulated maladaptive remodeling (Mmp2) genes; 28 day VWR up-regulated caveolar (Cav3), mitochondrial biogenesis (Ppargc1a, Sirt3) and titin (Ttn) genes. Interestingly, I-R tolerance in 2EX/2SED groups improved vs. groups subjected to longer sedentariness, suggesting transient protection on transition to housing with running wheels. SIGNIFICANCE Cardioprotection is induced with as little as 7 days VWR, yet not enhanced with further or faster running. This protection is linked to survival kinase phospho-regulation (particularly AKT and ERK1/2), with glycolytic, mitochondrial, caveolar and myofibrillar gene changes potentially contributing. Intriguingly, environmental enrichment may also protect via similar kinase regulation.
Collapse
Affiliation(s)
- Boris P Budiono
- Charles Sturt University, School of Community Health, Port Macquarie, NSW, Australia
| | - Louise E See Hoe
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia
| | - Jason N Peart
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia
| | - Jelena Vider
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia
| | - Kevin J Ashton
- Bond University, Faculty of Health and Medicine, Robina, QLD, Australia
| | - Angela Jacques
- Curtin University, School of Physiotherapy and Exercise Science, Bentley, WA, Australia
| | - Luke J Haseler
- Curtin University, School of Physiotherapy and Exercise Science, Bentley, WA, Australia
| | - John P Headrick
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia.
| |
Collapse
|
5
|
Chang CY, Tung YT, Lin YK, Liao CC, Chiu CF, Tung TH, Shabrina A, Huang SY. Effects of Caloric Restriction with Protein Supplementation on Plasma Protein Profiles in Middle-Aged Women with Metabolic Syndrome-A Preliminary Open Study. J Clin Med 2019; 8:jcm8020195. [PMID: 30736312 PMCID: PMC6406984 DOI: 10.3390/jcm8020195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 11/17/2022] Open
Abstract
Background: Clinical studies have demonstrated that higher protein intake based on caloric restriction (CR) alleviates metabolic abnormalities. However, no study has examined the effects of plasma protein profiles on caloric restriction with protein supplementation (CRPS) in metabolic syndrome (MetS). Therefore, using a proteomic perspective, this pilot study investigated whether CRPS ameliorated metabolic abnormalities associated with MetS in middle-aged women. Methods: Plasma samples of middle-aged women with MetS in CR (n = 7) and CRPS (n = 6) groups for a 12-week intervention were obtained and their protein profiles were analysed. Briefly, blood samples from qualified participants were drawn before and after the dietary treatment. Anthropometric, clinical, and biochemical variables were measured and correlated with plasma proteomics. Results: In results, we found that body mass index, total body fat, and fasting blood glucose decreased significantly after the interventions but were not different between the CR and CRPS groups. After liquid chromatography–tandem mass spectrometry analysis, the relative plasma levels of alpha-2-macroglobulin (A2M), C4b-binding protein alpha chain (C4BPA), complement C1r subcomponent-like protein (C1RL), complement component C6 (C6), complement component C8 gamma chain (C8G), and vitamin K-dependent protein S (PROS) were significantly different between the CRPS and CR groups. These proteins are involved in inflammation, the immune system, and coagulation responses. Moreover, blood low-density lipoprotein cholesterol levels were significantly and positively correlated with C6 plasma levels in both groups. Conclusions: These findings suggest that CRPS improves inflammatory responses in middle-aged women with MetS. Specific plasma protein expression (i.e., A2M, C4BPA, C1RL, C6, C8G, and PROS) associated with the complement system was highly correlated with fasting blood glucose (FBG), blood lipids (BLs), and body fat.
Collapse
Affiliation(s)
- Chia-Yu Chang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Tang Tung
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan.
| | - Yen-Kuang Lin
- Biostatistics Center, Taipei Medical University, Taipei 110, Taiwan.
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei 112, Taiwan.
| | - Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan.
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan.
| | - Amalina Shabrina
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan.
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan.
