1
|
Zhou P, Qin L, Ge Z, Xie B, Huang H, He F, Ma S, Ren L, Shi J, Pei S, Dong G, Qi Y, Lan F. Design of chemically defined synthetic substrate surfaces for the in vitro maintenance of human pluripotent stem cells: A review. J Biomed Mater Res B Appl Biomater 2022; 110:1968-1990. [PMID: 35226397 DOI: 10.1002/jbm.b.35034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/11/2022]
Abstract
Human pluripotent stem cells (hPSCs) have the potential of long-term self-renewal and differentiation into nearly all cell types in vitro. Prior to the downstream applications, the design of chemically defined synthetic substrates for the large-scale proliferation of quality-controlled hPSCs is critical. Although great achievements have been made, Matrigel and recombinant proteins are still widely used in the fundamental research and clinical applications. Therefore, much effort is still needed to improve the performance of synthetic substrates in the culture of hPSCs, realizing their commercial applications. In this review, we summarized the design of reported synthetic substrates and especially their limitations in terms of cell culture. Moreover, much attention was paid to the development of promising peptide displaying surfaces. Besides, the biophysical regulation of synthetic substrate surfaces as well as the three-dimensional culture systems were described.
Collapse
Affiliation(s)
- Ping Zhou
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Liying Qin
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhangjie Ge
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Biyao Xie
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Fei He
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Shengqin Ma
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lina Ren
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- Department of Laboratory Animal Centre, Changzhi Medical College, Changzhi, China
| | - Suying Pei
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Genxi Dong
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yongmei Qi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feng Lan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Shenzhen, China
| |
Collapse
|
2
|
Oliveira T, Costa I, Marinho V, Carvalho V, Uchôa K, Ayres C, Teixeira S, Vasconcelos DFP. Human foreskin fibroblasts: from waste bag to important biomedical applications. JOURNAL OF CLINICAL UROLOGY 2018. [DOI: 10.1177/2051415818761526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circumcision is one of the most performed surgical procedures worldwide, and it is estimated that one in three men worldwide is circumcised, which makes the preputial skin removed after surgery an abundant material for possible applications. In particular, it is possible efficiently to isolate the cells of the foreskin, with fibroblasts being the most abundant cells of the dermis and the most used in biomedical research. This work aimed to review the knowledge and obtain a broad view of the main applications of human foreskin fibroblast cell culture. A literature search was conducted, including clinical trials, preclinical basic research studies, reviews and experimental studies. Several medical and laboratory applications of human foreskin fibroblast cell culture have been described, especially when it comes to the use of human foreskin fibroblasts as feeder cells for the cultivation of human embryonic stem cells, in addition to co-culture with other cell types. The culture of foreskin fibroblasts has also been used to: obtain induced pluripotent stem cells; the diagnosis of Clostridium difficile; to test the toxicity and effect of substances on normal cells, especially the toxicity of possible antineoplastic drugs; in viral culture, mainly of the human cytomegalovirus, study of the pathogenesis of other microorganisms; varied studies of cellular physiology and cellular interactions. Fibroblasts are important for cell models for varied application cultures, demonstrating how the preputial material can be reused, making possible new applications. Level of evidence: Not applicable for this multicentre audit.
Collapse
Affiliation(s)
- Thomaz Oliveira
- Genetics and Molecular Biology Laboratory, Federal University of Piauí (UFPI), Brazil
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Ilana Costa
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Victor Marinho
- Genetics and Molecular Biology Laboratory, Federal University of Piauí (UFPI), Brazil
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Valécia Carvalho
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Karla Uchôa
- Genetics and Molecular Biology Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Carla Ayres
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
| | - Silmar Teixeira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
| | | |
Collapse
|
3
|
Zhou Y, Zimber M, Yuan H, Naughton GK, Fernan R, Li WJ. Effects of Human Fibroblast-Derived Extracellular Matrix on Mesenchymal Stem Cells. Stem Cell Rev Rep 2017; 12:560-572. [PMID: 27342267 DOI: 10.1007/s12015-016-9671-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stem cell fate is largely determined by the microenvironment called niche. The extracellular matrix (ECM), as a key component in the niche, is responsible for maintaining structural stability and regulating cell proliferation, differentiation, migration and other cellular activities. Each tissue has a unique ECM composition for its needs. Here we investigated the effect of a bioengineered human dermal fibroblast-derived ECM (hECM) on the regulation of human mesenchymal stem cell (hMSC) proliferation and multilineage differentiation. Human MSCs were maintained on hECM for two passages followed by the analysis of mRNA expression levels of potency- and lineage-specific markers to determine the capacity of MSC stemness and differentiation, respectively. Mesenchymal stem cells pre-cultured with or without hECM were then induced and analyzed for osteogenesis, adipogenesis and chondrogenesis. Our results showed that compared to MSCs maintained on control culture plates without hECM coating, cells on hECM-coated plates proliferated more rapidly with a higher percentage of cells in S phase of the cell cycle, resulting in an increase in the CD90+/CD105+/CD73+/CD45- subpopulation. In addition, hECM downregulated osteogenesis and adipogenesis of hMSCs but significantly upregulated chondrogenesis with increased production of collagen type 2. In sum, our findings suggest that hECM may be used to culture hMSCs for the application of cartilage tissue engineering.
