1
|
Dallal MMS, Nikkhahi F, Imeni SM, Molaei S, Hosseini SK, Kalafi Z, Yazdi SS, Mirzaei HMA. Amniotic Membrane Transplantation for Persistent Epithelial Defects and Ulceration due to Pseudomonas Keratitis in a Rabbit Model. J Ophthalmic Vis Res 2021; 16:552-557. [PMID: 34840677 PMCID: PMC8593546 DOI: 10.18502/jovr.v16i4.9744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Purpose The use of amniotic membrane has been suggested in the treatment of infectious keratitis for its intrinsic anti-infective properties probably mediated by its anti-inflammatory effects. The aim of this study was to investigate the effect of amniotic membrane transplantation (AMT) along with ciprofloxacin to cure the primary stages of Pseudomonas keratitis. Methods In total, 28 rabbits were selected and divided in four groups as follows: group 1 as control, group 2 with amniotic membrane, group 3 with ciprofloxacin, and group 4 with amniotic membrane combined with ciprofloxacin. About 0.05 cc suspension of Pseudomonasaeruginosa, 27853 ATCC was injected into corneal stroma. Results The results showed groups of AMT, AMT + ciprofloxacin, and ciprofloxacin had 0% perforation while the control group had 85.6%. Average infiltration of 5.5 mm was observed in ciprofloxacin group, 5 mm in AMT + ciprofloxacin group, 24 mm in AMT group, and finally 23.75 mm for control. Amniotic membrane showed to be effective in prevention of cornea perforation as well as remission of Pseudomonas keratitis. There was no significant difference between ciprofloxacin groups in comparison with ciprofloxacin + AMT group. However, regarding the anti-inflammatory effect, the process of improvement of inflammation in ciprofloxacin + AMT group was faster. Conclusion Transplantation of amniotic membrane in the primary stages of Pseudomonas keratitis treatment remarkably prevents the disease and it can be used to control its process.
Collapse
Affiliation(s)
- Mohammad Mehdi Soltan Dallal
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Seyed Mostafa Imeni
- Biodiversitat, Ecología, Technologia Ambiental i Alimentaria )BETA Tech Center(, (TECNIO Network), U Science Tech, University of Vic-Central University of Catalonia, Carrer de la Laura 13, 08500 Vic, Spain
| | - Saber Molaei
- AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Kazem Hosseini
- Quality Control Manager of Iranian Tissue Bank Research & Preparation Center, Director of Stem Cells Preparation Unit, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Kalafi
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Sharifi Yazdi
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | |
Collapse
|
2
|
Jung JH, Kang KW, Kim J, Hong SC, Park Y, Kim BS. CXCR2 Inhibition in Human Pluripotent Stem Cells Induces Predominant Differentiation to Mesoderm and Endoderm Through Repression of mTOR, β-Catenin, and hTERT Activities. Stem Cells Dev 2017; 25:1006-19. [PMID: 27188501 PMCID: PMC4931345 DOI: 10.1089/scd.2015.0395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
On the basis of our previous report verifying that chemokine (C-X-C motif) receptor 2 (CXCR2) ligands in human placenta-derived cell conditioned medium (hPCCM) support human pluripotent stem cell (hPSC) propagation without exogenous basic fibroblast growth factor (bFGF), this study was designed to identify the effect of CXCR2 manipulation on the fate of hPSCs and the underlying mechanism, which had not been previously determined. We observed that CXCR2 inhibition in hPSCs induces predominant differentiation to mesoderm and endoderm with concomitant loss of hPSC characteristics and accompanying decreased expression of mammalian target of rapamycin (mTOR), β-catenin, and human telomerase reverse transcriptase (hTERT). These phenomena are recapitulated in hPSCs propagated in conventional culture conditions, including bFGF as well as those in hPCCM without exogenous bFGF, suggesting that the action of CXCR2 on hPSCs might not be associated with a bFGF-related mechanism. In addition, the specific CXCR2 ligand growth-related oncogene α (GROα) markedly increased the expression of ectodermal markers in differentiation-committed embryoid bodies derived from hPSCs. This finding suggests that CXCR2 inhibition in hPSCs prohibits the propagation of hPSCs and leads to predominant differentiation to mesoderm and endoderm owing to the blockage of ectodermal differentiation. Taken together, our results indicate that CXCR2 preferentially supports the maintenance of hPSC characteristics as well as facilitates ectodermal differentiation after the commitment to differentiation, and the mechanism might be associated with mTOR, β-catenin, and hTERT activities.
