1
|
Gong Q, Zeng J, Zhang X, Huang Y, Chen C, Quan J, Ling J. Effect of erythropoietin on angiogenic potential of dental pulp cells. Exp Ther Med 2021; 22:1079. [PMID: 34447472 PMCID: PMC8355638 DOI: 10.3892/etm.2021.10513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Erythropoietin (EPO) is a 34-kDa glycoprotein that possesses the potential for angiogenesis, as well as anti-inflammatory and anti-apoptotic properties. The present study aimed to examine the effect of EPO on the angiogenesis of dental pulp cells (DPCs) and to explore the underlying mechanisms of these effects. It was demonstrated that EPO not only promoted DPCs proliferation but also induced angiogenesis of DPCs in a paracrine fashion. EPO enhanced the angiogenic capacity by stimulating DPCs to secrete a series of angiogenic cytokines. ELISA confirmed that high concentrations of EPO increased the production of MMP-3 and angiopoietin-1 but decreased the secretion of IL-6. Furthermore, EPO activated the ERK1/2 and p38 signaling pathways in DPCs, while inhibition of these pathways diminished the angiogenesis capacity of DPCs. The present study suggested that EPO may have an important role in the repair and regeneration of dental pulp.
Collapse
Affiliation(s)
- Qimei Gong
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Junyu Zeng
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xufang Zhang
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Chanchan Chen
- Department of Stomatology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Jingjing Quan
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
2
|
Choudhary P, Gupta A, Singh S. Therapeutic Advancement in Neuronal Transdifferentiation of Mesenchymal Stromal Cells for Neurological Disorders. J Mol Neurosci 2020; 71:889-901. [PMID: 33047251 DOI: 10.1007/s12031-020-01714-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders have become the leading cause of chronic pain and death. Treatments available are not sufficient to help the patients as they only alleviate the symptoms and not the cause. In this regard, stem cells therapy has emerged as an upcoming option for the replacement of dead and damaged neurons. Stem cells, in general, are characterized as cells exhibiting potency properties, i.e., on being subjected to specific conditions they transform into cells of another lineage. Of all the types, mesenchymal stem cells (MSCs) are known for their pluripotent nature without the obstacle of ethical concern surrounding the procurement of other cell types. Although fibroblasts are quite similar to MSCs morphologically, certain markers like CD73, CD 90 are specific to MSCs, making both the cell types distinguishable from each other. This is implemented while procuring MSCs from a plethora of sources like umbilical cord blood, adipose tissue, bone marrow, etc. Among these, bone marrow MSCs are the most widely used type for neural regeneration. Neural regeneration is achieved via transdifferentiation. Several studies have either transplanted the stem cells into rodent models or have carried out transdifferentiation in vitro. The process involves a combination of growth factors, pre-treatment factors, and neuronal differentiation inducing mediums. The results obtained are characterized by neuron-like morphology, expression of markers, along with electrophysical activity in some. Recent attempts involve exploring biomaterials that may mimic the native ECM and therefore can be directly introduced at the site of interest. The review gives a brief description of MSCs, their sources and markers, and the different attempts that have been made towards achieving the goal of differentiating MSCs into neurons.
Collapse
Affiliation(s)
- Princy Choudhary
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Ayushi Gupta
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Sangeeta Singh
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
3
|
Park HH, Han MH, Choi H, Lee YJ, Kim JM, Cheong JH, Ryu JI, Lee KY, Koh SH. Mitochondria damaged by Oxygen Glucose Deprivation can be Restored through Activation of the PI3K/Akt Pathway and Inhibition of Calcium Influx by Amlodipine Camsylate. Sci Rep 2019; 9:15717. [PMID: 31673096 PMCID: PMC6823474 DOI: 10.1038/s41598-019-52083-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/13/2019] [Indexed: 12/25/2022] Open
Abstract
Amlodipine, a L-type calcium channel blocker, has been reported to have a neuroprotective effect in brain ischemia. Mitochondrial calcium overload leads to apoptosis of cells in neurologic diseases. We evaluated the neuroprotective effects of amlodipine camsylate (AC) on neural stem cells (NSCs) injured by oxygen glucose deprivation (OGD) with a focus on mitochondrial structure and function. NSCs were isolated from rodent embryonic brains. Effects of AC on cell viability, proliferation, level of free radicals, and expression of intracellular signaling proteins were assessed in OGD-injured NSCs. We also investigated the effect of AC on mitochondrial structure in NSCs under OGD by transmission electron microscopy. AC increased the viability and proliferation of NSCs. This beneficial effect of AC was achieved by strong protection of mitochondria. AC markedly enhanced the expression of mitochondrial biogenesis-related proteins and mitochondrial anti-apoptosis proteins. Together, our results indicate that AC protects OGD-injured NSCs by protecting mitochondrial structure and function. The results of the present study provide insight into the mechanisms underlying the protective effects of AC on NSCs.
Collapse
Affiliation(s)
- Hyun-Hee Park
- Departments of Neurology, Hanyang University Guri Hospital, 11923, Guri, Korea
| | - Myung-Hoon Han
- Departments of Neurosurgery, Hanyang University Guri Hospital, 11923, Guri, Korea
| | - Hojin Choi
- Departments of Neurology, Hanyang University Guri Hospital, 11923, Guri, Korea
| | - Young Joo Lee
- Departments of Neurology, Hanyang University Guri Hospital, 11923, Guri, Korea
| | - Jae Min Kim
- Departments of Neurosurgery, Hanyang University Guri Hospital, 11923, Guri, Korea
| | - Jin Hwan Cheong
- Departments of Neurosurgery, Hanyang University Guri Hospital, 11923, Guri, Korea
| | - Je Il Ryu
- Departments of Neurosurgery, Hanyang University Guri Hospital, 11923, Guri, Korea
| | - Kyu-Yong Lee
- Departments of Neurology, Hanyang University Guri Hospital, 11923, Guri, Korea.
| | - Seong-Ho Koh
- Departments of Neurology, Hanyang University Guri Hospital, 11923, Guri, Korea.
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, 04763, Seoul, Korea.
| |
Collapse
|
4
|
Barati S, Ragerdi Kashani I, Moradi F, Tahmasebi F, Mehrabi S, Barati M, Joghataei MT. Mesenchymal stem cell mediated effects on microglial phenotype in cuprizone-induced demyelination model. J Cell Biochem 2019; 120:13952-13964. [PMID: 30963634 DOI: 10.1002/jcb.28670] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/06/2019] [Accepted: 02/28/2019] [Indexed: 12/23/2022]
Abstract
Microglial cells have an essential role in neurodegenerative disorders, such as multiple sclerosis. They are divided into two subgroups: M1 and M2 phenotypes. Mesenchymal stem cells (MSC), with neuroprotective and immunomodulating properties, could improve these diseases. We evaluate the immunomodulating effects of MSC on microglial phenotypes and the improvement of demyelination in a cuprizone (CPZ) model of multiple sclerosis (MS). For inducing the chronic demyelination model, C57BL6 mice were given a diet with 0.2% CPZ (w/w) for 12 weeks. In the MSC group, cells were transplanted into the right lateral ventricle of mice. The expression of targeted genes was assessed by real-time polymerase chain reaction. M1 and M2 microglial phenotypes were assessed by immunohistochemistry of inducible nitric oxide synthase (iNOS) and Arg-1, respectively. Remyelination was studied by luxal fast blue (LFB) staining and electron microscopy (EM). We found that MSC transplantation reduced the expression level of M1-specific messenger RNA (mRNA; iNOS and CD86) but increased the expression level of M2 specific genes (CD206, Arg-1, and CX3CR1) in comparison to the CPZ group. Moreover, cell therapy significantly decreased the M1 marker (iNOS+ cells), but M2 marker (Arg-1+ cells) significantly increased in comparison with the CPZ group. In addition, MSC treatment significantly increased the CX3CL1 expression level in comparison with the CPZ group and led to improvement in remyelination, which was confirmed by LFB and EM images. The results showed that MSC transplantation increases the M2 and decreases the M1 phenotype in MS. This change was accompanied by decrease in demyelination and axonal injury and indicated that MSCs have a positive effect on MS by modification of microglia cells.
Collapse
Affiliation(s)
- Shirin Barati
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Moradi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
5
|
Zappa Villar MF, Lehmann M, García MG, Mazzolini G, Morel GR, Cónsole GM, Podhajcer O, Reggiani PC, Goya RG. Mesenchymal stem cell therapy improves spatial memory and hippocampal structure in aging rats. Behav Brain Res 2019; 374:111887. [PMID: 30951751 DOI: 10.1016/j.bbr.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
There is a growing interest in the potential of mesenchymal stem cells (MSCs) for implementing regenerative medicine in the brain as they have shown neurogenic and immunomodulatory activities. We assessed the effect of intracerebroventricular (icv) administration of human bone marrow-derived MSCs (hBM-MSCs) on spatial memory and hippocampal morphology of senile (27 months) female rats, using 3-months-old counterparts as young controls. Half of the animals were injected in the lateral ventricles (LV) with a suspension containing 5 × 105hBM-MSCs in 8 μl per side. The other half received no treatment (senile controls). Spatial memory performance was assessed with a modified version of the Barnes maze test. We employed one probe trial, one day after training in order to evaluate learning ability as well as spatial memory retention. Neuroblast (DCX) and microglial (Iba-1 immunoreactive) markers were also immunohistochemically quantitated in the animals by means of an unbiased stereological approach. In addition, hippocampal presynaptic protein expression was assessed by immunoblotting analysis. After treatment, the senile MSC-treated group showed a significant improvement in spatial memory accuracy and extended permanence in a one- and 3-hole goal sectors as compared with senile controls. The MSC treatment increased the number of neuroblasts in the hippocampal dentate gyrus, reduced the number of reactive microglial cells, and restored presynaptic protein levels as compared to senile controls. We conclude that icv injected hBM-MSCs are effective in improving spatial memory in senile rats and that the strategy improves some functional and morphologic brain features typically altered in aging rats.