Collapse
Affiliation(s)
- Yaxian Zhou
- Department of Orthopedics and Rehabilitation, Laboratory of Musculoskeletal Biology and Regenerative Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5051, Madison, WI, 53705-2275, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Huihua Yuan
- Department of Orthopedics and Rehabilitation, Laboratory of Musculoskeletal Biology and Regenerative Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5051, Madison, WI, 53705-2275, USA.,College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, China
| | | | | | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, Laboratory of Musculoskeletal Biology and Regenerative Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5051, Madison, WI, 53705-2275, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Baek JA, Seol HW, Jung J, Kim HS, Oh SK, Choi YM. Clean-Up Human Embryonic Stem Cell Lines Using Humanized Culture Condition. Tissue Eng Regen Med 2017; 14:453-464. [PMID: 30603501 DOI: 10.1007/s13770-017-0053-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 11/28/2022] Open
Abstract
Human embryonic stem cell (hESC) culture system has been changing culture conditions from conventional to xeno-free for therapeutic cell applications, and N-glycolylneuraminic acid (Neu5Gc) could be a useful indicator of xenogeneic contaminations in hESCs because human cells can no longer produce it genetically. We set up the humanized culture condition using commercially available humanized materials and two different adaptation methods: sequential or direct. SNUhES4 and H1 hESC lines, previously established in conventional culture conditions, were maintained using the humanized culture condition and were examined for the presence of Neu5Gc. The hESCs showed the same morphology and character as those of the conventional culture condition. Moreover, they were negative for Neu5Gc within two passages without loss of pluripotency. This study suggested that this method can effectively cleanse previously established hESC lines, bringing them one step closer to being clinical-grade hESCs.
Collapse
Affiliation(s)
- Jin Ah Baek
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea
| | - Hye Won Seol
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea
| | - Juwon Jung
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea
| | - Hee Sun Kim
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea.,2Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Sun Kyung Oh
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea
| | - Young Min Choi
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea.,2Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| |
Collapse
|
5
|
Scaling-Up Techniques for the Nanofabrication of Cell Culture Substrates via Two-Photon Polymerization for Industrial-Scale Expansion of Stem Cells. MATERIALS 2017; 10:ma10010066. [PMID: 28772424 PMCID: PMC5344595 DOI: 10.3390/ma10010066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/28/2023]
Abstract
Stem-cell-based therapies require a high number (106–109) of cells, therefore in vitro expansion is needed because of the initially low amount of stem cells obtainable from human tissues. Standard protocols for stem cell expansion are currently based on chemically-defined culture media and animal-derived feeder-cell layers, which expose cells to additives and to xenogeneic compounds, resulting in potential issues when used in clinics. The two-photon laser polymerization technique enables three-dimensional micro-structures to be fabricated, which we named synthetic nichoids. Here we review our activity on the technological improvements in manufacturing biomimetic synthetic nichoids and, in particular on the optimization of the laser-material interaction to increase the patterned area and the percentage of cell culture surface covered by such synthetic nichoids, from a low initial value of 10% up to 88% with an optimized micromachining time. These results establish two-photon laser polymerization as a promising tool to fabricate substrates for stem cell expansion, without any chemical supplement and in feeder-free conditions for potential therapeutic uses.
Collapse
|
6
|
Zhang D, Mai Q, Li T, Huang J, Ding C, Jia M, Zhou C, Xu Y. Comparison of a xeno-free and serum-free culture system for human embryonic stem cells with conventional culture systems. Stem Cell Res Ther 2016; 7:101. [PMID: 27474011 PMCID: PMC4967296 DOI: 10.1186/s13287-016-0347-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/14/2016] [Accepted: 06/10/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Elimination of all animal components during derivation and long-term culture of human embryonic stem cells (hESCs) is necessary for future applications of hESCs in clinical cell therapy. METHODS In this study, we established the culture system of xeno-free human foreskin fibroblast feeders (XF-HFF) in combination with chemically defined medium (CDM). XF-HFF/CDM was compared with several conventional culture systems. The hESCs cultured in different media were further characterized through karyotype analysis, pluripotency gene expression, and cell differentiation ability. RESULTS The hESCs in the XF-HFF/CDM maintained their characteristics including typical morphology and stable karyotype. In addition, hESCs were characterized by fluorescent immunostaining of pluripotent markers and teratoma formation in vivo. RT-PCR analysis shown that the stem cell markers OCT3/4, hTERT, SOX2, and Nanog were present in the cell line hESC-1 grown on XF-HFF/CDM. Furthermore, the results of cell growth and expression of bFGF, Oct-4, and hTERT indicated that XF-HFF/CDM had better performance than human serum-matrix/CDM and XF-HFF/human serum. CONCLUSION The comparison of different xeno-free culture conditions will facilitate clarifying the key features of self-renewal, pluripotency, and derivation and will shed light on clinic applications of hESCs.