- Center for Reproductive Medicine & Sciences, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
6
|
Abiri B, Vafa M. Dietary Restriction, Cardiovascular Aging and Age-Related Cardiovascular Diseases: A Review of the Evidence. REVIEWS ON BIOMARKER STUDIES IN AGING AND ANTI-AGING RESEARCH 2019; 1178:113-127. [DOI: 10.1007/978-3-030-25650-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Sheng Y, Lv S, Huang M, Lv Y, Yu J, Liu J, Tang T, Qi H, Di W, Ding G. Opposing effects on cardiac function by calorie restriction in different-aged mice. Aging Cell 2017; 16:1155-1167. [PMID: 28799249 PMCID: PMC5595678 DOI: 10.1111/acel.12652] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2017] [Indexed: 12/25/2022] Open
Abstract
Calorie restriction (CR) increases average and maximum lifespan and exhibits an apparent beneficial impact on age‐related diseases. Several studies have shown that CR initiated either in middle or old age could improve ischemic tolerance and rejuvenate the aging heart; however, the data are not uniform when initiated in young. The accurate time to initiate CR providing maximum benefits for cardiac remodeling and function during aging remains unclear. Thus, whether a similar degree of CR initiated in mice of different ages could exert a similar effect on myocardial protection was investigated in this study. C57BL/6 mice were subjected to a calorically restricted diet (40% less than the ad libitum diet) for 3 months initiated in 3, 12, and 19 months. It was found that CR significantly reversed the aging phenotypes of middle‐aged and old mice including cardiac remodeling (cardiomyocyte hypertrophy and cardiac fibrosis), inflammation, mitochondrial damage, telomere shortening, as well as senescence‐associated markers but accelerated in young mice. Furthermore, whole‐genome microarray demonstrated that the AMP‐activated protein kinase (AMPK)–Forkhead box subgroup ‘O’ (FOXO) pathway might be a major contributor to contrasting regulation by CR initiated in different ages; thus, increased autophagy was seen in middle‐aged and old mice but decreased in young mice. Together, the findings demonstrated promising myocardial protection by 40% CR should be initiated in middle or old age that may have vital implications for the practical nutritional regimen.
Collapse
Affiliation(s)
- Yunlu Sheng
- Department of Geratology; The First Hospital Affiliated to Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| | - Shan Lv
- Department of Geratology; The First Hospital Affiliated to Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| | - Min Huang
- Department of Geratology; The First Hospital Affiliated to Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| | - Yifan Lv
- Department of Geratology; The First Hospital Affiliated to Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| | - Jing Yu
- Department of Geratology; The First Hospital Affiliated to Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| | - Juan Liu
- Department of Geratology; The First Hospital Affiliated to Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| | - Tingting Tang
- Department of Geratology; The First Hospital Affiliated to Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| | - Hanmei Qi
- Department of Geratology; The First Hospital Affiliated to Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| | - Wenjuan Di
- Department of Geratology; The First Hospital Affiliated to Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| | - Guoxian Ding
- Department of Geratology; The First Hospital Affiliated to Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| |
Collapse
|
8
|
Fann DYW, Ng GYQ, Poh L, Arumugam TV. Positive effects of intermittent fasting in ischemic stroke. Exp Gerontol 2017; 89:93-102. [PMID: 28115234 DOI: 10.1016/j.exger.2017.01.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/26/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
Intermittent fasting (IF) is a dietary protocol where energy restriction is induced by alternate periods of ad libitum feeding and fasting. Prophylactic intermittent fasting has been shown to extend lifespan and attenuate the progress and severity of age-related diseases such as cardiovascular (e.g. stroke and myocardial infarction), neurodegenerative (e.g. Alzheimer's disease and Parkinson's disease) and cancerous diseases in animal models. Stroke is the second leading cause of death, and lifestyle risk factors such as obesity and physical inactivity have been associated with elevated risks of stroke in humans. Recent studies have shown that prophylactic IF may mitigate tissue damage and neurological deficit following ischemic stroke by a mechanism(s) involving suppression of excitotoxicity, oxidative stress, inflammation and cell death pathways in animal stroke models. This review summarizes data supporting the potential hormesis mechanisms of prophylactic IF in animal models, and with a focus on findings from animal studies of prophylactic IF in stroke in our laboratory.