Collapse
Affiliation(s)
- Maria F Zappa Villar
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Marianne Lehmann
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Mariana G García
- Gene Therapy Laboratory, IIMT, School of Medical Science, Austral University, Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, IIMT, School of Medical Science, Austral University, Buenos Aires, Argentina
| | - Gustavo R Morel
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Gloria M Cónsole
- Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Osvaldo Podhajcer
- Laboratory of Molecular and Cellular Therapy, Fundacion Instituto Leloir, Buenos Aires, Argentina
| | - Paula C Reggiani
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Rodolfo G Goya
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina.
| |
Collapse
|
6
|
Atorvastatin Rejuvenates Neural Stem Cells Injured by Oxygen–Glucose Deprivation and Induces Neuronal Differentiation Through Activating the PI3K/Akt and ERK Pathways. Mol Neurobiol 2018; 56:2964-2977. [DOI: 10.1007/s12035-018-1267-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 07/18/2018] [Indexed: 01/01/2023]
|
7
|
Cheng Y, Jiang Y, Zhang L, Wang J, Chai D, Hu R, Li C, Sun Y, Jiang H. Mesenchymal stromal cells attenuate sevoflurane-induced apoptosis in human neuroglioma H4 cells. BMC Anesthesiol 2018; 18:84. [PMID: 30021512 PMCID: PMC6052698 DOI: 10.1186/s12871-018-0553-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/27/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Inhalation of sevoflurane can induce neuronal apoptosis, cognitive impairment and abnormal behaviors. Bone marrow mesenchymal stem cells (MSCs) can secret neurotrophic factors and cytokines to protect from oxidative stress-related neuronal apoptosis. However, whether MSCs can protect from sevoflurane-induced neuronal apoptosis and the potential mechanisms are unclear. METHODS A non-contact co-culture of MSCs with human neuroglioma H4 cells (H4 cells) was built. H4 cells were co-cultured with MSCs or without MSCs (control) for 24 h. The co-cultured H4 cells were exposed to 4% sevoflurane for 6 h. The levels of caspase-3, reactive oxygen species (ROS), adenosine triphosphate (ATP), and the release of cytochrome C were determined by Western blot and fluorescence assay. RESULTS Sevoflurane exposure significantly elevated the levels of cleaved caspase 3 and Bax in H4 cells. However, these phenomena were significantly offset by the co-culture with MSCs in H4 cells. Co-culture with MSCs before, but not after, sevoflurane exposure, significantly attenuated sevoflurane-induced ROS production in H4 cells. MSCs prevented sevoflurane-mediated release of cytochrome C from the mitochondria and production of ATP in H4 cells. CONCLUSIONS Our study indicated that soluble factors secreted by MSCs attenuated the sevoflurane-induced oxidative stress and apoptosis of neuronal cells by preserving their mitochondrial function.
Collapse
Affiliation(s)
- Yanyong Cheng
- Department of Anesthesiology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Yunfeng Jiang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Jiayi Wang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Dongdong Chai
- Department of Anesthesiology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Rong Hu
- Department of Anesthesiology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Chunzhu Li
- Department of Anesthesiology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Yu Sun
- Department of Anesthesiology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, 639 Zhizaoju Road, Shanghai, 200011 China
| |
Collapse
|
8
|
Park HH, Lee KY, Park DW, Choi NY, Lee YJ, Son JW, Kim S, Moon C, Kim HW, Rhyu IJ, Koh SH. Tracking and protection of transplanted stem cells using a ferrocenecarboxylic acid-conjugated peptide that mimics hTERT. Biomaterials 2017; 155:80-91. [PMID: 29169040 DOI: 10.1016/j.biomaterials.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 02/07/2023]
Abstract
In vivo tracking of transplanted stem cells has been a central aim of stem cell therapy. Although many tracking systems have been introduced, no method has yet been validated for clinical applications. We developed a novel sophisticated peptide (GV1001) that mimics hTERT (human telomerase reverse transcriptase) and analysed its ability to track and protect stem cells after transplantation. Ferrocenecarboxylic acid-conjugated GV1001 (Fe-GV1001) efficiently penetrated stem cells with no adverse effects. Moreover, Fe-GV1001 improved the viability, proliferation, and migration of stem cells under hypoxia. After Fe-GV1001-labelled stem cells were transplanted into the brains of rats after stroke, the labelled cells were easily tracked by MRI. Our findings indicate that Fe-GV1001 can be used for the in vivo tracking of stem cells after transplantation into the brain and can improve the efficacy of stem cell therapy by sustaining and enhancing stem cell characteristics under disease conditions.
Collapse
Affiliation(s)
- Hyun-Hee Park
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Dong Woo Park
- Department of Radiology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Na-Young Choi
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea
| | - Jeong-Woo Son
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, 04763, South Korea
| | - Sangjae Kim
- Teloid Inc., 920 Westholme Ave, Los Angeles (City), CA 90024, USA
| | - Chanil Moon
- Department of Neuroscience, GemVax & KAEL Co., Ltd., Seoul, South Korea
| | - Hyun-Wook Kim
- Brain Korea 21 PLUS, KU Medical Science Center for Convergent Translational Research, 73 Inchonro, Seongbuk-gu, Seoul, 136-705, South Korea; Department of Anatomy, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 136-705, South Korea
| | - Im Joo Rhyu
- Brain Korea 21 PLUS, KU Medical Science Center for Convergent Translational Research, 73 Inchonro, Seongbuk-gu, Seoul, 136-705, South Korea; Department of Anatomy, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 136-705, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do 11923, South Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, 04763, South Korea.
| |
Collapse
|
9
|
Noh MY, Lim SM, Oh KW, Cho KA, Park J, Kim KS, Lee SJ, Kwon MS, Kim SH. Mesenchymal Stem Cells Modulate the Functional Properties of Microglia via TGF-β Secretion. Stem Cells Transl Med 2016; 5:1538-1549. [PMID: 27400795 DOI: 10.5966/sctm.2015-0217] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
: The regulation of microglial cell phenotype is a potential therapeutic intervention in neurodegenerative disease. Previously, we reported that transforming growth factor-β (TGF-β) levels in mesenchymal stromal cells (MSCs) could be used as potential biological markers to predict the effectiveness of autologous MSC therapy in patients with amyotrophic lateral sclerosis. However, the underlying mechanism of TGF-β in MSCs was not fully elucidated in determining the functional properties of microglia. In this study, we aimed to clarify the role of TGF-β that is involved in MSC effectiveness, especially focusing on microglia functional properties that play a pivotal role in neuroinflammation. We found that MSC-conditioned media (MSC-CM) inhibited proinflammatory cytokine expression, restored alternative activated microglia phenotype markers (fractalkine receptor, mannose receptor, CD200 receptor), and enhanced phagocytosis in lipopolysaccharide (LPS)-stimulated microglia. In addition, TGF-β in MSC-CM played a major role in these effects by inhibiting the nuclear factor-κB pathway and restoring the TGF-β pathway in LPS-stimulated microglia. Recombinant TGF-β also induced similar effects to MSC-CM in LPS-stimulated microglia. Therefore, we propose that MSCs can modulate the functional properties of microglia via TGF-β secretion, switching them from a classically activated phenotype to an inflammation-resolving phenotype. The latter role may be associated with the inhibition of neuroinflammatory processes in neurodegenerative disorders. SIGNIFICANCE The results of this study showed that microglia functional properties may be modulated depending on the composition and quantity of mesenchymal stromal cell (MSC)-secreting factors. Transforming growth factor (TGF)-β is proposed as a modulator of microglia functional properties among MSC-secreting factors, and this study aligns with a previous clinical study by these same authors. TGF-β releasing capacity could be an important factor enhancing the therapeutic efficacy of MSCs in clinical trials.
Collapse
Affiliation(s)
- Min Young Noh
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Su Min Lim
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Ki-Wook Oh
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kyung-Ah Cho
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Department of Neural Development and Disease and Behavioral Neuroepigenetics Laboratory, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jinseok Park
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kyung-Suk Kim
- Bioengineering Institute, CORESTEM Inc., Seoul, Republic of Korea
| | - Su-Jung Lee
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, School of Medicine, CHA University, Gyeonggi-do, Republic of Korea
| | - Seung Hyun Kim
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Park HH, Yu HJ, Kim S, Kim G, Choi NY, Lee EH, Lee YJ, Yoon MY, Lee KY, Koh SH. Neural stem cells injured by oxidative stress can be rejuvenated by GV1001, a novel peptide, through scavenging free radicals and enhancing survival signals. Neurotoxicology 2016; 55:131-141. [PMID: 27265016 DOI: 10.1016/j.neuro.2016.05.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/21/2022]
Abstract
Oxidative stress is a well-known pathogenic mechanism of a diverse array of neurological diseases, and thus, numerous studies have attempted to identify antioxidants that prevent neuronal cell death. GV1001 is a 16-amino-acid peptide derived from human telomerase reverse transcriptase (hTERT). Considering that hTERT has a strong antioxidant effect, whether GV1001 also has an antioxidant effect is a question of interest. In the present study, we aimed to investigate the effects of GV1001 against oxidative stress in neural stem cells (NSCs). Primary culture NSCs were treated with different concentrations of GV1001 and/or hydrogen peroxide (H2O2) for various time durations. The H2O2 decreased the viability of the NSCs in a concentration-dependent manner, with 200μM H2O2 significantly decreasing both proliferation and migration. However, treatment with GV1001 rescued the viability, proliferation and migration of H2O2-injured NSCs. Consistently, free radical levels were increased in rat NSCs treated with H2O2, while co-treatment with GV1001 significantly reduced these levels, especially the intracellular levels. In addition, GV1001 restored the expression of survival-related proteins and reduced the expression of death-associated ones in NSCs treated with H2O2. In conclusion, GV1001 has antioxidant and neuroprotective effects in NSCs following treatment with H2O2, which appear to be mediated by scavenging free radicals, increasing survival signals and decreasing death signals.