Collapse
Affiliation(s)
- Ji-Hye Jung
- 1 Institute of Stem Cell Research, Korea University , Seoul, Korea.,2 Department of Biomedical Science, Graduate School of Medicine, Korea University , Seoul, Korea
| | - Ka-Won Kang
- 1 Institute of Stem Cell Research, Korea University , Seoul, Korea.,3 Department of Hematology/Oncology, Korea University Anam Medical Center , Seoul, Korea
| | - Jihea Kim
- 1 Institute of Stem Cell Research, Korea University , Seoul, Korea
| | - Soon-Chul Hong
- 4 Department of Obstetrics/Gynecology, Korea University Anam Medical Center , Seoul, Korea
| | - Yong Park
- 1 Institute of Stem Cell Research, Korea University , Seoul, Korea.,3 Department of Hematology/Oncology, Korea University Anam Medical Center , Seoul, Korea
| | - Byung Soo Kim
- 1 Institute of Stem Cell Research, Korea University , Seoul, Korea.,2 Department of Biomedical Science, Graduate School of Medicine, Korea University , Seoul, Korea.,3 Department of Hematology/Oncology, Korea University Anam Medical Center , Seoul, Korea
| |
Collapse
|
3
|
Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges. Stem Cell Rev Rep 2015; 11:96-109. [PMID: 25077810 DOI: 10.1007/s12015-014-9544-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances on human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have brought us closer to the realization of their clinical potential. Nonetheless, tissue engineering and regenerative medicine applications will require the generation of hPSC products well beyond the laboratory scale. This also mandates the production of hPSC therapeutics in fully-defined, xeno-free systems and in a reproducible manner. Toward this goal, we summarize current developments in defined media free of animal-derived components for hPSC culture. Bioinspired and synthetic extracellular matrices for the attachment, growth and differentiation of hPSCs are also reviewed. Given that most progress in xeno-free medium and substrate development has been demonstrated in two-dimensional rather than three dimensional culture systems, translation from the former to the latter poses unique difficulties. These challenges are discussed in the context of cultivation platforms of hPSCs as aggregates, on microcarriers or after encapsulation in biocompatible scaffolds.
Collapse
|
4
|
Jung JH, Kim BS. A Novel Culture Model for Human Pluripotent Stem Cell Propagation on Gelatin in Placenta-conditioned Media. J Vis Exp 2015:e53204. [PMID: 26275004 DOI: 10.3791/53204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The propagation of human pluripotent stem cells (hPSCs) in conditioned medium derived from human cells in feeder-free culture conditions has been of interest. Nevertheless, an ideal humanized ex vivo feeder-free propagation method for hPSCs has not been developed; currently, additional exogenous substrates including basic fibroblast growth factor (bFGF), a master hPSC-sustaining factor, is added to all of culture media and synthetic substrata such as Matrigel or laminin are used in all feeder-free cultures. Recently, our group developed a simple and efficient protocol for the propagation of hPSCs using only conditioned media derived from the human placenta on a gelatin-coated dish without additional exogenous supplementation or synthetic substrata specific to hPSCs. This protocol has not been reported previously and might enable researchers to propagate hPSCs efficiently in humanized culture conditions. Additionally, this model obviates hPSC contamination risks by animal products such as viruses or unknown proteins. Furthermore, this system facilitates easy mass production of hPSCs using the gelatin coating, which is simple to handle, dramatically decreases the overall costs of ex vivo hPSC maintenance.