Collapse
Affiliation(s)
- Dan Zhang
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qingyun Mai
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Tao Li
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jia Huang
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chenhui Ding
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Mengxi Jia
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Canquan Zhou
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Yanwen Xu
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
7
|
Hu J, Seeberger PH, Yin J. Using carbohydrate-based biomaterials as scaffolds to control human stem cell fate. Org Biomol Chem 2016; 14:8648-58. [DOI: 10.1039/c6ob01124a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes the current state and applications of several important and extensively studied natural polysaccharide and glycoprotein scaffolds that can control the stem cell fate.
Collapse
Affiliation(s)
- Jing Hu
- Wuxi Medical School
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Peter H. Seeberger
- Department of Biomolecular Systems
- Max Planck Institute of Colloids and Interfaces
- 14476 Potsdam
- Germany
| | - Jian Yin
- Wuxi Medical School
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
8
|
Human Umbilical Cord Blood-Derived Serum for Culturing the Supportive Feeder Cells of Human Pluripotent Stem Cell Lines. Stem Cells Int 2015; 2016:4626048. [PMID: 26839561 PMCID: PMC4709772 DOI: 10.1155/2016/4626048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/02/2015] [Accepted: 09/13/2015] [Indexed: 12/24/2022] Open
Abstract
Although human pluripotent stem cells (hPSCs) can proliferate robustly on the feeder-free culture system, genetic instability of hPSCs has been reported in such environment. Alternatively, feeder cells enable hPSCs to maintain their pluripotency. The feeder cells are usually grown in a culture medium containing fetal bovine serum (FBS) prior to coculture with hPSCs. The use of FBS might limit the clinical application of hPSCs. Recently, human cord blood-derived serum (hUCS) showed a positive effect on culture of mesenchymal stem cells. It is interesting to test whether hUCS can be used for culture of feeder cells of hPSCs. This study was aimed to replace FBS with hUCS for culturing the human foreskin fibroblasts (HFFs) prior to feeder cell preparation. The results showed that HFFs cultured in hUCS-containing medium (HFF-hUCS) displayed fibroblastic features, high proliferation rates, short population doubling times, and normal karyotypes after prolonged culture. Inactivated HFF-hUCS expressed important genes, including Activin A, FGF2, and TGFβ1, which have been implicated in the maintenance of hPSC pluripotency. Moreover, hPSC lines maintained pluripotency, differentiation capacities, and karyotypic stability after being cocultured for extended period with inactivated HFF-hUCS. Therefore, the results demonstrated the benefit of hUCS for hPSCs culture system.
Collapse
|
9
|
Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges. Stem Cell Rev Rep 2015; 11:96-109. [PMID: 25077810 DOI: 10.1007/s12015-014-9544-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances on human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have brought us closer to the realization of their clinical potential. Nonetheless, tissue engineering and regenerative medicine applications will require the generation of hPSC products well beyond the laboratory scale. This also mandates the production of hPSC therapeutics in fully-defined, xeno-free systems and in a reproducible manner. Toward this goal, we summarize current developments in defined media free of animal-derived components for hPSC culture. Bioinspired and synthetic extracellular matrices for the attachment, growth and differentiation of hPSCs are also reviewed. Given that most progress in xeno-free medium and substrate development has been demonstrated in two-dimensional rather than three dimensional culture systems, translation from the former to the latter poses unique difficulties. These challenges are discussed in the context of cultivation platforms of hPSCs as aggregates, on microcarriers or after encapsulation in biocompatible scaffolds.
Collapse
|
10
|
Almutawaa W, Rohani L, Rancourt DE. Expansion of Human Induced Pluripotent Stem Cells in Stirred Suspension Bioreactors. Methods Mol Biol 2015; 1502:53-61. [PMID: 26786884 DOI: 10.1007/7651_2015_311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great promise as a cell source for therapeutic applications and regenerative medicine. Traditionally, hiPSCs are expanded in two-dimensional static culture as colonies in the presence or absence of feeder cells. However, this expansion procedure is associated with lack of reproducibility and low cell yields. To fulfill the large cell number demand for clinical use, robust large-scale production of these cells under defined conditions is needed. Herein, we describe a scalable, low-cost protocol for expanding hiPSCs as aggregates in a lab-scale bioreactor.