Collapse
Affiliation(s)
- Hyun-Hee Park
- Department of Neurology, Hanyang University College of Medicine, Seoul, South Korea
| | - Hyun-Jung Yu
- Department of Neurology, Bundang Jesaeng General Hospital, Gyeonggi, South Korea
| | - Sangjae Kim
- Department of Neuroscience, KAEL-Gemvax Co., Ltd., Seoul, South Korea
| | - Gabseok Kim
- Department of Neuroscience, KAEL-Gemvax Co., Ltd., Seoul, South Korea
| | - Na-Young Choi
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, South Korea
| | - Eun-Hye Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, South Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University College of Medicine, Seoul, South Korea
| | - Moon-Young Yoon
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University College of Medicine, Seoul, South Korea.
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, South Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, South Korea.
| |
Collapse
|
11
|
Umashankar A, Corenblum MJ, Ray S, Valdez M, Yoshimaru ES, Trouard TP, Madhavan L. Effects of the iron oxide nanoparticle Molday ION Rhodamine B on the viability and regenerative function of neural stem cells: relevance to clinical translation. Int J Nanomedicine 2016; 11:1731-48. [PMID: 27175074 PMCID: PMC4854246 DOI: 10.2147/ijn.s102006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An essential component of developing successful neural stem cell (NSC)-based therapies involves the establishment of methodologies to noninvasively monitor grafted NSCs within brain tissues in real time. In this context, ex vivo labeling with ultrasmall superparamagnetic iron oxide (USPIO) particles has been shown to enable efficient tracking of transplanted NSCs via magnetic resonance imaging (MRI). However, whether and how USPIO labeling affects the intrinsic biology of NSCs is not thoroughly understood, and remains an active area of investigation. Here, we perform a comprehensive examination of rat NSC survival and regenerative function upon labeling with the USPIO, Molday ION Rhodamine B (MIRB), which allows for dual magnetic resonance and optical imaging. After optimization of labeling efficiency, two specific doses of MIRB (20 and 50 μg/mL) were chosen and were followed for the rest of the study. We observed that both MIRB doses supported the robust detection of NSCs, over an extended period of time in vitro and in vivo after transplantation into the striata of host rats, using MRI and post hoc fluorescence imaging. Both in culture and after neural transplantation, the higher 50 μg/mL MIRB dose significantly reduced the survival, proliferation, and differentiation rate of the NSCs. Interestingly, although the lower 20 μg/mL MIRB labeling did not produce overtly negative effects, it increased the proliferation and glial differentiation of the NSCs. Additionally, application of this dose also changed the morphological characteristics of neurons and glia produced after NSC differentiation. Importantly, the transplantation of NSCs labeled with either of the two MIRB doses upregulated the immune response in recipient animals. In particular, in animals receiving the 50 μg/mL MIRB-labeled NSCs, this immune response consisted of an increased number of CD68+-activated microglia, which appeared to have phagocytosed MIRB particles and cells contributing to an exaggerated MRI signal dropout in the animals. Overall, these results indicate that although USPIO particles, such as MIRB, may have advantageous labeling and magnetic resonance-sensitive features for NSC tracking, a further examination of their effects might be necessary before they can be used in clinical scenarios of cell-based transplantation.
Collapse
Affiliation(s)
- Abhishek Umashankar
- Department of Neurology, University of Arizona, Tucson, AZ, USA; Neuroscience and Cognitive Science Undergraduate Program, Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, USA
| | | | - Sneha Ray
- Department of Neurology, University of Arizona, Tucson, AZ, USA; Neuroscience and Cognitive Science Undergraduate Program, Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, USA
| | - Michel Valdez
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Eriko S Yoshimaru
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Theodore P Trouard
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Lalitha Madhavan
- Department of Neurology, University of Arizona, Tucson, AZ, USA; Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
12
|
Khairallah MI, Kassem LA, Yassin NA, Gamal el Din MA, Zekri M, Attia M. Activation of migration of endogenous stem cells by erythropoietin as potential rescue for neurodegenerative diseases. Brain Res Bull 2016; 121:148-57. [PMID: 26802509 DOI: 10.1016/j.brainresbull.2016.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/09/2016] [Accepted: 01/18/2016] [Indexed: 01/21/2023]
Abstract
UNLABELLED Neurodegenerative disorders such as Alzheimer's disease (AD) are characterized by progressive cognitive dysfunction and memory loss. There is deposition of amyloid plaques in the brain and subsequent neuronal loss. Neuroinflammation plays a key role in the pathogenesis of AD. There is still no effective curative therapy for these patients. One promising strategy involves the stimulation of endogenous stem cells. This study investigated the therapeutic effect of erythropoietin (EPO) in neurogenesis, and proved its manipulation of the endogenous mesenchymal stem cells in model of lipopolysaccharide (LPS)-induced neuroinflammation. METHODS Forty five adult male mice were divided equally into 3 groups: Group I (control), group II (LPS untreated group): mice were injected with single dose of lipopolysaccharide (LPS) 0.8 mg/kg intraperitoneally (ip) to induce neuroinflammation, group III (EPO treated group): in addition to (LPS) mice were further injected with EPO in dose of 40 μg/kg of body weight three times weekly for 5 consecutive weeks. Groups were tested for their locomotor activity and memory using open field test and Y-maze. Cerebral specimens were subjected to histological and morphometric studies. Glial fibrillary acidic protein (GFAP) and mesenchymal stem cell marker CD44 were assessed using immunostaining. Gene expression of brain derived neurotrophic factor (BDNF) was examined in brain tissue. RESULTS LPS decreased locomotor activity and percentage of correct choices in Y-maze test. Cerebral sections of LPS treated mice showed increased percentage area of dark nuclei and amyloid plaques. Multiple GFAP positive astrocytes were detected in affected cerebral sections. In addition, decrease BDNF gene expression was noted. On the other hand, EPO treated group, showed improvement in locomotor and cognitive function. Examination of the cerebral sections showed multiple neurons exhibiting less dark nuclei and less amyloid plaques in comparison to the untreated group. GFAP positive astrocytes were also reduced. Cerebral sections of the EPO treated group showed multiple branched and spindle CD44 positive cells inside and around blood vessels more than in LPS group. This immunostaining was negative in the control group. EPO administration increased BDNF gene expression. CONCLUSION This study proved that EPO provides excellent neuroprotective and neurotrophic effects in vivo model of LPS induced neuroinflammation. It enhances brain tissue regeneration via stimulation of endogenous mesenchymal stem cells proliferation and their migration to the site of inflammation. EPO also up regulates cerebral BDNF expression and production, which might contributes to EPO mediated neurogenesis. It also attenuates reactive gliosis thus reduces neuroinflammation. These encouraging results obtained with the use of EPO proved that it may be a promising candidate for future clinical application and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- M I Khairallah
- Department of Physiology, Egypt; Faculty of Pharmacy & Biotechnology-German University in Cairo (GUC), Egypt.
| | - L A Kassem
- Department of Physiology, Egypt; Faculty of Pharmacy & Biotechnology-German University in Cairo (GUC), Egypt; Faculty of Medicine, Cairo University, Egypt
| | - N A Yassin
- Department of Physiology, Egypt; Faculty of Pharmacy & Biotechnology-German University in Cairo (GUC), Egypt; Faculty of Medicine, Cairo University, Egypt
| | - M A Gamal el Din
- Department of Physiology, Egypt; Faculty of Pharmacy & Biotechnology-German University in Cairo (GUC), Egypt; Faculty of Medicine, Cairo University, Egypt
| | - M Zekri
- Department of Histology, Egypt; Faculty of Medicine, Cairo University, Egypt
| | - M Attia
- Department of Histology, Egypt; Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
13
|
Oh KW, Moon C, Kim HY, Oh SI, Park J, Lee JH, Chang IY, Kim KS, Kim SH. Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Transl Med 2015; 4:590-7. [PMID: 25934946 DOI: 10.5966/sctm.2014-0212] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/16/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Stem cell therapy is an emerging alternative therapeutic or disease-modifying strategy for amyotrophic lateral sclerosis (ALS). The aim of this open-label phase I clinical trial was to evaluate the safety of two repeated intrathecal injections of autologous bone marrow (BM)-derived mesenchymal stromal cells (MSCs) in ALS patients. Eight patients with definite or probable ALS were enrolled. After a 3-month lead-in period, autologous MSCs were isolated two times from the BM at an interval of 26 days and were then expanded in vitro for 28 days and suspended in autologous cerebrospinal fluid. Of the 8 patients, 7 received 2 intrathecal injections of autologous MSCs (1 × 10(6) cells per kg) 26 days apart. Clinical or laboratory measurements were recorded to evaluate the safety 12 months after the first MSC injection. The ALS Functional Rating Scale-Revised (ALSFRS-R), the Appel ALS score, and forced vital capacity were used to evaluate the patients' disease status. One patient died before treatment and was withdrawn from the study. With the exception of that patient, no serious adverse events were observed during the 12-month follow-up period. Most of the adverse events were self-limited or subsided after supportive treatment within 4 days. Decline in the ALSFRS-R score was not accelerated during the 6-month follow-up period. Two repeated intrathecal injections of autologous MSCs were safe and feasible throughout the duration of the 12-month follow-up period. SIGNIFICANCE Stem cell therapy is an emerging alternative therapeutic or disease-modifying strategy for amyotrophic lateral sclerosis (ALS). To the authors' best knowledge, there are no clinical trials to evaluate the safety of repeated intrathecal injections of autologous bone marrow mesenchymal stromal cells in ALS. After the clinical trial (phase I/II) was conducted, the stem cell (HYNR-CS, NEURONATA-R) was included in the revision of the regulations on orphan drug designation (number 160; December 31, 2013) and approved as a New Drug Application (Department of Cell and Gene Therapy 233; July 30, 2014) by the Korean Food and Drug Administration. The phase II trial is expected to be reported later.