Collapse
Affiliation(s)
- Ji-Hye Jung
- Department of Biomedical Science, Graduate School of Medicine, Korea University
| | - Byung Soo Kim
- Department of Biomedical Science, Graduate School of Medicine, Korea University;
| |
Collapse
|
5
|
Jung JH, Lee SJ, Kim J, Lee S, Sung HJ, An J, Park Y, Kim BS. CXCR2 and its related ligands play a novel role in supporting the pluripotency and proliferation of human pluripotent stem cells. Stem Cells Dev 2014; 24:948-61. [PMID: 25390768 DOI: 10.1089/scd.2014.0381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Basic fibroblast growth factor (bFGF) is a crucial factor sustaining human pluripotent stem cells (hPSCs). We designed this study to search the substitutive factors other than bFGF for the maintenance of hPSCs by using human placenta-derived conditioned medium without exogenous bFGF (hPCCM-), containing chemokine (C-X-C motif) receptor 2 (CXCR2) ligands, including interleukin (IL)-8 and growth-related oncogene α (GROα), which were developed on the basis of our previous studies. First, we confirmed that IL-8 and/or GROα play independent roles to preserve the phenotype of hPSCs. Then, we tried CXCR2 blockage of hPSCs in hPCCM- and verified the significant decrease of pluripotency-associated genes expression and the proliferation of hPSCs. Interestingly, CXCR2 suppression of hPSCs in mTeSR™1 containing exogenous bFGF decreased the proliferation of hPSCs while maintaining pluripotency characteristics. Lastly, we found that hPSCs proliferated robustly for more than 35 passages in hPCCM- on a gelatin substratum. Higher CXCR2 expression of hPSCs cultured in hPCCM- than those in mTeSR™1 was observable. Our findings suggest that CXCR2 and its related ligands might be novel factors comparable to bFGF supporting the characteristics of hPSCs and hPCCM- might be useful for the maintenance of hPSCs as well as for the accurate evaluation of CXCR2 role in hPSCs without the confounding influence of exogenous bFGF.
Collapse
Affiliation(s)
- Ji-Hye Jung
- 1 Institute of Stem Cell Research, Korea University , Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Silva Dos Santos D, Coelho de Oliveira VC, Asensi KD, Vairo L, Carvalho AB, Campos de Carvalho AC, Goldenberg RCDS. Human Menstrual Blood-Derived Mesenchymal Cells as New Human Feeder Layer System for Human Embryonic Stem Cells. CELL MEDICINE 2014; 7:25-35. [PMID: 26858890 DOI: 10.3727/215517914x679265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human embryonic stem cells (hESCs) in general require coculture with feeder layers in order to remain undifferentiated. However, the use of animal-derived feeder layers is incompatible with the clinical setting. The objective of this work was to investigate whether human menstrual blood-derived mesenchymal cells (MBMCs) can substitute mouse embryonic fibroblasts (MEFs) as a feeder layer for H9-hESCs. Both feeder cell types were isolated and cultured in DMEM F-12 and high glucose DMEM, respectively. After three passages, they were inactivated with mitomycin C. To test MBMC feeder layer capacity, hESCs were grown over MBMCs and MEFs under standard conditions. hESC growth, proliferation, survival, and maintenance of the undifferentiated state were evaluated. hESCs grown over MBMCs preserved their undifferentiated state presenting standard morphology, expressing alkaline phosphatase, transcription factors OCT3/4, SOX2, and NANOG by RT-PCR and SSEA-4 and OCT3/4 by immunofluorescence assays. It is noteworthy that none of the feeder cells expressed these proteins. The average colony size of the hESCs on MBMCs was higher when compared to MEFs (p < 0.05; mean ± SD, n = 3). Growth factor analysis revealed amplification of the transcripts for FGF-2, BMP4, TGF-β, VEGF, and PEDF by RT-PCR in MBMCs and MEFs before and after inactivation. Furthermore, similar embryoid body formation, size, and morphology were observed in both feeder layers. In addition, EBs expressed marker genes for the three germ layers cultured on both feeder cells. In conclusion, MBMCs are able to maintain hESCs in an undifferentiated state with comparable efficiency to MEFs. Therefore, MBMCs are a suitable alternative to animal-derived feeder layers for growing hESCs.
Collapse
Affiliation(s)
- Danúbia Silva Dos Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | | | - Karina Dutra Asensi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Leandro Vairo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Adriana Bastos Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | | | | |
Collapse
|
7
|
Quang T, Marquez M, Blanco G, Zhao Y. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells. PLoS One 2014; 9:e86031. [PMID: 24465853 PMCID: PMC3895015 DOI: 10.1371/journal.pone.0086031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4–10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.