Collapse
Affiliation(s)
- David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
9
|
Melo DS, Costa-Pereira LV, Santos CS, Mendes BF, Costa KB, Santos CFF, Rocha-Vieira E, Magalhães FC, Esteves EA, Ferreira AJ, Guatimosim S, Dias-Peixoto MF. Severe Calorie Restriction Reduces Cardiometabolic Risk Factors and Protects Rat Hearts from Ischemia/Reperfusion Injury. Front Physiol 2016; 7:106. [PMID: 27092082 PMCID: PMC4824788 DOI: 10.3389/fphys.2016.00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/04/2016] [Indexed: 11/17/2022] Open
Abstract
Background and Aims: Recent studies have proposed that if a severe caloric restriction (SCR) is initiated at the earliest period of postnatal life, it can lead to beneficial cardiac adaptations later on. We investigated the effects of SCR in Wistar rats from birth to adult age on risk factors for cardiac diseases (CD), as well as cardiac function, redox status, and HSP72 content in response to ischemia/reperfusion (I/R) injury. Methods and Results: From birth to the age of 3 months, CR50 rats were fed 50% of the food that the ad libitum group (AL) was fed. Food intake was assessed daily and body weight were assessed weekly. In the last week of the SCR protocol, systolic blood pressure and heart rate were measured and the double product index was calculated. Also, oral glucose and intraperitoneal insulin tolerance tests were performed. Thereafter, rats were decapitated, visceral fat was weighed, and blood and hearts were harvested for biochemical, functional, tissue redox status, and western blot analyzes. Compared to AL, CR50 rats had reduced the main risk factors for CD. Moreover, the FR50 rats showed increased cardiac function both at baseline conditions (45% > AL rats) and during the post-ischemic period (60% > AL rats) which may be explained by a decreased cardiac oxidative stress and increased HSP72 content. Conclusion: SCR from birth to adult age reduced risk factors for CD, increased basal cardiac function and protected hearts from the I/R, possibly by a mechanism involving ROS.
Collapse
Affiliation(s)
- Dirceu S Melo
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Faculdade de Medicina, Campus JK, Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantina, Brasil
| | - Liliane V Costa-Pereira
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia São Paulo, Brasil
| | - Carina S Santos
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia São Paulo, Brasil
| | - Bruno F Mendes
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia São Paulo, Brasil
| | - Karine B Costa
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia São Paulo, Brasil
| | - Cynthia Fernandes F Santos
- Faculdade de Medicina, Campus JK, Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina, Brasil
| | - Etel Rocha-Vieira
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Faculdade de Medicina, Campus JK, Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantina, Brasil
| | - Flávio C Magalhães
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantina, Brasil
| | - Elizabethe A Esteves
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantina, Brasil
| | - Anderson J Ferreira
- Departamento de Morfologia, Universidade Federal de Minas Gerais Belo Horizonte, Brasil
| | - Sílvia Guatimosim
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Departamento de Fisiologia e Biofísica, Universidade Federal de Minas GeraisBelo Horizonte, Brasil
| | - Marco F Dias-Peixoto
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantina, Brasil
| |
Collapse
|
10
|
Fann DYW, Santro T, Manzanero S, Widiapradja A, Cheng YL, Lee SY, Chunduri P, Jo DG, Stranahan AM, Mattson MP, Arumugam TV. Intermittent fasting attenuates inflammasome activity in ischemic stroke. Exp Neurol 2014; 257:114-9. [PMID: 24805069 DOI: 10.1016/j.expneurol.2014.04.017] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 12/18/2022]
Abstract
Recent findings have revealed a novel inflammatory mechanism that contributes to tissue injury in cerebral ischemia mediated by multi-protein complexes termed inflammasomes. Intermittent fasting (IF) can decrease the levels of pro-inflammatory cytokines in the periphery and brain. Here we investigated the impact of IF (16h of food deprivation daily) for 4months on NLRP1 and NLRP3 inflammasome activities following cerebral ischemia. Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion (I/R). IF decreased the activation of NF-κB and MAPK signaling pathways, the expression of NLRP1 and NLRP3 inflammasome proteins, and both IL-1β and IL-18 in the ischemic brain tissue. These findings demonstrate that IF can attenuate the inflammatory response and tissue damage following ischemic stroke by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity.