Collapse
Affiliation(s)
- Ki-Wook Oh
- Department of Neurology, College of Medicine and Cell Therapy Center for Neurologic Disorders, Hanyang University Hospital, Seoul, Republic of Korea; Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea; Bioengineering Institute, Corestem Inc., Seoul, Republic of Korea
| | - Chanil Moon
- Department of Neurology, College of Medicine and Cell Therapy Center for Neurologic Disorders, Hanyang University Hospital, Seoul, Republic of Korea; Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea; Bioengineering Institute, Corestem Inc., Seoul, Republic of Korea
| | - Hyun Young Kim
- Department of Neurology, College of Medicine and Cell Therapy Center for Neurologic Disorders, Hanyang University Hospital, Seoul, Republic of Korea; Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea; Bioengineering Institute, Corestem Inc., Seoul, Republic of Korea
| | - Sung-Il Oh
- Department of Neurology, College of Medicine and Cell Therapy Center for Neurologic Disorders, Hanyang University Hospital, Seoul, Republic of Korea; Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea; Bioengineering Institute, Corestem Inc., Seoul, Republic of Korea
| | - Jinseok Park
- Department of Neurology, College of Medicine and Cell Therapy Center for Neurologic Disorders, Hanyang University Hospital, Seoul, Republic of Korea; Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea; Bioengineering Institute, Corestem Inc., Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Neurology, College of Medicine and Cell Therapy Center for Neurologic Disorders, Hanyang University Hospital, Seoul, Republic of Korea; Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea; Bioengineering Institute, Corestem Inc., Seoul, Republic of Korea
| | - In Young Chang
- Department of Neurology, College of Medicine and Cell Therapy Center for Neurologic Disorders, Hanyang University Hospital, Seoul, Republic of Korea; Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea; Bioengineering Institute, Corestem Inc., Seoul, Republic of Korea
| | - Kyung Suk Kim
- Department of Neurology, College of Medicine and Cell Therapy Center for Neurologic Disorders, Hanyang University Hospital, Seoul, Republic of Korea; Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea; Bioengineering Institute, Corestem Inc., Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine and Cell Therapy Center for Neurologic Disorders, Hanyang University Hospital, Seoul, Republic of Korea; Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea; Bioengineering Institute, Corestem Inc., Seoul, Republic of Korea
| |
Collapse
|
14
|
Bulycheva E, Rauner M, Medyouf H, Theurl I, Bornhäuser M, Hofbauer LC, Platzbecker U. Myelodysplasia is in the niche: novel concepts and emerging therapies. Leukemia 2014; 29:259-68. [PMID: 25394715 PMCID: PMC4320287 DOI: 10.1038/leu.2014.325] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/25/2014] [Indexed: 12/28/2022]
Abstract
Myelodysplastic syndromes (MDSs) represent clonal disorders mainly of the elderly that are characterized by ineffective hematopoiesis and an increased risk of transformation into acute myeloid leukemia. The pathogenesis of MDS is thought to evolve from accumulation and selection of specific genetic or epigenetic events. Emerging evidence indicates that MDS is not solely a hematopoietic disease but rather affects the entire bone marrow microenvironment, including bone metabolism. Many of these cells, in particular mesenchymal stem and progenitor cells (MSPCs) and osteoblasts, express a number of adhesion molecules and secreted factors that regulate blood regeneration throughout life by contributing to hematopoietic stem and progenitor cell (HSPC) maintenance, self-renewal and differentiation. Several endocrine factors, such as erythropoietin, parathyroid hormone and estrogens, as well as deranged iron metabolism modulate these processes. Thus, interactions between MSPC and HSPC contribute to the pathogenesis of MDS and associated pathologies. A detailed understanding of these mechanisms may help to define novel targets for diagnosis and possibly therapy. In this review, we will discuss the scientific rationale of ‘osteohematology' as an emerging research field in MDS and outline clinical implications.
Collapse
Affiliation(s)
- E Bulycheva
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl-Gustav-Carus, Technische Universität, Dresden, Germany
| | - M Rauner
- Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl-Gustav-Carus, Technische Universität, Dresden, Germany
| | - H Medyouf
- Georg-Speyer-Haus, Institut for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - I Theurl
- Department of Internal Medicine VI, Medical University of Innsbruck, Innsbruck, Austria
| | - M Bornhäuser
- 1] Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl-Gustav-Carus, Technische Universität, Dresden, Germany [2] Center for Regenerative Therapies Dresden, Technical University, Dresden, Germany
| | - L C Hofbauer
- 1] Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl-Gustav-Carus, Technische Universität, Dresden, Germany [2] Center for Regenerative Therapies Dresden, Technical University, Dresden, Germany
| | - U Platzbecker
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl-Gustav-Carus, Technische Universität, Dresden, Germany
| |
Collapse
|
15
|
Taran R, Mamidi MK, Singh G, Dutta S, Parhar IS, John JP, Bhonde R, Pal R, Das AK. In vitro and in vivo neurogenic potential of mesenchymal stem cells isolated from different sources. J Biosci 2014; 39:157-69. [PMID: 24499800 DOI: 10.1007/s12038-013-9409-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regenerative medicine is an evolving interdisciplinary topic of research involving numerous technological methods that utilize stem cells to repair damaged tissues. Particularly, mesenchymal stem cells (MSCs) are a great tool in regenerative medicine because of their lack of tumorogenicity, immunogenicity and ability to perform immunomodulatory as well as anti-inflammatory functions. Numerous studies have investigated the role of MSCs in tissue repair and modulation of allogeneic immune responses. MSCs derived from different sources hold unique regenerative potential as they are self-renewing and can differentiate into chondrocytes, osteoblasts, adipocytes, cardiomyocytes, hepatocytes, endothelial and neuronal cells, among which neuronal-like cells have gained special interest. MSCs also have the ability to secrete multiple bioactive molecules capable of stimulating recovery of injured cells and inhibiting inflammation. In this review we focus on neural differentiation potential of MSCs isolated from different sources and how certain growth factors/small molecules can be used to derive neuronal phenotypes from MSCs. We also discuss the efficacy of MSCs when transplanted in vivo and how they can generate certain neurons and lead to relief or recovery of the diseased condition. Furthermore, we have tried to evaluate the appropriatemerits of different sources ofMSCs with respect to their propensity towards neurological differentiation as well as their effectiveness in preclinical studies.
Collapse
Affiliation(s)
- Ramyani Taran
- Manipal Institute of Regenerative Medicine, Manipal University Branch Campus, Bangalore, India
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kwon MS, Noh MY, Oh KW, Cho KA, Kang BY, Kim KS, Kim YS, Kim SH. The immunomodulatory effects of human mesenchymal stem cells on peripheral blood mononuclear cells in ALS patients. J Neurochem 2014; 131:206-18. [PMID: 24995608 DOI: 10.1111/jnc.12814] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 12/12/2022]
Abstract
In a previous study, we reported that intrathecal injection of mesenchymal stem cells (MSCs) slowed disease progression in G93A mutant superoxide dismutase1 transgenic mice. In this study, we found that intrathecal MSC administration vastly increased the infiltration of peripheral immune cells into the spinal cord of Amyotrophic lateral sclerosis (ALS) mice (G93A mutant superoxide dismutase1 transgenic). Thus, we investigated the immunomodulatory effect of MSCs on peripheral blood mononuclear cells (PBMCs) in ALS patients, focusing on regulatory T lymphocytes (Treg ; CD4(+) /CD25(high) /FoxP3(+) ) and the mRNA expression of several cytokines (IFN-γ, TNF-α, IL-17, IL-4, IL-10, IL-13, and TGF-β). Peripheral blood samples were obtained from nine healthy controls (HC) and sixteen patients who were diagnosed with definite or probable ALS. Isolated PBMCs from the blood samples of all subjects were co-cultured with MSCs for 24 or 72 h. Based on a fluorescence-activated cell sorting analysis, we found that co-culture with MSCs increased the Treg /total T-lymphocyte ratio in the PBMCs from both groups according to the co-culture duration. Co-culture of PBMCs with MSCs for 24 h led to elevated mRNA levels of IFN-γ and IL-10 in the PBMCs from both groups. However, after co-culturing for 72 h, although the IFN-γ mRNA level had returned to the basal level in co-cultured HC PBMCs, the IFN-γ mRNA level in co-cultured ALS PBMCs remained elevated. Additionally, the levels of IL-4 and TGF-β were markedly elevated, along with Gata3 mRNA, a Th2 transcription factor mRNA, in both HC and ALS PBMCs co-cultured for 72 h. The elevated expression of these cytokines in the co-culture supernatant was confirmed via ELISA. Furthermore, we found that the increased mRNA level of indoleamine 2,3-dioxygenase (IDO) in the co-cultured MSCs was correlated with the increase in Treg induction. These findings of Treg induction and increased anti-inflammatory cytokine expression in co-cultured ALS PBMCs provide indirect evidence that MSCs may play a role in the immunomodulation of inflammatory responses when MSC therapy is targeted to ALS patients. We propose the following mechanism for the effect of mesenchymal stem cells (MSCs) administered intrathecally in amyotrophic lateral sclerosis (ALS): MSCs increase infiltration of peripheral immune cells into CNS and skew the infiltrated immune cells toward regulatory T lymphocytes (Treg ) and Th2 lymphocytes. Treg and Th2 secret anti-inflammatory cytokines such as IL-4, IL-10, and TGF-β. A series of immunomodulatory mechanism provides a new strategy for ALS treatment.