Collapse
Affiliation(s)
- Tara Quang
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
| | - Maribel Marquez
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
| | - Giselle Blanco
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
| | - Yuanxiang Zhao
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Sources of mesenchymal stem cells: current and future clinical use. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 130:267-86. [PMID: 23117644 DOI: 10.1007/10_2012_161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Park Y, Kim JH, Lee SJ, Choi IY, Park SJ, Lee SR, Sung HJ, Yoo YD, Geum DH, Choi CW, Kim SH, Kim BS. Human feeder cells can support the undifferentiated growth of human and mouse embryonic stem cells using their own basic fibroblast growth factors. Stem Cells Dev 2011; 20:1901-10. [PMID: 21231869 DOI: 10.1089/scd.2010.0496] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the culture system using human feeder cells, the mechanism through which these cells support undifferentiated growth of embryonic stem cells (ESCs) has not been well investigated. Here, we explored the mechanisms of 3 kinds of human feeder cells, including human placental cells from the chorionic plate, human bone marrow stromal cells, and human foreskin fibroblasts. First, we determined that undifferentiated growth of 2 kinds each of human (H1 and HSF6) and mouse (D3 and CE3) ESCs was possible in all human feeder cell types tested (human placental cells, human bone marrow stromal cells, and human foreskin fibroblasts), without the need for exogenous cytokine supplementation including basic fibroblast growth factor (bFGF) and leukemia inhibitory factor. We then prepared their corresponding endogenous bFGF-knockout feeders using siRNA and tried to maintain human and mouse ESCs in their undifferentiated state; however, neither human nor mouse ESCs could be maintained in bFGF-knockout human feeder cells. The expressions of stemness markers such as Oct-4 and Nanog were significantly decreased in the bFGF-knockout group compared with those in the controls, and differentiation had already occurred, despite the undifferentiated morphologic appearance of the ESCs. In conclusion, human feeder cells are able to support the undifferentiated growth of human and mouse ESCs via bFGF synthesis. Further, a bFGF-dependent pathway might be crucial for maintaining the undifferentiated characteristics of mouse and human ESCs.
Collapse
Affiliation(s)
- Yong Park
- Institute of Stem Cell Research, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Robin C, Dzierzak E. Preparation of hematopoietic stem and progenitor cells from the human placenta. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2011; Chapter 2:Unit 2A.9. [PMID: 20814938 DOI: 10.1002/9780470151808.sc02a09s14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This unit describes a protocol to isolate hematopoietic progenitors and stem cells from human placentae isolated at different time points in development and at the full-term gestational stage. The placenta is extensively washed to eliminate blood contamination on its surface and inside the villi (the vascular compartments of the placenta). The placenta is then mechanically minced into pieces, which are subsequently digested with an enzyme cocktail. After dissociation and filtration, placental cells are available for further phenotypic and functional analyses.
Collapse
Affiliation(s)
- Catherine Robin
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Rotterdam, The Netherlands
| | | |
Collapse
|
11
|
Park Y, Lee SJ, Choi IY, Lee SR, Sung HJ, Kim JH, Yoo YD, Geum DH, Kim SH, Kim BS. The efficacy of human placenta as a source of the universal feeder in human and mouse pluripotent stem cell culture. Cell Reprogram 2010; 12:315-28. [PMID: 20698773 DOI: 10.1089/cell.2009.0113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The use of a mouse embryonic fibroblast (MEF) feeder for culture of embryonic stem cells (ESCs) is a widely accepted method, regardless of the ESCs' origin and type. In this study, we performed the undifferentiated propagation of human ES cell lines (hESCs, H1, and HSF6) and mouse ES cell lines (mESCs, D3, and CE3), which were previously maintained on an MEF feeder, using human placenta-derived fibroblast-like cell (HPC) feeders originated from chorionic villi of women who had undergone therapeutic abortion due to known maternal disease that is aggravated by pregnancy. Moreover, we tried to introduce the HPC feeder for the establishment of inducible pluripotent stem cells (iPSCs) from human placental mesenchymal stem cells (MSCs). On the HPC feeder we were able to propagate ESCs and iPSCs colonies as an undifferentiated state up to the 50th passage and 20th passage, respectively. Maintenance of undifferentiated ESCs was identified by the expression of ALP, SSEA-1, SSEA-4, TRA-81, TRA-60, Oct-4, Nanog, or Rex-1. Also, addition of leukemia inhibitory factor was not required for undifferentiated propagation of mESCs on the HPC feeder. The efficiency and expression of three germ layer markers of embryoid bodies (EBs) from ESCs were satisfactory in both the MEF and HPC group. EBs formed from iPSCs were scant, and differentiation to the three germ layers was identifiable by reverst transcription-polymerase chain reactio (RT-PCR) only in the HPC group. In conclusion, the HPC feeder can efficiently support the undifferentiated propagation of hESCs, mESCs, and iPSCs, suggesting that human placenta may be a useful source of universal feeder cells for hESC, mESC, and iPSC culture.