Collapse
Affiliation(s)
- Walaa Almutawaa
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada, AB T2N 1N4
| | - Leili Rohani
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada, AB T2N 1N4
| | - Derrick E Rancourt
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada, AB T2N 1N4.
| |
Collapse
|
11
|
Gong SP, Kim B, Kwon HS, Yang WS, Jeong JW, Ahn J, Lim JM. The co-injection of somatic cells with embryonic stem cells affects teratoma formation and the properties of teratoma-derived stem cell-like cells. PLoS One 2014; 9:e105975. [PMID: 25180795 PMCID: PMC4152121 DOI: 10.1371/journal.pone.0105975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/24/2014] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to assess the biological reactions triggered by stem cell transplantation related to phenotypic alteration, host-to-cell response, chromosomal stability, transcriptional alteration, and stem cell-like cell re-expansion. B6CBAF1 mouse embryonic stem cells (ESCs) were injected subcutaneously into homologous or heterologous (B6D2F1) recipients, and heterologous injections were performed with or without co-injection of B6D2F1 fetal fibroblasts. All homologous injections resulted in teratoma formation, whereas a sharp decrease in formation was detected after heterologous injection (100 vs. 14%; p<0.05). The co-injection of somatic cells in heterologous injections enhanced teratoma formation significantly (14 vs. 75%; p<0.05). Next, ESC-like cell colonies with the same genotype as parental ESCs were formed by culturing teratoma-dissociated cells. Compared with parental ESCs, teratoma-derived ESC-like cells exhibited significantly increased aneuploidy, regardless of homologous or heterologous injections. Repopulation of the parental ESCs was the main factor that induced chromosomal instability, whereas the co-injection of somatic cells did not restore chromosomal normality. Different genes were expressed in the parental ESCs and teratoma-derived ESC-like cells; the difference was larger with parental vs. heterologous than parental vs. homologous co-injections. The co-injection of somatic cells decreased this difference further. In conclusion, the host-to-cell interactions triggered by ESC transplantation could be modulated by co-injection with somatic cells. A mouse model using homologous or heterologous transplantation of stem cells could help monitor cell adaptability and gene expression after injection.
Collapse
Affiliation(s)
- Seung Pyo Gong
- Major in Biomodulation and Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Department of Marine Bio-materials and Aquaculture, Pukyong National University, Busan, Korea
| | - Boyun Kim
- Major in Biomodulation and Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Hyo Sook Kwon
- Major in Biomodulation and Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Woo Sub Yang
- Major in Biomodulation and Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Jiyeon Ahn
- Major in Biomodulation and Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jeong Mook Lim
- Major in Biomodulation and Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Research Institute for Agriculture and Life Science, Seoul, Korea
- * E-mail:
| |
Collapse
|
12
|
Higuchi A, Ling QD, Kumar SS, Munusamy M, Alarfajj AA, Umezawa A, Wu GJ. Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Pakzad M, Ashtiani MK, Mousavi-Gargari SL, Baharvand H. Development of a simple, repeatable, and cost-effective extracellular matrix for long-term xeno-free and feeder-free self-renewal of human pluripotent stem cells. Histochem Cell Biol 2013; 140:635-48. [PMID: 24065274 DOI: 10.1007/s00418-013-1144-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2013] [Indexed: 12/18/2022]
Abstract
Given the potential importance of human pluripotent stem cells (hPSCs) in translational research and regenerative medicine, the aim of the present study was to develop a simple, safe, and cost-effective substrate to expand hPSCs. We report the development of an extracellular matrix (ECM), designated "RoGel," based on conditioned medium (CM) of human fibroblasts under serum- and xeno-free culture conditions. The long-term self-renewal of hPSCs on RoGel was also assessed. The results showed that self-renewal, pluripotency, plating efficiency, and cloning efficiency of hPSCs on this newly developed ECM were similar to those of Matrigel, the conventional mouse-cell line-derived ECM. The cells had the capability to passage mechanically on a cold surface, which resulted in their long-term maintenance with normal karyotype. We have demonstrated that CM-coated plates preserved for 1 year at room temperature maintained the capability of hPSC expansion. This ECM provides an attractive hPSC culture platform for both research and future therapeutic applications.
Collapse
Affiliation(s)
- Mohammad Pakzad
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | | |
Collapse
|
14
|
Autogenic feeder free system from differentiated mesenchymal progenitor cells, maintains pluripotency of the MEL-1 human embryonic stem cells. Differentiation 2013; 85:110-8. [PMID: 23722082 DOI: 10.1016/j.diff.2013.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 12/21/2012] [Accepted: 01/23/2013] [Indexed: 12/24/2022]
Abstract
Human embryonic stem cells (hESc) are known for its pluripotency and self renewal capability, thus possess great potential in regenerative medicine. However, the lack of suitable xenofree extracellular matrix substrate inhibits further applications or the use of hESc in cell-based therapy. In this study, we described a new differentiation method, which generates a homogeneous population of mesenchymal progenitor cells (hESc-MPC) from hESc via epithelial-mesenchymal transition. The extracellular matrix (ECM) proteins from hESc-MPC had in turn supported the undifferentiated expansion of hESc. Immunocytochemistry and flow cytometry characterization of hESc-MPC revealed the presence of early mesenchymal markers. Tandem mass spectometry analysis of ECM produced by hESc-MPC revealed the presence of a mixture of extracellular proteins which includes tenascin C, fibronectin, and vitronectin. The pluripotency of hESc (MEL-1) cultured on the ECM was maintained as shown by the expression of pluripotent genes (FoxD3, Oct-4, Tdgf1, Sox-2, Nanog, hTERT, Rex1), protein markers (SSEA-3, SSEA-4, TRA-1-81, TRA-1-60, Oct-4) and the ability to differentiate into cells representative of ectoderm, endoderm and mesoderm. In summary, we have established a xeno-free autogenic feeder free system to support undifferentiated expansion of hESc, which could be of clinical relevance.