Collapse
Affiliation(s)
- Min-Soo Kwon
- Department of Pharmacology, School of Medicine, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Min-Young Noh
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Haengdang-dong, Seoul, Korea
| | - Ki-Wook Oh
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Haengdang-dong, Seoul, Korea
| | - Kyung-Ah Cho
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Haengdang-dong, Seoul, Korea
| | - Byung-Yong Kang
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Haengdang-dong, Seoul, Korea
| | - Kyung-Suk Kim
- Bioengineering Institute, CoreStem Inc., Seoul, Korea
| | - Young-Seo Kim
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Haengdang-dong, Seoul, Korea
| | - Seung H Kim
- Cell Therapy Center and Department of Neurology, College of Medicine, Hanyang University, Haengdang-dong, Seoul, Korea
| |
Collapse
|
17
|
Affiliation(s)
- Jan Hendrik Duedal Rölfing
- Orthopaedic Research Laboratory Aarhus University Hospital Noerrebrogade 44, Building 1A, 1.tv DK-8000 Aarhus Denmark +45 7846 4133
| |
Collapse
|
18
|
Park HH, Lee KY, Kim S, Lee JW, Choi NY, Lee EH, Lee YJ, Lee SH, Koh SH. Novel vaccine peptide GV1001 effectively blocks β-amyloid toxicity by mimicking the extra-telomeric functions of human telomerase reverse transcriptase. Neurobiol Aging 2013; 35:1255-74. [PMID: 24439482 DOI: 10.1016/j.neurobiolaging.2013.12.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 11/21/2013] [Accepted: 12/19/2013] [Indexed: 12/17/2022]
Abstract
GV1001 is a 16-amino-acid vaccine peptide derived from the human telomerase reverse transcriptase sequence. We investigated the effects of GV1001 against β-amyloid (Aβ) oligomer-induced neurotoxicity in rat neural stem cells (NSCs). Primary culture NSCs were treated with several concentrations of GV1001 and/or Aβ₂₅₋₃₅ oligomer for 48 hours. GV1001 protected NSCs against the Aβ₂₅₋₃₅ oligomer in a concentration-dependent manner. Aβ₂₅₋₃₅ concentration dependently decreased viability, proliferation, and mobilization of NSCs and GV1001 treatment restored the cells to wild-type levels. Aβ₂₅₋₃₅ increased free radical levels in rat NSCs while combined treatment with GV1001 significantly reduced these levels. In addition, GV1001 treatment of Aβ₂₅₋₃₅-injured NSCs increased the expression level of survival-related proteins, including mitochondria-associated survival proteins, and decreased the levels of death and inflammation-related proteins, including mitochondria-associated death proteins. Together, these results suggest that GV1001 possesses neuroprotective effects against Aβ₂₅₋₃₅ oligomer in NSCs and that these effects are mediated through mimicking the extra-telomeric functions of human telomerase reverse transcriptase, including the induction of cellular proliferation, anti-apoptotic effects, mitochondrial stabilization, and anti-aging and anti-oxidant effects.
Collapse
Affiliation(s)
- Hyun-Hee Park
- Department of Neurology, Hanyang University College of Medicine, Guri, Gyeonggi, Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University College of Medicine, Guri, Gyeonggi, Korea
| | - Sangjae Kim
- Department of Neuroscience, KAEL-Gemvax Co, Ltd, Seoul, Korea
| | | | - Na-Young Choi
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Korea
| | - Eun-Hye Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University College of Medicine, Guri, Gyeonggi, Korea
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, Hanyang University College of Medicine, Seoul, Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Guri, Gyeonggi, Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Korea.
| |
Collapse
|
19
|
Abstract
Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits—including hemoglobin S (HbS), hemoglobin C (HbC), and α-thalassemia—are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait). Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a “natural experiment” to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the “Gordian knot” of host and parasite interactions to confer malaria protection, and offer a translational model to identify the most critical mechanisms of P. falciparum pathogenesis.
Collapse
|
20
|
Fernández Vallone VB, Romaniuk MA, Choi H, Labovsky V, Otaegui J, Chasseing NA. Mesenchymal stem cells and their use in therapy: what has been achieved? Differentiation 2013; 85:1-10. [PMID: 23314286 DOI: 10.1016/j.diff.2012.08.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 07/10/2012] [Accepted: 08/16/2012] [Indexed: 12/13/2022]
Abstract
The considerable therapeutic potential of human multipotent mesenchymal stromal cells or mesenchymal stem cells (MSCs) has generated increasing interest in a wide variety of biomedical disciplines. Nevertheless, researchers report studies on MSCs using different methods of isolation and expansion, as well as different approaches to characterize them; therefore, it is increasingly difficult to compare and contrast study outcomes. To begin to address this issue, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposed minimal criteria to define human MSCs. First, MSCs must be plastic-adherent when maintained in standard culture conditions (α minimal essential medium plus 20% fetal bovine serum). Second, MSCs must express CD105, CD73 and CD90, and MSCs must lack expression of CD45, CD34, CD14 or CD11b, CD79α or CD19 and HLA-DR surface molecules. Third, MSCs must differentiate into osteoblasts, adipocytes and chondroblasts in vitro. MSCs are isolated from many adult tissues, in particular from bone marrow and adipose tissue. Along with their capacity to differentiate and transdifferentiate into cells of different lineages, these cells have also generated great interest for their ability to display immunomodulatory capacities. Indeed, a major breakthrough was the finding that MSCs are able to induce peripheral tolerance, suggesting that they may be used as therapeutic tools in immune-mediated disorders. Although no significant adverse events have been reported in clinical trials to date, all interventional therapies have some inherent risks. Potential risks for undesirable events, such as tumor development, that might occur while using these stem cells for therapy must be taken into account and contrasted against the potential benefits to patients.
Collapse
|
21
|
Direct GSK-3β inhibition enhances mesenchymal stromal cell migration by increasing expression of β-PIX and CXCR4. Mol Neurobiol 2013; 47:811-20. [PMID: 23288365 DOI: 10.1007/s12035-012-8393-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/19/2012] [Indexed: 12/17/2022]
Abstract
Mesenchymal stromal cells (MSCs) are emerging as candidate cells for the treatment of neurological diseases because of their neural replacement, neuroprotective, and neurotrophic effects. However, the majority of MSCs transplanted by various routes fail to reach the site of injury, and they have demonstrated only minimal therapeutic benefit in clinical trials. Therefore, enhancing the migration of MSCs to target sites is essential for this therapeutic strategy to be effective. In this study, we assessed whether inhibition of glycogen synthase kinase-3β (GSK-3β) increases the migration capacity of MSCs during ex vivo expansion. Human bone marrow MSCs (hBM-MSCs) were cultured with various GSK-3β inhibitors (LiCl, SB-415286, and AR-A014418). Using a migration assay kit, we found that the motility of hBM-MSCs was significantly enhanced by GSK-3β inhibition. Western blot analysis revealed increased levels of migration-related signaling proteins such as phospho-GSK-3β, β-catenin, phospho-c-Raf, phospho-extracellular signal-regulated kinase (ERK), phospho-β-PAK-interacting exchange factor (PIX), and CXC chemokine receptor 4 (CXCR4). In addition, real-time polymerase chain reaction demonstrated increased expression of matrix metalloproteinase-2 (MMP-2), membrane-type MMP-1 (MT1-MMP), and β-PIX. In the reverse approach, treatment with β-PIX shRNA or CXCR4 inhibitor (AMD 3100) reduced hBM-MSC migration. These findings suggest that inhibition of GSK-3β during ex vivo expansion of hBM-MSCs may enhance their migration capacity by increasing expression of β-catenin, phospho-c-Raf, phospho-ERK, and β-PIX and the subsequent up-regulation of CXCR4. Enhancing the migration capacity of hBM-MSCs by treating these cells with GSK-3β inhibitors may increase their therapeutic potential.