Collapse
Affiliation(s)
- Yong Park
- Institute of Stem Cell Research, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sung HJ, Hong SC, Yoo JH, Oh JH, Shin HJ, Choi IY, Ahn KH, Kim SH, Park Y, Kim BS. Stemness evaluation of mesenchymal stem cells from placentas according to developmental stage: comparison to those from adult bone marrow. J Korean Med Sci 2010; 25:1418-26. [PMID: 20890420 PMCID: PMC2946649 DOI: 10.3346/jkms.2010.25.10.1418] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/29/2010] [Indexed: 01/01/2023] Open
Abstract
This study was done to evaluate the stemness of human mesenchymal stem cells (hMSCs) derived from placenta according to the development stage and to compare the results to those from adult bone marrow (BM). Based on the source of hMSCs, three groups were defined: group I included term placentas, group II included first-trimester placentas, and group III included adult BM samples. The stemness was evaluated by the proliferation capacity, immunophenotypic expression, mesoderm differentiation, expression of pluripotency markers including telomerase activity. The cumulative population doubling, indicating the proliferation capacity, was significantly higher in group II (P<0.001, 31.7±5.8 vs. 15.7±6.2 with group I, 9.2±4.9 with group III). The pattern of immunophenotypic expression and mesoderm differentiation into adipocytes and osteocytes were similar in all three groups. The expression of pluripotency markers including ALP, SSEA-4, TRA-1-60, TRA-1-81, Oct-4, and telomerase were strongly positive in group II, but very faint positive in the other groups. In conclusions, hMSCs from placentas have different characteristics according to their developmental stage and express mesenchymal stemness potentials similar to those from adult human BMs.
Collapse
Affiliation(s)
- Hwa Jung Sung
- Institute of Stem Cell Research, Korea University, Seoul, Korea
- Department of Internal Medicine, Korea University Medical Center, Seoul, Korea
| | - Soon Cheol Hong
- Institute of Stem Cell Research, Korea University, Seoul, Korea
- Department of Obstetrics and Gynecology, Korea University Medical Center, Seoul, Korea
| | - Ji Hyun Yoo
- Institute of Stem Cell Research, Korea University, Seoul, Korea
| | - Jee Hyun Oh
- Institute of Stem Cell Research, Korea University, Seoul, Korea
| | - Hye Jin Shin
- Institute of Stem Cell Research, Korea University, Seoul, Korea
| | - In Young Choi
- Institute of Stem Cell Research, Korea University, Seoul, Korea
| | - Ki Hoon Ahn
- Institute of Stem Cell Research, Korea University, Seoul, Korea
- Department of Obstetrics and Gynecology, Korea University Medical Center, Seoul, Korea
| | - Sun Haeng Kim
- Institute of Stem Cell Research, Korea University, Seoul, Korea
- Department of Obstetrics and Gynecology, Korea University Medical Center, Seoul, Korea
| | - Yong Park
- Institute of Stem Cell Research, Korea University, Seoul, Korea
- Department of Internal Medicine, Korea University Medical Center, Seoul, Korea
| | - Byung Soo Kim
- Institute of Stem Cell Research, Korea University, Seoul, Korea
- Department of Internal Medicine, Korea University Medical Center, Seoul, Korea
| |
Collapse
|
13
|
Park Y, Choi IY, Lee SJ, Lee SR, Sung HJ, Kim JH, Yoo YD, Geum DH, Kim SH, Kim BS. Undifferentiated propagation of the human embryonic stem cell lines, H1 and HSF6, on human placenta-derived feeder cells without basic fibroblast growth factor supplementation. Stem Cells Dev 2010; 19:1713-22. [PMID: 20201681 DOI: 10.1089/scd.2010.0014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order for human embryonic stem cells (hESCs) to be cultured on mouse embryonic fibroblast (MEFs) feeder cells, continuous basic fibroblast growth factor (bFGF) supplementation is required. However, the role of bFGF in a culture system using human-derived feeder cells has not been evaluated until now. In this study, we propagated the widely used hESC lines, H1 and HSF6, on human placenta-derived feeder cells (HPCs) without exogenous bFGF supplementation, and were able to propagate hESCs on HPC feeders up to 50 