1
|
Binó L, Veselá I, Papežíková I, Procházková J, Vašíček O, Štefková K, Kučera J, Hanáčková M, Kubala L, Pacherník J. The depletion of p38alpha kinase upregulates NADPH oxidase 2/NOX2/gp91 expression and the production of superoxide in mouse embryonic stem cells. Arch Biochem Biophys 2019; 671:18-26. [PMID: 31176685 DOI: 10.1016/j.abb.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/04/2023]
Abstract
P38alpha kinase plays an important role in the regulation of both cell stress response and cell fate. In this study, we report that p38alpha kinase-deficient embryonic stem cells exhibit a higher production of reactive oxygen species (ROS) in contrast to their wild-type counterpart. Analysis of the expressions of NADPH oxidases (NOXs) and dual oxidases, crucial enzymes involved in intracellular ROS formation, shows NOX2/gp91phox is over-expressed in p38alpha deficient cells. The particular increase in superoxide formation was confirmed by the specific detection of hydroethidine derivate 2-hydroxyethidium. ROS formation decreased when the level of NOX2 was silenced by siRNA in p38alpha deficient cells. These data suggest the importance of p38alpha kinase in the regulation of ROS metabolism in embryonic stem cells and the significance of the observed phenomena of cancer cell-like phenotypes, which is discussed.
Collapse
Affiliation(s)
- Lucia Binó
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Free Radical Pathophysiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Iva Veselá
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Iva Papežíková
- Department of Free Radical Pathophysiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Jiřina Procházková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Ondřej Vašíček
- Department of Free Radical Pathophysiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Kateřina Štefková
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Jan Kučera
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Markéta Hanáčková
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Lukáš Kubala
- Department of Free Radical Pathophysiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Jiří Pacherník
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Arien-Zakay H, Nagler A, Galski H, Lazarovici P. Neuronal conditioning medium and nerve growth factor induce neuronal differentiation of collagen-adherent progenitors derived from human umbilical cord blood. J Mol Neurosci 2007; 32:179-91. [PMID: 17873363 DOI: 10.1007/s12031-007-0027-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 11/30/1999] [Accepted: 01/21/2007] [Indexed: 12/27/2022]
Abstract
The aim of the study was to isolate and characterize a population of neuronal progenitors in the human umbilical cord blood (HUCB) mononuclear cell (MNC) fraction, for in vitro manipulation towards neuronal differentiation. Selection of the HUCB neuronal progenitors (HUCBNPs) was based on the neuronal prerequisite for adherence to collagen. Populations of collagen-adherent, nestin-positive (94.8+/-2.9%) progenitors expressing alpha1/2 integrin receptors, as revealed by Western blot and adhesion assay using selective antagonists, were isolated and survived for more than 14 days. In vitro differentiation of the HUCBNPs was achieved by treatment with 10% human SH-SY5Y neuroblastoma cell-conditioning media (CM) supplemented with 10 ng/ml nerve growth factor (NGF). Some 83+/-8.2% of the surviving progenitors acquired a neuronal-like morphology, expressed by cellular outgrowths of different lengths. About 35+/-6% of the HUCBNPs had long outgrowths with a length/cell diameter ratio greater than 2, typical of developing neurons. The majority of these progenitors, analyzed by immunocytochemistry and/or RT-PCR, expressed common neuronal markers such as microtubule-associated protein 2 (MAP-2; 98.5+/-2%), neurotrophin receptor (TrkA; 98.5+/-0.06%), neurofillament-160 (NF-160; 94.2+/-1%), beta-tubulin III (89.8+/-4.2%) and neuron specific enolase (NSE). Combined CM and NGF treatment induced constitutive activation of the mitogen-activated protein kinases ERK2 (36-fold vs control), p38alpha (nine-fold vs control) and p38beta (23-fold vs control), most likely related to survival and/or differentiation. The results point to operationally defined conditions for activating neuronal differentiation of HUCBNPs ex vivo and emphasize the crucial role of neuronal CM and NGF in this process.
Collapse
Affiliation(s)
- Hadar Arien-Zakay
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
3
|
Guo YL, Yang B. Altered cell adhesion and cell viability in a p38alpha mitogen-activated protein kinase-deficient mouse embryonic stem cell line. Stem Cells Dev 2007; 15:655-64. [PMID: 17105401 DOI: 10.1089/scd.2006.15.655] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
p38 mitogen-activated protein (MAP) kinase alpha (p38alpha) is a broadly expressed protein kinase that regulates growth and development. Most studies of p38alpha have been in somatic cells. Little is known about its function in embryonic stem (ES) cells. Using a ES cell line isolated from p38alpha knockout mouse embryos (p38alpha (-/-) ES cells), we investigated roles of p38alpha in the regulation of ES cell activities. p38alpha (-/-) ES cells displayed several altered features different from wild-type cells. The major findings are that p38alpha (-/-) ES cells have significantly increased cell adhesion to several extracelluar matrix proteins, correlating with elevated phosphorylation of focal adhesion kinase and paxillin. p38alpha (-/-) ES cells also showed increased cell viability, correlating with increased expression of survivin and activation of AKT (protein kinase B), two molecules that are known to improve cell viability. p38alpha (-/-) ES cells reach confluence faster than wild-type cells in routine cell culture. However, this is not due to a higher cell proliferation rate in p38alpha (-/-) ES cells, but rather is likely a result of improved cell adhesion and/or cell viability. Together our results indicated that p38alpha may negatively regulate mouse ES cell adhesion and viability.
Collapse
Affiliation(s)
- Yan-Lin Guo
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | |
Collapse
|
4
|
Chen X, Chen J, Zhang P, Du J. Angelica stimulates proliferation of murine bone marrow mononuclear cells by the MAPK pathway. Blood Cells Mol Dis 2006; 36:402-5. [PMID: 16687249 DOI: 10.1016/j.bcmd.2006.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 01/30/2006] [Accepted: 01/31/2006] [Indexed: 10/24/2022]
Abstract
Murine bone marrow mononuclear cells (MNC) were isolated and co-incubated with Angelica to investigate its effects on bone marrow cells and the underlying mechanism of action. Angelica stimulates MNC proliferation as determined by the 3-(4, 5-dimethythiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Our results also suggest that the mechanism of action involves the phosphorylation of ERK1/2 and P38, two key proteins in the MAPK pathway. MAPK inhibitors, PD 98059 and SB 203580, block MNC proliferation caused by Angelica. Taken together, our results show that Angelica induces the proliferation of murine MNC by activating ERK1/2 and P38 MAPK proteins.
Collapse
Affiliation(s)
- Xiaoping Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, HangZhou, 310003 Zhejiang, China
| | | | | | | |
Collapse
|