Collapse
|
22
|
Wang S, Chong ZZ, Shang YC, Maiese K. WISP1 (CCN4) autoregulates its expression and nuclear trafficking of β-catenin during oxidant stress with limited effects upon neuronal autophagy. Curr Neurovasc Res 2012; 9:91-101. [PMID: 22475393 DOI: 10.2174/156720212800410858] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 01/12/2023]
Abstract
Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4) is a CCN family member more broadly identified with development and tumorigenesis. However, recent studies have shed new light and enthusiasm on WISP1 as a novel target directed against toxic cell degeneration. Here we show WISP1 prevents apoptotic degeneration in primary neurons during oxidant stress through the activation of protein kinase B (Akt1), the post-translational maintenance of β-catenin integrity that is consistent with inhibition of glycogen synthase kinase-3β (GSK-3β), and the subcellular trafficking of β- catenin to foster its translocation to the nucleus. Interestingly, WISP1 autoregulates its expression through the promotion of β-catenin activity and may employ β-catenin to have a limited control over autophagy, but neuronal injury during oxidant stress as a result of autophagy appears portioned to a small population of neurons without significant impact upon overall cell survival. New strategies that target WISP1, its autoregulation, and the pathways responsible for neuronal cell injury may bring forth new insight for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| | | | | | | |
Collapse
|
23
|
Maiese K, Chong ZZ, Shang YC, Wang S. Erythropoietin: new directions for the nervous system. Int J Mol Sci 2012; 13:11102-11129. [PMID: 23109841 PMCID: PMC3472733 DOI: 10.3390/ijms130911102] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/16/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022] Open
Abstract
New treatment strategies with erythropoietin (EPO) offer exciting opportunities to prevent the onset and progression of neurodegenerative disorders that currently lack effective therapy and can progress to devastating disability in patients. EPO and its receptor are present in multiple systems of the body and can impact disease progression in the nervous, vascular, and immune systems that ultimately affect disorders such as Alzheimer's disease, Parkinson's disease, retinal injury, stroke, and demyelinating disease. EPO relies upon wingless signaling with Wnt1 and an intimate relationship with the pathways of phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). Modulation of these pathways by EPO can govern the apoptotic cascade to control β-catenin, glycogen synthase kinase-3β, mitochondrial permeability, cytochrome c release, and caspase activation. Yet, EPO and each of these downstream pathways require precise biological modulation to avert complications associated with the vascular system, tumorigenesis, and progression of nervous system disorders. Further understanding of the intimate and complex relationship of EPO and the signaling pathways of Wnt, PI 3-K, Akt, and mTOR are critical for the effective clinical translation of these cell pathways into robust treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| |
Collapse
|
24
|
Bennis Y, Sarlon-Bartoli G, Guillet B, Lucas L, Pellegrini L, Velly L, Blot-Chabaud M, Dignat-Georges F, Sabatier F, Pisano P. Priming of late endothelial progenitor cells with erythropoietin before transplantation requires the CD131 receptor subunit and enhances their angiogenic potential. J Thromb Haemost 2012; 10:1914-28. [PMID: 22738133 DOI: 10.1111/j.1538-7836.2012.04835.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Endothelial colony-forming cells (ECFCs) are promising candidates for cell therapy of ischemic diseases. Erythropoietin (EPO) is a cytokine that promotes angiogenesis after ischemic injury. EPO receptors (EPORs) classically include two EPOR subunits, but may also associate with the β-common chain (CD131) in a newly identified receptor involved in EPO cytoprotective effects. OBJECTIVE The aim was to take advantage of the proangiogenic properties of EPO to enhance ECFC graft efficiency. We postulated that priming ECFCs by adding epoietin α in culture medium prior to experiments might increase their angiogenic properties. We also explored the role of the CD131 subunit in EPO priming of ECFCs. METHODS AND RESULTS By western blotting on cord blood ECFC lysates, we showed that EPOR and CD131 expression increased significantly after EPO priming. These proteins coimmunoprecipitated and colocalized, suggesting that they are covalently bound in ECFCs. EPO at 5 IU mL(-1) significantly stimulated proliferation, wound healing, migration and tube formation of ECFCs. EPO priming also increased ECFC resistance to H2 O2-induced apoptosis and survival in vivo. Similarly, in vivo studies showed that, as compared with non-primed ECFC injection, 5 IU mL(-1) EPO-primed ECFCs, injected intravenously 24 h after hindlimb ischemia in athymic nude mice, increased the ischemic/non-ischemic ratios of hindlimb blood flow and capillary density. These effects were all prevented by CD131 small interfering RNA transfection, and involved the phosphoinositide 3-kinase-Akt pathway. CONCLUSION These results highlight the potential role of EPO-primed ECFCs for cell-based therapy in hindlimb ischemia, and underline the critical role of CD131 as an EPO coreceptor.
Collapse
Affiliation(s)
- Y Bennis
- Aix-Marseille Université, UMR INSERM1076, Faculté de Pharmacie, Marseille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Effects of valproic acid on the expression of trophic factors in human bone marrow mesenchymal stromal cells. Neurosci Lett 2012; 526:100-5. [DOI: 10.1016/j.neulet.2012.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/23/2012] [Accepted: 08/02/2012] [Indexed: 12/22/2022]
|
26
|
Brines M, Cerami A. The receptor that tames the innate immune response. Mol Med 2012; 18:486-96. [PMID: 22183892 DOI: 10.2119/molmed.2011.00414] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/14/2011] [Indexed: 11/06/2022] Open
Abstract
Tissue injury, hypoxia and significant metabolic stress activate innate immune responses driven by tumor necrosis factor (TNF)-α and other proinflammatory cytokines that typically increase damage surrounding a lesion. In a compensatory protective response, erythropoietin (EPO) is synthesized in surrounding tissues, which subsequently triggers antiinflammatory and antiapoptotic processes that delimit injury and promote repair. What we refer to as the sequelae of injury or disease are often the consequences of this intentionally discoordinated, primitive system that uses a "scorched earth" strategy to rid the invader at the expense of a serious lesion. The EPO-mediated tissue-protective system depends on receptor expression that is upregulated by inflammation and hypoxia in a distinctive temporal and spatial pattern. The tissue-protective receptor (TPR) is generally not expressed by normal tissues but becomes functional immediately after injury. In contrast to robust and early receptor expression within the immediate injury site, EPO production is delayed, transient and relatively weak. The functional EPO receptor that attenuates tissue injury is distinct from the hematopoietic receptor responsible for erythropoiesis. On the basis of current evidence, the TPR is composed of the β common receptor subunit (CD131) in combination with the same EPO receptor subunit that is involved in erythropoiesis. Additional receptors, including that for the vascular endothelial growth factor, also appear to be a component of the TPR in some tissues, for example, the endothelium. The discoordination of the EPO response system and its relative weakness provide a window of opportunity to intervene with the exogenous ligand. Recently, molecules were designed that preferentially activate only the TPR and thus avoid the potential adverse consequences of activating the hematopoietic receptor. On administration, these agents successfully substitute for a relative deficiency of EPO production in damaged tissues in multiple animal models of disease and may pave the way to effective treatment of a wide variety of insults that cause tissue injury, leading to profoundly expanded lesions and attendant, irreversible sequelae.
Collapse
|
27
|
Koh SH, Huh YM, Noh MY, Kim HY, Kim KS, Lee ES, Ko HJ, Cho GW, Yoo AR, Song HT, Hwang S, Lee K, Haam S, Frank JA, Suh JS, Kim SH. β-PIX is critical for transplanted mesenchymal stromal cell migration. Stem Cells Dev 2012; 21:1989-99. [PMID: 22087847 DOI: 10.1089/scd.2011.0430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (MSCs) have been used successfully as a source of stem cells for treating neurodegenerative diseases. However, for reasons that are not clear, autologous MSC transplants have not yielded successful results in human trials. To test one possible reason, we compared the migratory ability of MSCs from amyotrophic lateral sclerosis (ALS) patients with those of healthy controls. We found that MSCs derived from ALS patients (ALS-MSCs) had a reduced ability to migrate, which may explain why autologous transplantation is not successful. We also found that expression of one of the intracellular factors implicated in migration, β-PIX, was significantly reduced in ALS-MSCs compared with healthy stem cells. Restoration of β-PIX expression by genetic manipulation restored the migratory ability of ALS-MSCs, and inhibition of β-PIX expression with shRNA reduced the migration of healthy MSCs. We suggest that transplantation of allogeneic or genetically modified autologous stem cells might be a more promising strategy for ALS patients than transplantation of autologous stem cells.
Collapse
Affiliation(s)
- Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu M, Li ZH, Xu FJ, Lai LH, Wang QQ, Tang GP, Yang WT. An oligopeptide ligand-mediated therapeutic gene nanocomplex for liver cancer-targeted therapy. Biomaterials 2011; 33:2240-50. [PMID: 22177837 DOI: 10.1016/j.biomaterials.2011.11.082] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 11/26/2011] [Indexed: 01/05/2023]
Abstract
The epidermal growth factor receptor (EGFR) is over-expressed in a wide variety of epithelial-derived cancer cells. In this study, EGFR-targeted gene carriers were designed to complex the therapeutic acetylcholinesterase gene (AChE gene), which suppresses cell proliferation via inactivating mitogen-activated protein kinase and PI3K/Akt pathways in cells, for treatment of EGFR-positive liver cancers. Different amounts of target ligand YC21 (an oligopeptide composed of 21 amino acid units) were coupled with the PEI(600)-CD (PC) vectors composed of β-cyclodextrin (β-CD) and low-molecular-weight polyethylenimine (PEI, Mw 600) to form the EGFR-targeted gene vectors (termed as YPCs). The YPC vectors possessed the highly efficient gene delivery ability to the EGFR-positive liver cancer cells. YPCs could effectively promote AChE gene expression. The YPC/AChE complexes produced excellent gene transfection abilities in EGFR-positive liver cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- M Liu
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, PR China
| | | | | | | | | | | | | |
Collapse
|
29
|
Hou J, Wang S, Shang YC, Chong ZZ, Maiese K. Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress. Curr Neurovasc Res 2011; 8:220-35. [PMID: 21722091 DOI: 10.2174/156720211796558069] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/24/2011] [Indexed: 12/13/2022]
Abstract
Given the cytoprotective ability of erythropoietin (EPO) in cerebral microvascular endothelial cells (ECs) and the invaluable role of ECs in the central nervous system, it is imperative to elucidate the cellular pathways for EPO to protect ECs against brain injury. Here we illustrate that EPO relies upon the modulation of SIRT1 (silent mating type information regulator 2 homolog 1) in cerebral microvascular ECs to foster cytoprotection during oxygen-glucose deprivation (OGD). SIRT1 activation which results in the inhibition of apoptotic early membrane phosphatidylserine (PS) externalization and subsequent DNA degradation during OGD becomes a necessary component for EPO protection in ECs, since inhibition of SIRT1 activity or diminishing its expression by gene silencing abrogates cell survival supported by EPO during OGD. Furthermore, EPO promotes the subcellular trafficking of SIRT1 to the nucleus which is necessary for EPO to foster vascular protection. EPO through SIRT1 averts apoptosis through activation of protein kinase B (Akt1) and the phosphorylation and cytoplasmic retention of the forkhead transcription factor FoxO3a. SIRT1 through EPO activation also utilizes mitochondrial pathways to prevent mitochondrial depolarization, cytochrome c release, and Bad, caspase 1, and caspase 3 activation. Our work identifies novel pathways for EPO in the vascular system that can govern the activity of SIRT1 to prevent apoptotic injury through Akt1, FoxO3a phosphorylation and trafficking, mitochondrial membrane permeability, Bad activation, and caspase 1 and 3 activities in ECs during oxidant stress.