passages. The absence of bFGF in culture media did not interrupt the undifferentiated propagation and the expression of pluripotent stem cell markers ALP, SSEA-4, TRA-60, Oct-4, Nanog, and Rex-1, as well as the formation of embryoid bodies (EBs) and their differentiation potential. In contrast, hESCs cocultured with MEF feeders could not propagate and form EBs without exogenous bFGF supplementation. Expression of bFGF and the activation of the ERK1/2-c-Fos/c-Jun pathway, which is known as the signaling pathway of bFGF, were identifiable not only in hESCs cultured in bFGF-containing media regardless of feeder cell type, but also in hESCs cocultured with HPC feeder cells in media without bFGF. These findings may support the hypothesis that HPC feeder cells enhance endogenous bFGF production and activation of the ERK1/2-c-Fos/c-Jun pathway, which suggests that HPCs have an additional advantage in their hESC propagation compared with MEF.
Collapse
Affiliation(s)
- Yong Park
- Institute of Stem Cell Research, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dzierzak E, Robin C. Placenta as a source of hematopoietic stem cells. Trends Mol Med 2010; 16:361-7. [PMID: 20580607 DOI: 10.1016/j.molmed.2010.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/13/2010] [Accepted: 05/14/2010] [Indexed: 01/24/2023]
Abstract
The placenta is a large, highly vascularised hematopoietic tissue that functions during the embryonic and foetal development of eutherian mammals. Although recognised as the interface tissue important in the exchange of oxygen, nutrients and waste products between the foetus and mother, the placenta has increasingly become a focus of research concerning the ontogeny of the blood system. Here, we describe recent data showing the intrinsic hematopoietic potential and appearance of hematopoietic cells in the mouse and human placenta and probe the biological rationale behind its hematopoietic function. As a rest tissue that contains potent hematopoietic stem cells (HSCs), the human placenta could represent (in addition to umbilical cord blood cells) an accessible supplemental source of cells for therapeutic strategies.
Collapse
Affiliation(s)
- Elaine Dzierzak
- Erasmus MC Stem Cell Institute, Dept of Cell Biology, Erasmus University Medical Center Rotterdam, The Netherlands.
| | | |
Collapse
|
15
|
Rubina K, Kalinina N, Efimenko A, Lopatina T, Melikhova V, Tsokolaeva Z, Sysoeva V, Tkachuk V, Parfyonova Y. Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A 2009; 15:2039-50. [PMID: 19368510 DOI: 10.1089/ten.tea.2008.0359] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adipose-derived stromal cells (ASCs) are suggested to be potent candidates for cell therapy of ischemic conditions due to their ability to stimulate blood vessel growth. ASCs produce many angiogenic and anti-apoptotic growth factors, and their secretion is significantly enhanced by hypoxia. Utilizing a Matrigel implant model, we showed that hypoxia-treated ASCs stimulated angiogenesis as well as maturation of the newly formed blood vessels in vivo. To elucidate mechanisms of ASC angiogenic action, we used a co-culture model of ASCs with cells isolated from early postnatal hearts (cardiomyocyte fraction, CMF). CMF contained mature cardiomyocytes, endothelial cells, and progenitor cells. On the second day of culture CMF cells formed spontaneously beating colonies with CD31+ capillary-like structures outgrowing from those cell aggregates. However, these vessel-like structures were not stable, and disassembled within next 5 days. Co-culturing of CMF with ASCs resulted in the formation of stable and branched CD31+ vessel-like structures. Using immunomagnetic depletion of CMF from vascular cells as well as incubation of CMF with mitomycin C-treated ASCs, we showed that in co-culture ASCs enhance blood vessel growth not only by production of paracrine-acting factors but also by promoting the endothelial differentiation of cardiac progenitor cells. All these mechanisms of actions could be beneficial for the stimulation of angiogenesis in ischemic tissues by ASCs administration.