Collapse
|
15
|
Fukusumi H, Shofuda T, Kanematsu D, Yamamoto A, Suemizu H, Nakamura M, Yamasaki M, Ohgushi M, Sasai Y, Kanemura Y. Feeder-free generation and long-term culture of human induced pluripotent stem cells using pericellular matrix of decidua derived mesenchymal cells. PLoS One 2013; 8:e55226. [PMID: 23383118 PMCID: PMC3561375 DOI: 10.1371/journal.pone.0055226] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 12/20/2012] [Indexed: 12/15/2022] Open
Abstract
Human ES cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are usually generated and maintained on living feeder cells like mouse embryonic fibroblasts or on a cell-free substrate like Matrigel. For clinical applications, a quality-controlled, xenobiotic-free culture system is required to minimize risks from contaminating animal-derived pathogens and immunogens. We previously reported that the pericellular matrix of decidua-derived mesenchymal cells (PCM-DM) is an ideal human-derived substrate on which to maintain hiPSCs/hESCs. In this study, we examined whether PCM-DM could be used for the generation and long-term stable maintenance of hiPSCs. Decidua-derived mesenchymal cells (DMCs) were reprogrammed by the retroviral transduction of four factors (OCT4, SOX2, KLF4, c-MYC) and cultured on PCM-DM. The established hiPSC clones expressed alkaline phosphatase, hESC-specific genes and cell-surface markers, and differentiated into three germ layers in vitro and in vivo. At over 20 passages, the hiPSCs cultured on PCM-DM held the same cellular properties with genome integrity as those at early passages. Global gene expression analysis showed that the GDF3, FGF4, UTF1, and XIST expression levels varied during culture, and GATA6 was highly expressed under our culture conditions; however, these gene expressions did not affect the cells’ pluripotency. PCM-DM can be conveniently prepared from DMCs, which have a high proliferative potential. Our findings indicate that PCM-DM is a versatile and practical human-derived substrate that can be used for the feeder-cell-free generation and long-term stable maintenance of hiPSCs.
Collapse
Affiliation(s)
- Hayato Fukusumi
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Substrates and supplements for hESCs: a critical review. J Assist Reprod Genet 2013; 30:315-23. [PMID: 23288664 DOI: 10.1007/s10815-012-9914-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Different laboratories around the world have succeeded in establishing human embryonic stem cell (hESC) lines. However, culture conditions vary considerably among the protocols used and the vast majority of the lines at some stage of their creation have been in contact with an animal derived component. One of the main problems to be overcome for the generation of a clinical-grade hESC line is the choice of a substrate and medium that allows derivation and culture, where animal derived components are kept to a minimum or completely excluded. MATERIALS AND METHODS The following review describes past and more recent achievements in the creation and culturing of hESC. It describes protocols, giving special attention to the matrices and supplements used for derivation, maintainance and cryostorage, considering whether they included defined, undefined and/or animal-derived components in their formulations. CONCLUSION This information shall be useful for the creation and choice of new substrates and supplements for future research in the field of hESC for therapeutic purposes.
Collapse
|
17
|
Stelling MP, Lages YMV, Tovar AMF, Mourão PAS, Rehen SK. Matrix-bound heparan sulfate is essential for the growth and pluripotency of human embryonic stem cells. Glycobiology 2012; 23:337-45. [PMID: 23002246 DOI: 10.1093/glycob/cws133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human embryonic stem (hES) cell production of heparan sulfate influences cell fate and pluripotency. Human ES cells remain pluripotent in vitro through the action of growth factors signaling, and the activity of these factors depends on interaction with specific receptors and also with heparan sulfate. Here, we tested the hypothesis that matrix-associated heparan sulfate is enough to maintain hES cells under low fibroblast growth factor-2 concentration in the absence of live feeder cells. To pursue this goal, we compared hES cells cultured either on coated plates containing live murine embryonic fibroblasts (MEFs) or on a matrix derived from ethanol-fixed MEFs. hES cells were analyzed for the expression of pluripotency markers and the ability to form embryoid bodies. hES cells cultured either on live mouse fibroblasts or onto a matrix derived from fixed fibroblasts expressed similar levels of Oct-4, SOX-2, Nanog, TRA-1-60 and SSEA-4, and they were also able to form cavitated embryoid bodies. Heparan sulfate-depleted matrix lost the ability to support the adherence and growth of hES cells, confirming that this glycosaminoglycan, bound to the extracellular matrix, is enough for the growth and attachment of hES cells. Finally, we observed that the ethanol-fixed matrix decreases by 30% the levels of Neu5Gc in hES cells, indicating that this procedure reduces xeno-contamination. Our data suggest that matrix-bound heparan sulfate is required for the growth and pluripotency of hES cells and that ethanol-fixed MEFs may be used as a "live cell"-free substrate for stem cells.