Collapse
Affiliation(s)
- David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Tomislav Santro
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Silvia Manzanero
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Alexander Widiapradja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Yi-Lin Cheng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Seung-Yoon Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Prasad Chunduri
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Alexis M Stranahan
- Department of Physiology, Georgia Health Sciences University, Augusta, GA, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Pharmacy, Sungkyunkwan University, Suwon, South Korea; School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
11
|
Peart JN, Pepe S, Reichelt ME, Beckett N, See Hoe L, Ozberk V, Niesman IR, Patel HH, Headrick JP. Dysfunctional survival-signaling and stress-intolerance in aged murine and human myocardium. Exp Gerontol 2014. [PMID: 24316036 DOI: 10.1016/j.exger.2013.11.015.pubmed:24316036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Changes in cytoprotective signaling may influence cardiac aging, and underpin sensitization to ischemic insult and desensitization to 'anti-ischemic' therapies. We tested whether age-dependent shifts in ischemia-reperfusion (I-R) tolerance in murine and human myocardium are associated with reduced efficacies and coupling of membrane, cytoplasmic and mitochondrial survival-signaling. Hormesis (exemplified in ischemic preconditioning; IPC) and expression of proteins influencing signaling/stress-resistance were also assessed in mice. Mouse hearts (18 vs. 2-4 mo) and human atrial tissue (75±2 vs. 55±2 yrs) exhibited profound age-dependent reductions in I-R tolerance. In mice aging negated cardioprotection via IPC, G-protein coupled receptor (GPCR) agonism (opioid, A1 and A3 adenosine receptors) and distal protein kinase c (PKC) activation (4 nM phorbol 12-myristate 13-acetate; PMA). In contrast, p38-mitogen activated protein kinase (p38-MAPK) activation (1 μM anisomycin), mitochondrial ATP-sensitive K(+) channel (mKATP) opening (50 μM diazoxide) and permeability transition pore (mPTP) inhibition (0.2 μM cyclosporin A) retained protective efficacies in older hearts (though failed to eliminate I-R tolerance differences). A similar pattern of change in protective efficacies was observed in human tissue. Murine hearts exhibited molecular changes consistent with altered membrane control (reduced caveolin-3, cholesterol and caveolae), kinase signaling (reduced p70 ribosomal s6 kinase; p70s6K) and stress-resistance (increased G-protein receptor kinase 2, GRK2; glycogen synthase kinase 3β, GSK3β; and cytosolic cytochrome c). In summary, myocardial I-R tolerance declines with age in association with dysfunctional hormesis and transduction of survival signals from GPCRs/PKC to mitochondrial effectors. Differential changes in proteins governing caveolar and mitochondrial function may contribute to signal dysfunction and stress-intolerance.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Salvatore Pepe
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Melissa E Reichelt
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Nikkie Beckett
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Louise See Hoe
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Victoria Ozberk
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | | | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, USA; Department of Anesthesiology, University of California San Diego, USA
| | - John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia.