Collapse
Affiliation(s)
- Kseniya Rubina
- Department of Biological and Medical Chemistry, Faculty of Fundamental Medicine, Lomonosov Moscow State University , Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abraham S, Eroshenko N, Rao RR. Role of bioinspired polymers in determination of pluripotent stem cell fate. Regen Med 2009; 4:561-78. [PMID: 19580405 DOI: 10.2217/rme.09.23] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human pluripotent stem cells, including embryonic and induced pluripotent stem cells, hold enormous potential for the treatment of many diseases, owing to their ability to generate cell types useful for therapeutic applications. Currently, many stem cell culture propagation and differentiation systems incorporate animal-derived components for promoting self-renewal and differentiation. However, use of these components is labor intensive, carries the risk of xenogeneic contamination and yields compromised experimental results that are difficult to duplicate. From a biomaterials perspective, the generation of an animal- and cell-free biomimetic microenvironment that provides the appropriate physical and chemical cues for stem cell self-renewal or differentiation into specialized cell types would be ideal. This review presents the use of natural and synthetic polymers that support propagation and differentiation of stem cells, in an attempt to obtain a clear understanding of the factors responsible for the determination of stem cell fate.
Collapse
Affiliation(s)
- Sheena Abraham
- Department of Chemical & Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | | |
Collapse
|
17
|
Robin C, Bollerot K, Mendes S, Haak E, Crisan M, Cerisoli F, Lauw I, Kaimakis P, Jorna R, Vermeulen M, Kayser M, van der Linden R, Imanirad P, Verstegen M, Nawaz-Yousaf H, Papazian N, Steegers E, Cupedo T, Dzierzak E. Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell 2009; 5:385-95. [PMID: 19796619 PMCID: PMC2812802 DOI: 10.1016/j.stem.2009.08.020] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 07/03/2009] [Accepted: 08/28/2009] [Indexed: 12/22/2022]
Abstract
Hematopoietic stem cells (HSCs) are responsible for the life-long production of the blood system and are pivotal cells in hematologic transplantation therapies. During mouse and human development, the first HSCs are produced in the aorta-gonad-mesonephros region. Subsequent to this emergence, HSCs are found in other anatomical sites of the mouse conceptus. While the mouse placenta contains abundant HSCs at midgestation, little is known concerning whether HSCs or hematopoietic progenitors are present and supported in the human placenta during development. In this study we show, over a range of developmental times including term, that the human placenta contains hematopoietic progenitors and HSCs. Moreover, stromal cell lines generated from human placenta at several developmental time points are pericyte-like cells and support human hematopoiesis. Immunostaining of placenta sections during development localizes hematopoietic cells in close contact with pericytes/perivascular cells. Thus, the human placenta is a potent hematopoietic niche throughout development.