Collapse
Affiliation(s)
- Jinling Hou
- Department of Neurology and Neurosciences, University of Medicine and Dentistry, New Jersey Medical School, Newark, New Jersey 07101, USA
| | | | | | | | | |
Collapse
|
30
|
Koh SH, Baik W, Noh MY, Cho GW, Kim HY, Kim KS, Kim SH. The functional deficiency of bone marrow mesenchymal stromal cells in ALS patients is proportional to disease progression rate. Exp Neurol 2011; 233:472-80. [PMID: 22119626 DOI: 10.1016/j.expneurol.2011.11.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/10/2011] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is caused by motor neuron death. The relationship between the prognosis of ALS patients and the function of their bone marrow mesenchymal stromal cells (BM-MSCs) is unclear. We designed this study to assess the correlation between the progression rate of the ALS Functional Rating Scale-revised version (ΔFS), which is reported to predict prognosis, and the pluripotency and trophic factor secreting capacity of ALS patients' BM-MSCs. We evaluated ΔFS in 23 ALS patients and isolated BM-MSCs from those patients and five healthy people. Levels of Nanog, Oct-4, and Nestin mRNA were examined to evaluate pluripotency, and levels of BDNF, ECGF1, bFGF-2, HGF, IGF-1, PGF, TGF-1β, SDF-1α, GDNF, VEGF, and ANG mRNA were examined to assess trophic factor secreting capacity. In addition, we measured the protein levels of Nanog, Oct-4, Nestin, SDF-1α, ANG, bFGF-2, VEGF, IGF-1, GDNF, and BDNF. mRNA levels of Nanog, Oct-4, ECGF1, bFGF-2, HGF, IGF-1, PGF, TGF-1β, SDF-1α, GDNF, VEGF, and ANG were negatively correlations with ΔFS. However, those of Nestin and BDNF were not significantly correlated with ΔFS. Similarly, Nanog, Oct-4, SDF-1α, ANG, bFGF-2, VEGF, IGF-1, and GDNF protein levels had a significant negative correlation with ΔFS. Results indicate that the pluripotency and trophic factor secreting capacity of the BM-MSCs of ALS patients are reduced in proportion to a poorer prognosis. We therefore suggest that healthy allogeneic BM-MSCs might be a better option for cell therapy in ALS patients.
Collapse
Affiliation(s)
- Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Shang YC, Chong ZZ, Wang S, Maiese K. Erythropoietin and Wnt1 govern pathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Curr Neurovasc Res 2011; 8:270-85. [PMID: 22023617 PMCID: PMC3254854 DOI: 10.2174/156720211798120990] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/20/2011] [Accepted: 10/04/2011] [Indexed: 01/01/2023]
Abstract
Inflammatory microglia modulate a host of cellular processes in the central nervous system that include neuronal survival, metabolic fluxes, foreign body exclusion, and cellular regeneration. Elucidation of the pathways that oversee microglial survival and integrity may offer new avenues for the treatment of neurodegenerative disorders. Here we demonstrate that erythropoietin (EPO), an emerging strategy for immune system modulation, prevents microglial early and late apoptotic injury during oxidant stress through Wnt1, a cysteine-rich glycosylated protein that modulates cellular development and survival. Loss of Wnt1 through blockade of Wnt1 signaling or through the gene silencing of Wnt1 eliminates the protective capacity of EPO. Furthermore, endogenous Wnt1 in microglia is vital to preserve microglial survival since loss of Wnt1 alone increases microglial injury during oxidative stress. Cellular protection by EPO and Wnt1 intersects at the level of protein kinase B (Akt1), the mammalian target of rapamycin (mTOR), and p70S6K, which are necessary to foster cytoprotection for microglia. Downstream from these pathways, EPO and Wnt1 control "anti-apoptotic" pathways of microglia through the modulation of mitochondrial membrane permeability, the release of cytochrome c, and the expression of apoptotic protease activating factor-1 (Apaf-1) and X-linked inhibitor of apoptosis protein (XIAP). These studies offer new insights for the development of innovative therapeutic strategies for neurodegenerative disorders that focus upon inflammatory microglia and novel signal transduction pathways.
Collapse
Affiliation(s)
- Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Department of Neurology and Neurosciences, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Cancer Center - New Jersey Medical School, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Department of Neurology and Neurosciences, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Cancer Center - New Jersey Medical School, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Department of Neurology and Neurosciences, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Cancer Center - New Jersey Medical School, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
| | - Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Department of Neurology and Neurosciences, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Cancer Center - New Jersey Medical School, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
| |
Collapse
|
32
|
Yang J, Lee ES, Noh MY, Koh SH, Lim EK, Yoo AR, Lee K, Suh JS, Kim SH, Haam S, Huh YM. Ambidextrous magnetic nanovectors for synchronous gene transfection and labeling of human MSCs. Biomaterials 2011; 32:6174-82. [PMID: 21696819 DOI: 10.1016/j.biomaterials.2011.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/05/2011] [Indexed: 12/16/2022]
Abstract
The synchronization of gene expression and cell trafficking in transfected stem cells is crucial for augmentation of stem cell functions (differentiation and neurotropic factor secretion) and real time in vivo monitoring. We report a magnetic nanoparticle-based gene delivery system that can ensure simultaneous gene delivery and in vivo cell trafficking by high resolution MR imaging. The polar aprotic solvent soluble MnFe₂O₄ nanoparticles were enveloped using cationic polymers (branched polyethyleneimine, PEI) by the solvent shifting method for a gene loading. Using our magnetic nanovector system (PEI-coated MnFe₂O₄ nanoparticles), thus, we synchronized stem cell migration and its gene expression in a rat stroke model.
Collapse
Affiliation(s)
- Jaemoon Yang
- Department of Radiology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Busletta C, Novo E, Valfrè Di Bonzo L, Povero D, Paternostro C, Ievolella M, Mareschi K, Ferrero I, Cannito S, Compagnone A, Bandino A, Colombatto S, Fagioli F, Parola M. Dissection of the Biphasic Nature of Hypoxia-Induced Motogenic Action in Bone Marrow-Derived Human Mesenchymal Stem Cells. Stem Cells 2011; 29:952-63. [DOI: 10.1002/stem.642] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Maiese K, Chong ZZ, Shang YC, Hou J. Novel avenues of drug discovery and biomarkers for diabetes mellitus. J Clin Pharmacol 2011; 51:128-52. [PMID: 20220043 PMCID: PMC3033756 DOI: 10.1177/0091270010362904] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Globally, developed nations spend a significant amount of their resources on health care initiatives that poorly translate into increased population life expectancy. As an example, the United States devotes 16% of its gross domestic product to health care, the highest level in the world, but falls behind other nations that enjoy greater individual life expectancy. These observations point to the need for pioneering avenues of drug discovery to increase life span with controlled costs. In particular, innovative drug development for metabolic disorders such as diabetes mellitus becomes increasingly critical given that the number of diabetic people will increase exponentially over the next 20 years. This article discusses the elucidation and targeting of novel cellular pathways that are intimately tied to oxidative stress in diabetes mellitus for new treatment strategies. Pathways that involve wingless, β-nicotinamide adenine dinucleotide (NAD(+)) precursors, and cytokines govern complex biological pathways that determine both cell survival and longevity during diabetes mellitus and its complications. Furthermore, the role of these entities as biomarkers for disease can further enhance their utility irrespective of their treatment potential. Greater understanding of the intricacies of these unique cellular mechanisms will shape future drug discovery for diabetes mellitus to provide focused clinical care with limited or absent long-term complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
35
|
Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol Psychiatry 2010; 15:1164-75. [PMID: 19859069 DOI: 10.1038/mp.2009.110] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adult bone marrow-derived mesenchymal stem cells (MSCs) are regarded as potential candidates for treatment of neurodegenerative disorders, because of their ability to promote neurogenesis. MSCs promote neurogenesis by differentiating into neural lineages as well as by expressing neurotrophic factors that enhance the survival and differentiation of neural progenitor cells. Depression has been associated with impaired neurogenesis in the hippocampus and dentate gyrus. Therefore, the aim of this study was to analyze the therapeutic potential of MSCs in the Flinders sensitive line (FSL), a rat animal model for depression. Rats received an intracerebroventricular injection of culture-expanded and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled bone marrow-derived MSCs (10⁵ cells). MSC-transplanted FSL rats showed significant improvement in their behavioral performance, as measured by the forced swim test and the dominant-submissive relationship (DSR) paradigm. After transplantation, MSCs migrated mainly to the ipsilateral dentate gyrus, CA1 and CA3 regions of the hippocampus, and to a lesser extent to the thalamus, hypothalamus, cortex and contralateral hippocampus. Neurogenesis was increased in the ipsilateral dentate gyrus and hippocampus of engrafted rats (granular cell layer) and was correlated with MSC engraftment and behavioral performance. We therefore postulate that MSCs may serve as a novel modality for treating depressive disorders.