| |
Collapse
|
12
|
Peart JN, Pepe S, Reichelt ME, Beckett N, See Hoe L, Ozberk V, Niesman IR, Patel HH, Headrick JP. Dysfunctional survival-signaling and stress-intolerance in aged murine and human myocardium. Exp Gerontol 2013; 50:72-81. [PMID: 24316036 DOI: 10.1016/j.exger.2013.11.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/03/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
Abstract
Changes in cytoprotective signaling may influence cardiac aging, and underpin sensitization to ischemic insult and desensitization to 'anti-ischemic' therapies. We tested whether age-dependent shifts in ischemia-reperfusion (I-R) tolerance in murine and human myocardium are associated with reduced efficacies and coupling of membrane, cytoplasmic and mitochondrial survival-signaling. Hormesis (exemplified in ischemic preconditioning; IPC) and expression of proteins influencing signaling/stress-resistance were also assessed in mice. Mouse hearts (18 vs. 2-4 mo) and human atrial tissue (75±2 vs. 55±2 yrs) exhibited profound age-dependent reductions in I-R tolerance. In mice aging negated cardioprotection via IPC, G-protein coupled receptor (GPCR) agonism (opioid, A1 and A3 adenosine receptors) and distal protein kinase c (PKC) activation (4 nM phorbol 12-myristate 13-acetate; PMA). In contrast, p38-mitogen activated protein kinase (p38-MAPK) activation (1 μM anisomycin), mitochondrial ATP-sensitive K(+) channel (mKATP) opening (50 μM diazoxide) and permeability transition pore (mPTP) inhibition (0.2 μM cyclosporin A) retained protective efficacies in older hearts (though failed to eliminate I-R tolerance differences). A similar pattern of change in protective efficacies was observed in human tissue. Murine hearts exhibited molecular changes consistent with altered membrane control (reduced caveolin-3, cholesterol and caveolae), kinase signaling (reduced p70 ribosomal s6 kinase; p70s6K) and stress-resistance (increased G-protein receptor kinase 2, GRK2; glycogen synthase kinase 3β, GSK3β; and cytosolic cytochrome c). In summary, myocardial I-R tolerance declines with age in association with dysfunctional hormesis and transduction of survival signals from GPCRs/PKC to mitochondrial effectors. Differential changes in proteins governing caveolar and mitochondrial function may contribute to signal dysfunction and stress-intolerance.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Salvatore Pepe
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Melissa E Reichelt
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Nikkie Beckett
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Louise See Hoe
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Victoria Ozberk
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | | | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, USA; Department of Anesthesiology, University of California San Diego, USA
| | - John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia.
| |
Collapse
|
13
|
Aris JP, Alvers AL, Ferraiuolo RA, Fishwick LK, Hanvivatpong A, Hu D, Kirlew C, Leonard MT, Losin KJ, Marraffini M, Seo AY, Swanberg V, Westcott JL, Wood MS, Leeuwenburgh C, Dunn WA. Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast. Exp Gerontol 2013; 48:1107-19. [PMID: 23337777 PMCID: PMC3728276 DOI: 10.1016/j.exger.2013.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/21/2012] [Accepted: 01/10/2013] [Indexed: 12/23/2022]
Abstract
We have previously shown that autophagy is required for chronological longevity in the budding yeast Saccharomyces cerevisiae. Here we examine the requirements for autophagy during extension of chronological life span (CLS) by calorie restriction (CR). We find that autophagy is upregulated by two CR interventions that extend CLS: water wash CR and low glucose CR. Autophagy is required for full extension of CLS during water wash CR under all growth conditions tested. In contrast, autophagy was not uniformly required for full extension of CLS during low glucose CR, depending on the atg allele and strain genetic background. Leucine status influenced CLS during CR. Eliminating the leucine requirement in yeast strains or adding supplemental leucine to growth media extended CLS during CR. In addition, we observed that both water wash and low glucose CR promote mitochondrial respiration proficiency during aging of autophagy-deficient yeast. In general, the extension of CLS by water wash or low glucose CR was inversely related to respiration deficiency in autophagy-deficient cells. Also, autophagy is required for full extension of CLS under non-CR conditions in buffered media, suggesting that extension of CLS during CR is not solely due to reduced medium acidity. Thus, our findings show that autophagy is: (1) induced by CR, (2) required for full extension of CLS by CR in most cases (depending on atg allele, strain, and leucine availability) and, (3) promotes mitochondrial respiration proficiency during aging under CR conditions.