Collapse
Affiliation(s)
- Catherine Robin
- Erasmus Stem Cell Institute, Dept of Cell Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Karine Bollerot
- Erasmus Stem Cell Institute, Dept of Cell Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Sandra Mendes
- Erasmus Stem Cell Institute, Dept of Cell Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Esther Haak
- Erasmus Stem Cell Institute, Dept of Cell Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Mihaela Crisan
- Erasmus Stem Cell Institute, Dept of Cell Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Francesco Cerisoli
- Erasmus Stem Cell Institute, Dept of Cell Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Ivoune Lauw
- Erasmus Stem Cell Institute, Dept of Cell Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Polynikis Kaimakis
- Erasmus Stem Cell Institute, Dept of Cell Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Ruud Jorna
- Erasmus Stem Cell Institute, Dept of Cell Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Mark Vermeulen
- Dept of Forensic Molecular Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Manfred Kayser
- Dept of Forensic Molecular Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Reinier van der Linden
- Erasmus Stem Cell Institute, Dept of Cell Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Parisa Imanirad
- Erasmus Stem Cell Institute, Dept of Cell Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Monique Verstegen
- Dept of Hematology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Humaira Nawaz-Yousaf
- Erasmus Stem Cell Institute, Dept of Cell Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Natalie Papazian
- Dept of Hematology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Eric Steegers
- Dept of Obstetrics and Gynecology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Tom Cupedo
- Dept of Hematology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Elaine Dzierzak
- Erasmus Stem Cell Institute, Dept of Cell Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
18
|
Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 2009; 4:423-33. [PMID: 19438317 DOI: 10.2217/rme.09.12] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The recent isolation of fetal stem cells from several sources either at the early stages of development or during the later trimesters of gestation, sharing similar growth kinetics and expressing pluripotency markers, provides strong support to the notion that these cells may be biologically closer to embryonic stem cells, actually representing intermediates between embryonic stem cells and adult mesenchymal stem cells, regarding proliferation rates and plasticity features, and thus able to confer an advantage over postnatal mesenchymal stem cells derived from conventional adult sources such as bone marrow. This conclusion has been strengthened by the different pattern of growth potential between the two stage-specific types of sources, as assessed by transcriptomic and proteomic analysis. A series of recent studies regarding the numerous novel features of fetal stem cells has reignited our interest in the field of stem-cell biology and in the possibilities for the eventual repair of damaged organs and the generation of in vitro tissues on biomimetic scaffolds for transplantation. These studies, employing elegant approaches and novel technologies, have provided new insights regarding the nature and the potential of fetal stem cells derived from placenta, amniotic fluid, amnion or umbilical cord. In this update, we highlight the major progression that has occurred in fetal stem-cell biology and discuss the most important areas for future investigation in the field of regenerative medicine.
Collapse
Affiliation(s)
- Kalliopi I Pappa
- First Department of Obstetrics & Gynecology, University of Athens School of Medicine, Greece.
| | | |
Collapse
|
19
|
Yoo YA, Kang MH, Kim BS, Kim JS, Seo JH. Sustained co-cultivation with human placenta-derived MSCs enhances ALK5/Smad3 signaling in human breast epithelial cells, leading to EMT and differentiation. Differentiation 2009; 77:450-61. [PMID: 19375841 DOI: 10.1016/j.diff.2009.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/03/2009] [Accepted: 03/09/2009] [Indexed: 12/11/2022]
Abstract
The interaction between mammary epithelial cells and their surrounding microenvironment are important in the development of the mammary gland. Thus, mesenchymal stem cells (MSCs), which retain pluripotency for various mesenchymal lineages, may provide a permissive environment for the morphologic alteration and differentiation of mammary epithelial cells. To this end, we investigated whether the interactions between mammary epithelial cells and human placenta-derived MSCs (hPMSC) affect the morphology, proliferation, and differentiation of epithelial cells in a co-culture system. We show that after co-culture with hPMSCs, human mammary epithelial cell lines (MCF-10F and HEMC) underwent significant morphologic alterations and a dramatic increase in ductal-alveolar branching, which was accompanied by a decrease or loss of the epithelial marker E-cadherin and a gain of the mesenchymal markers, alpha-SMA and vimentin. MCF-10F and HEMC proliferation was also inhibited in the presence of hPMSCs, and this retardation in growth was due to cell cycle arrest. Furthermore, in MCF-10F and HMEC cells, hPMSCs induced the production of lipid droplets, milk fat globule protein, and milk protein lactoferrin, which are markers of functional mammary differentiation. We also noticed an elevation in ALK5 and phosphorylated Smad3 protein levels upon hPMSC co-culture. Strikingly, the changes in morphology, proliferation, and differentiation were reversed by treatment with ALK5 or Smad3 knockdown in MCF-10F/hPMSC co-cultures. Collectively, our findings suggest that co-cultivation with hPMSCs leads to epithelial to mesenchymal transition (EMT) and differentiation of human breast epithelial cells through the ALK5/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Young A Yoo
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 136-705, South Korea
| | | | | | | | | |
Collapse
|