Collapse
|
36
|
Cho GW, Noh MY, Kim HY, Koh SH, Kim KS, Kim SH. Bone marrow-derived stromal cells from amyotrophic lateral sclerosis patients have diminished stem cell capacity. Stem Cells Dev 2010; 19:1035-42. [PMID: 20030561 DOI: 10.1089/scd.2009.0453] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human bone marrow stromal cells (BM-SCs) possess the potential to differentiate, self-renew, and produce diverse trophic/growth factors and are an excellent cell therapy tool for degenerative diseases. However, they exhibit different therapeutic efficacies, depending on the health status and age of the cell donor. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motor neuron death in the central nervous system. In this study, we isolated BM-SCs from 11 ALS patients and characterized their potential secretory capacity of neurotrophic factors. We identified significant reductions in the expression of Oct-4 and Nanog , and in the trophic factors ANG, FGF -2, HGF, IGF-1, PIGF, SDF-1alpha , TGF-beta, and VEGF, but not in BDNF or ECGF. Migration of ALS-SCs was reduced, although the cells expressed the same markers for human mesenchymal phenotypes. These data suggest that ALS-SCs have diminished capacity as trophic mediators and may have reduced beneficial effects in cell therapy.
Collapse
Affiliation(s)
- Goang-Won Cho
- Department of Neurology, College of Medicine, Hanyang University , Seoul, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Cho GW, Koh SH, Kim MH, Yoo AR, Noh MY, Oh S, Kim SH. The neuroprotective effect of erythropoietin-transduced human mesenchymal stromal cells in an animal model of ischemic stroke. Brain Res 2010; 1353:1-13. [DOI: 10.1016/j.brainres.2010.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 06/03/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
|
38
|
Yoo AR, Koh SH, Cho GW, Kim SH. Inhibitory effects of cilostazol on proliferation of vascular smooth muscle cells (VSMCs) through suppression of the ERK1/2 pathway. J Atheroscler Thromb 2010; 17:1009-18. [PMID: 20720374 DOI: 10.5551/jat.4309] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial walls is an important pathogenic factor of vascular disorders such as atherosclerosis and restenosis after angioplasty. During atherogenesis or in response to vessel injury, VSMC proliferation is induced by a number of peptide growth factors released from platelets and VSMCs. Cilostazol is a phosphodiesterase (PDE) 3 inhibitor that increases intracellular cAMP levels and decreases intracellular Ca(2+) levels, inhibiting platelet aggregation and inducing vasodilatation. Cilostazol is also known to have an inhibitory effect on the proliferation of VSMCs, but the anti-proliferative mechanism of cilostazol in VSMCs has not yet been established. In the present study, we investigated whether the anti-proliferative mechanism of cilostazol is associated with the suppression of extracellular signal-regulated kinases (ERK) and phosphatidylinositol 3 kinase (PI3K) signaling pathways. METHODS To confirm the anti-proliferative effects of cilostazol on VSMCs, VSMCs were induced to proliferate by serum-induced mitogenesis and then were treated with cilostazol for 24 h. And, to investigate whether the anti-proliferative mechanism of cilostazol in VSMCs involves the suppression of the ERK and PI3K pathways, expression of the phosphorylated forms of ERK1/2, Raf, Akt, and glycogen synthase kinase (GSK)-3 were evaluated by western blot. RESULTS Cilostazol inhibited VSMC proliferation in a dose-dependent manner. Phosphorylated ERK1/2 and Raf were significantly reduced in a dose-dependent manner, whereas phosphorylated Akt and GSK-3 were not changed. CONCLUSION These results suggest that suppression of the ERK pathway but not the PI3K pathway is an important mechanism in the anti-proliferative effect of cilostazol on VSMCs.
Collapse
Affiliation(s)
- A Rum Yoo
- Department of Neurology, Hanyang University College of Medicine, 17 Haengdang-dong-dong, Seoul, Korea
| | | | | | | |
Collapse
|
39
|
Kim MH, Cho GW, Koh SH, Huh YM, Kim SH. Transduction of human EPO into human bone marrow mesenchymal stromal cells synergistically enhances cell-protective and migratory effects. Mol Biol 2010. [DOI: 10.1134/s0026893310040126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Maiese K, Shang YC, Chong ZZ, Hou J. Diabetes mellitus: channeling care through cellular discovery. Curr Neurovasc Res 2010; 7:59-64. [PMID: 20158461 DOI: 10.2174/156720210790820217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/29/2009] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) impacts a significant portion of the world's population and care for this disorder places an economic burden on the gross domestic product for any particular country. Furthermore, both Type 1 and Type 2 DM are becoming increasingly prevalent and there is increased incidence of impaired glucose tolerance in the young. The complications of DM are protean and can involve multiple systems throughout the body that are susceptible to the detrimental effects of oxidative stress and apoptotic cell injury. For these reasons, innovative strategies are necessary for the implementation of new treatments for DM that are generated through the further understanding of cellular pathways that govern the pathological consequences of DM. In particular, both the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD(+)), nicotinamide, and the growth factor erythropoietin offer novel platforms for drug discovery that involve cellular metabolic homeostasis and inflammatory cell control. Interestingly, these agents and their tightly associated pathways that consist of cell cycle regulation, protein kinase B, forkhead transcription factors, and Wnt signaling also function in a broader sense as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
41
|
Oxidative stress: Biomarkers and novel therapeutic pathways. Exp Gerontol 2010; 45:217-34. [PMID: 20064603 DOI: 10.1016/j.exger.2010.01.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 12/28/2009] [Accepted: 01/07/2010] [Indexed: 01/12/2023]
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
|
42
|
Maiese K, Hou J, Chong ZZ, Shang YC. Erythropoietin, forkhead proteins, and oxidative injury: biomarkers and biology. ScientificWorldJournal 2009; 9:1072-104. [PMID: 19802503 PMCID: PMC2762199 DOI: 10.1100/tsw.2009.121] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO), and members of the mammalian forkhead transcription factors of the O class (FoxOs), may offer the greatest promise for new treatment regimens, since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. Yet, EPO and FoxOs may sometimes have unexpected and undesirable effects that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as the complex role that EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
43
|
Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules 2009; 14:3446-85. [PMID: 19783937 PMCID: PMC2756609 DOI: 10.3390/molecules14093446] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/08/2009] [Accepted: 09/08/2009] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide, the amide form of vitamin B(3) (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyltransferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
44
|
Formento JL, Etienne-Grimaldi MC, Francoual M, Pagès G, Onesto C, Formento P, Chamorey E, Dassonville O, Poissonnet G, Milano G. Influence of the VEGF-A 936C>T germinal polymorphism on tumoral VEGF expression in head and neck cancer. Pharmacogenomics 2009; 10:1277-83. [DOI: 10.2217/pgs.09.54] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aims: Elevated tumoral vascular endothelial growth factor A (VEGF-A) expression is linked to poor survival in head and neck cancer patients. The aim of the present study was to analyze the influence of VEGF-A gene polymorphisms on tumoral VEGF-A expression and to test their prognostic value in head and neck cancer patients. Materials & methods: VEGF-A polymorphisms at position -2578C>A, -1498T>C, -1154G>A, -634G>C and 936C>T were analyzed (PCR-RFLP) in tumoral DNA, along with tumoral VEGF-A expression (ELISA), in 49 Caucasian head and neck cancer patients. Results: A trend towards a difference in tumoral VEGF-A expression depending on 936C>T polymorphism was observed, with a median at 540 pg/mg prot in CT + TT patients (n = 5) versus 940 pg/mg prot in CC patients (n = 44) (p = 0.064). VEGF-A expression was not related to any other polymorphism. Unlike tumoral VEGF-A expression, the analyzed genotypes were not related to patient survival. Conclusion: As opposed to tumoral VEGF-A expression, VEGF-A gene polymorphisms are not of prognostic value in head and neck cancer patients. Further studies aimed at confirming the influence of VEGF-A 936C>T germinal polymorphism on tumoral VEGF-A expression are needed.
Collapse
Affiliation(s)
- Jean-Louis Formento
- Oncopharmacology Unit, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice Cedex 2, France
| | | | - Mireille Francoual
- Oncopharmacology Unit, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice Cedex 2, France
| | - Gilles Pagès
- Oncopharmacology Unit, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice Cedex 2, France
| | - Cercina Onesto
- Oncopharmacology Unit, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice Cedex 2, France
| | - Patricia Formento
- Oncopharmacology Unit, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice Cedex 2, France
| | - Emmanuel Chamorey
- Oncopharmacology Unit, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice Cedex 2, France
| | - Olivier Dassonville
- Oncopharmacology Unit, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice Cedex 2, France
| | - Gilles Poissonnet
- Oncopharmacology Unit, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice Cedex 2, France
| | - Gérard Milano
- Oncopharmacology Unit, Centre Antoine Lacassagne, 33 Avenue de Valombrose, 06189 Nice Cedex 2, France
| |
Collapse
|