Collapse
Affiliation(s)
- Mariana P Stelling
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | | | | | | |
Collapse
|
18
|
Peng Y, Bocker MT, Holm J, Toh WS, Hughes CS, Kidwai F, Lajoie GA, Cao T, Lyko F, Raghunath M. Human fibroblast matrices bio-assembled under macromolecular crowding support stable propagation of human embryonic stem cells. J Tissue Eng Regen Med 2012; 6:e74-86. [DOI: 10.1002/term.1560] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 05/09/2012] [Accepted: 05/29/2012] [Indexed: 01/11/2023]
Affiliation(s)
- Yanxian Peng
- Department of Bioengineering, Faculty of Engineering; National University of Singapore; Singapore
| | - Michael Thomas Bocker
- Division of Epigenetics, DKFZ-ZMBH Alliance; German Cancer Research Center; Heidelberg; Germany
| | - Jennifer Holm
- Department of Biomedical Engineering; Texas A&M University; College Station; Texas; 77843-3120; USA
| | | | - Christopher Stephen Hughes
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry; University of Western Ontario; London; ON; Canada
| | - Fahad Kidwai
- Dental Research Lab, Discipline of Oral Sciences, Faculty of Dentistry; National University of Singapore; Singapore
| | - Gilles Andre Lajoie
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry; University of Western Ontario; London; ON; Canada
| | - Tong Cao
- Dental Research Lab, Discipline of Oral Sciences, Faculty of Dentistry; National University of Singapore; Singapore
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance; German Cancer Research Center; Heidelberg; Germany
| | | |
Collapse
|
19
|
Fu X, Xu Y. Challenges to the clinical application of pluripotent stem cells: towards genomic and functional stability. Genome Med 2012; 4:55. [PMID: 22741526 PMCID: PMC3698533 DOI: 10.1186/gm354] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and are pluripotent, retaining the ability to differentiate into all cell types in the body. As a renewable source of various types of human cells, hESCs hold great therapeutic potential. Although significant advances have been achieved in defining the conditions needed to differentiate hESCs into various types of biologically active cells, many challenges remain in the clinical development of hESC-based cell therapy, such as the immune rejection of allogeneic hESC-derived cells by recipients. Breakthroughs in the generation of induced pluripotent stem cells (iPSCs), which are reprogrammed from somatic cells with defined factors, raise the hope that autologous cells derived from patient-specific iPSCs can be transplanted without immune rejection. However, recent genomic studies have revealed epigenetic and genetic abnormalities associated with induced pluripotency, a risk of teratomas, and immunogenicity of some iPSC derivatives. These findings have raised safety concerns for iPSC-based therapy. Here, we review recent advances in understanding the genomic and functional stability of human pluripotent stem cells, current challenges to their clinical application and the progress that has been made to overcome these challenges.
Collapse
Affiliation(s)
- Xuemei Fu
- Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan, China ; Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yang Xu
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Stephenson E, Jacquet L, Miere C, Wood V, Kadeva N, Cornwell G, Codognotto S, Dajani Y, Braude P, Ilic D. Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat Protoc 2012; 7:1366-81. [PMID: 22722371 DOI: 10.1038/nprot.2012.080] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The protocols described here are comprehensive instructions for deriving human embryonic stem (hES) cell lines in xeno-free conditions from cryopreserved embryos. Details are included for propagation, cryopreservation and characterization. Initial derivation is on feeder cells and is followed by adaptation to a feeder-free environment; competent technicians can perform these simplified methods easily. From derivation to cryopreservation of fully characterized initial stocks takes 3-4 months. These protocols served as the basis for standard operating procedures (SOPs), with both operational and technical components, that we set to meet good manufacturing practice (GMP) and UK regulatory body requirements for derivation of clinical-grade cells. As such, these SOPs are currently used in our current GMP compliant facility to derive hES cell lines ab initio, in an animal product-free environment; these lines are suitable for research and potentially for clinical use in cell therapy. So far, we have derived eight clinical-grade lines, which will be freely available to the scientific community after submission/accession to the UK Stem Cell Bank.