Collapse
Affiliation(s)
- John P Aris
- Department of Anatomy and Cell Biology, University of Florida, Health Science Center, 1600 SW Archer Road, Gainesville, FL 32610-0235, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liaw NY, Hoe LS, Sheeran FL, Peart JN, Headrick JP, Cheung MMH, Pepe S. Postnatal shifts in ischemic tolerance and cell survival signaling in murine myocardium. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1171-81. [PMID: 24068046 DOI: 10.1152/ajpregu.00198.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The immature heart is known to be resistant to ischemia-reperfusion (I/R) injury; however, key proteins engaged in phospho-dependent signaling pathways crucial to cell survival are not yet defined. Our goal was to determine the postnatal changes in myocardial tolerance to I/R, including baseline expression of key proteins governing I/R tolerance and their phosphorylation during I/R. Hearts from male C57Bl/6 mice (neonates, 2, 4, 8, and 12 wk of age, n = 6/group) were assayed for survival signaling/effectors [Akt, p38MAPK, glycogen synthase kinase-3β (GSK-3β), heat shock protein 27 (HSP27), connexin-43, hypoxia-inducible factor-1α (HIF-1α), and caveolin-3] and regulators of apoptosis (Bax and Bcl-2) and autophagy (LC3B, Parkin, and Beclin1). The effect of I/R on ventricular function was measured in isolated perfused hearts from immature (4 wk) and adult (12 wk) mice. The neonatal myocardium exhibits a large pool of inactive Akt; high phospho-activation of p38MAPK, HSP27 and connexin-43; phospho-inhibition of GSK-3β; and high expression of caveolin-3, HIF-1α, LC3B, Beclin1, Bax, and Bcl-2. Immature hearts sustained less dysfunction and infarction following I/R than adults. Emergence of I/R intolerance in adult vs. immature hearts was associated with complex proteomic changes: decreased expression of Akt, Bax, and Bcl-2; increased GSK-3β, connexin-43, HIF-1α, LC3B, and Bax:Bcl-2; enhanced postischemic HIF-1α, caveolin-3, Bax, and Bcl-2; and greater postischemic GSK-3β and HSP27 phosphorylation. Neonatal myocardial stress resistance reflects high expression of prosurvival and autophagy proteins and apoptotic regulators. Notably, there is high phosphorylation of GSK-3β, p38MAPK, and HSP27 and low phosphorylation of Akt (high Akt "reserve"). Subsequent maturation-related reductions in I/R tolerance are associated with reductions in Akt, Bcl-2, LC3B, and Beclin1, despite increased expression and reduced phospho-inhibition of GSK-3β.
Collapse
Affiliation(s)
- Norman Y Liaw
- Heart Research, Murdoch Childrens Research Institute; Department of Cardiology, The Royal Children's Hospital; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; and
| | | | | | | | | | | | | |
Collapse
|
15
|
Chaudhary KR, Zordoky BNM, Edin ML, Alsaleh N, El-Kadi AOS, Zeldin DC, Seubert JM. Differential effects of soluble epoxide hydrolase inhibition and CYP2J2 overexpression on postischemic cardiac function in aged mice. Prostaglandins Other Lipid Mediat 2012; 104-105:8-17. [PMID: 22922020 DOI: 10.1016/j.prostaglandins.2012.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 01/24/2023]
Abstract
Cardioprotective effects of epoxyeicosatrienoic acids (EETs) have been demonstrated in models of young mice with either the cardiomyocyte specific over-expression of cytochrome P450 2J2 (CYP2J2 Tr) or deletion of soluble epoxide hydrolase (sEH null). In this study we examined differences in EET-induced cardioprotection in young (2 months) and aged (12 months) CYP2J2 Tr and sEHnull mice using Langendorff isolated perfused heart model. Improved postischemic functional recovery was observed in both young and aged sEH null mice compared to age matched WT. Conversely, the cardioprotective effect observed in young CYP2J2 Tr was lost in aged CYP2J2 Tr mice. The loss of cardioprotection in aged CYP2J2 Tr was regained following perfusion with the sEH inhibitor t-AUCB. Data demonstrated increased levels of leukotoxin diol (DiHOME) and oxidative stress as well decreased protein phosphatase 2A (PP2A) activation in aged CYP2J2 Tr. In conclusion, inhibition of sEH and EET-induced cardioprotection is maintained in aged mice. However, the loss of protective effects observed in aged CYP2J2 Tr might be attributed to increased levels of DiHOME, oxidative stress and/or decreased PP2A activity.
Collapse
Affiliation(s)
- Ketul R Chaudhary
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | |
Collapse
|