Collapse
Affiliation(s)
- Emma Stephenson
- Embryonic Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, King's College School of Medicine, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Meng G, Liu S, Rancourt DE. Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Stem Cells Dev 2012; 21:2036-48. [PMID: 22149941 DOI: 10.1089/scd.2011.0489] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), share the properties of unlimited self-renewal and the capacity to become any cell type in the body, making them well suited for regenerative medicine and cell therapy. So far, almost all hPSC lines have been directly or indirectly exposed to animal-derived products, which would hinder their use for clinical purposes. One of the biggest challenges in this area is to remove animal components from the derivation, propagation, and cryopreservation of hPSCs. Moreover, the presence of undefined components of animal or human origin in culture system may interfere with the interpretation of the effect of exogenous agents on the growth and differentiation of hPSCs and are prone to significant variability. To explore hPSC expansion in defined, xeno-free conditions, 2 different groups of culture systems were used to culture different hESC and hiPSC lines. Our results suggested that (1) medium, matrix, and exogenous factors have synergistic effects on the adhesion and growth of hPSCs; (2) cooperation of exogenous factors including basic fibroblast growth factor, Rho-associated kinase inhibitor (ROCK), and other growth factors is critical for hPSC adhesion and proliferation; (3) basal media have different effects on hPSC attachment to the culture surface; and (4) a medium or matrix component can work synergistically in one culture system, and not at all in another. In this study, we found that Vitronectin/TeSR2 and PDL/HEScGRO (Y-27632) systems were optimal for maintaining the long-term culture of 3 hESC lines and 2 hiPSC lines under defined, xeno-free conditions.
Collapse
Affiliation(s)
- Guoliang Meng
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
22
|
Abstract
Embryonic stem cells (ESCs) are unique cells, which have the ability to differentiate into all cell types that comprise the adult organism. Furthermore, ESCs can infinitely self-renew under optimized conditions. These features place human ESCs (hESCs) in a position where these cells can be exploited for tissue engineering and regenerative medicine approaches in treating human degenerative disorders. However, cell therapy approaches will require large amounts of clinically useable cells, not typically achievable using standard static cell culture methods. Here, we describe a method wherein clinically relevant numbers of hESCs can be generated in a cost and time effective manner.
Collapse
|
23
|
Fu X, Xu Y. Self-renewal and scalability of human embryonic stem cells for human therapy. Regen Med 2011; 6:327-34. [PMID: 21548738 DOI: 10.2217/rme.11.18] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and retain the pluripotency to differentiate into all cell types in the body. Therefore, as a renewable source of various cell types, hESCs hold great promise for human cell replacement therapy. While significant progress has been made in establishing the culture conditions for the long-term self-renewal of hESCs, several challenges remain to be overcome for the clinical application of hESCs. One such challenge is to develop strategies to scale-up the production of clinic-grade hESCs in xeno-free and chemically defined medium without inducing genomic instability. To achieve this goal, it is critical to elucidate the molecular pathways required to maintain the self-renewal, survival and genomic stability of hESCs. This article describes recent progress in addressing this challenge and discusses the strategies to improve the scalability of the production of hESCs by inhibiting their apoptosis.
Collapse
Affiliation(s)
- Xuemei Fu
- Chengdu Women's & Children's Central Hospital, Chengdu, Sichuan, China
| | | |
Collapse
|
24
|
Hughes CS, Radan L, Betts D, Postovit LM, Lajoie GA. Proteomic analysis of extracellular matrices used in stem cell culture. Proteomics 2011; 11:3983-91. [PMID: 21834137 DOI: 10.1002/pmic.201100030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/26/2011] [Accepted: 06/08/2011] [Indexed: 01/02/2023]
Abstract
Numerous matrices for the growth of human embryonic stem cells (hESC) in vitro have been described. However, their exact composition is typically unknown. Information on the components of these matrices will aid in the development of a fully defined growth surface for hESCs. These matrices typically consist of mixture of proteins present in a wide range of abundance making their characterization challenging. In this study, we performed the proteomic analysis of five previously uncharacterized matrices: CellStart, Human Basement Membrane Extract (Human BME), StemXVivo, Bridge Human Extracellular Matrix (BridgeECM), and mouse embryonic fibroblast conditioned matrix (MEF-CMTX). Based on a proteomics protocol optimized using lysates from HeLa cells, we undertook the analysis of the five complex extracellular matrix (ECM) samples using a combination of strong anion and cation exchange chromatography and SDS-PAGE. For each of these matrices, we identify numerous proteins, indicating their complex nature. We also compared these results with a similar proteomics analysis of the growth matrix, Matrigel™. From these analyses, we observed that fibronectin is a primary component of nearly all hESC supportive matrices. This observation led to the investigation of the suitability of fibronectin as a defined ECM for the growth of hESCs. We found that fibronectin promotes the maintenance of pluripotent H9 and CA1 hESCs in an undifferentiated state using mTeSR1 medium. This finding validates the utility of characterizing matrices used for hESC growth in revealing ECM components required for culturing hESCs in a universally applicable defined system.
Collapse
Affiliation(s)
- Chris S Hughes
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | | | | | | | | |
Collapse
|
25
|
Hezroni H, Tzchori I, Davidi A, Mattout A, Biran A, Nissim-Rafinia M, Westphal H, Meshorer E. H3K9 histone acetylation predicts pluripotency and reprogramming capacity of ES cells. Nucleus 2011; 2:300-9. [PMID: 21941115 DOI: 10.4161/nucl.2.4.16767] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pluripotent genome is characterized by unique epigenetic features and a decondensed chromatin conformation. However, the relationship between epigenetic regulation and pluripotency is not altogether clear. Here, using an enhanced MEF/ESC fusion protocol, we compared the reprogramming potency and histone modifications of different embryonic stem cell (ESC) lines (R1, J1, E14, C57BL/6) and found that E14 ESCs are significantly less potent, with significantly reduced H3K9ac levels. Treatment of E14 ESCs with histone deacetylase (HDAC) inhibitors (HDACi) increased H3K9ac levels and restored their reprogramming capacity. Microarray and H3K9ac ChIP-seq analyses, suggested increased extracellular matrix (ECM) activity following HDACi treatment in E14 ESCs. These data suggest that H3K9ac may predict pluripotency and that increasing pluripotency by HDAC inhibition acts through H3K9ac to enhance the activity of target genes involved in ECM production to support pluripotency.
Collapse
Affiliation(s)
- Hadas Hezroni
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra campus, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sharma S, Raju R, Sui S, Hu WS. Stem cell culture engineering - process scale up and beyond. Biotechnol J 2011; 6:1317-29. [PMID: 21721127 DOI: 10.1002/biot.201000435] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/28/2011] [Accepted: 05/11/2011] [Indexed: 12/23/2022]
Abstract
Advances in stem cell research and recent work on clinical trials employing stem cells have heightened the prospect of stem cell applications in regenerative medicine. The eventual clinical application of stem cells will require transforming cell production from laboratory practices to robust processes. Most stem cell applications will require extensive ex vivo handling of cells, from isolation, cultivation, and directed differentiation to product cell separation, cell derivation, and final formulation. Some applications require large quantities of cells in each defined batch for clinical use in multiple patients; others may be for autologous use and require only small-scale operations. All share a common requirement: the production must be robust and generate cell products of consistent quality. Unlike the established manufacturing process of recombinant protein biologics, stem cell applications will likely see greater variability in their cell source and more fluctuations in product quality. Nevertheless, in devising stem cell-based bioprocesses, much insight could be gained from the manufacturing of biological materials, including recombinant proteins and anti-viral vaccines. The key to process robustness is thus not only the control of traditional process chemical and physical variables, but also the sustenance of cells in the desired potency or differentiation state through controlling non-traditional variables, such as signaling pathway modulators.
Collapse
Affiliation(s)
- Shikha Sharma
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | | | | | | |
Collapse
|
27
|
Fu X, Toh WS, Liu H, Lu K, Li M, Cao T. Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng Part C Methods 2011; 17:927-37. [PMID: 21561302 DOI: 10.1089/ten.tec.2010.0735] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Applications of human embryonic stem cells (hESCs) are limited by the use of mouse embryonic fibroblasts feeder and animal-derived components during culture. In this study, we demonstrated the potential use of extracellular matrix (ECM) derived from the autologous feeders to support long-term undifferentiated growth of hESCs in xeno-free, serum-free, and feeder-free conditions. Autologous H9 ebF (feeder cells derived from outgrowth of embryoid body [EB] predifferentiated from H9 hESCs) was derived from EBs predifferentiated from H9 hESCs through a direct-plating outgrowth system. The ECM comprising collagen VI, laminin, and fibronectin was extracted from H9 ebF through a freeze-thaw procedure. The autologous ECM together with animal component-free TeSR™2 medium was used to support long-term growth of H1 and H9 hESC lines for up to 20 passages. The maintenance of hESC undifferentiated state by autologous ECM was confirmed by the positive staining of hESC-specific markers (Oct4, SSEA-4, and Tra-1-60) and the expression of pluripotency marker genes (Oct4, Nanog, and Sox2). Flow cytometry further showed that more than 99% of hESCs retained the expression of SSEA-3/4 after long-term culture on autologous ECM. Pluripotency of hESCs on ECM was further proven by in vitro EB formation and in vivo teratoma assay. Overall, this study suggested a strategy for efficient propagation of clinically compliant hESCs in an autologous feeder-free culture system.
Collapse
Affiliation(s)
- Xin Fu
- Stem Cell Laboratory, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
28
|
Hernandez D, Ruban L, Mason C. Feeder-Free Culture of Human Embryonic Stem Cells for Scalable Expansion in a Reproducible Manner. Stem Cells Dev 2011; 20:1089-98. [DOI: 10.1089/scd.2009.0507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Diana Hernandez
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Ludmila Ruban
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Christopher Mason
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| |
Collapse
|
29
|
Hughes CS, Nuhn AA, Postovit LM, Lajoie GA. Proteomics of human embryonic stem cells. Proteomics 2011; 11:675-90. [PMID: 21225999 DOI: 10.1002/pmic.201000407] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/13/2010] [Accepted: 10/14/2010] [Indexed: 01/01/2023]
|
30
|
Hasegawa K, Pomeroy JE, Pera MF. Current technology for the derivation of pluripotent stem cell lines from human embryos. Cell Stem Cell 2010; 6:521-31. [PMID: 20569689 DOI: 10.1016/j.stem.2010.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Technology for the derivation, propagation, and characterization of pluripotent stem cell lines from the human embryo has undergone considerable refinement and improvement since the first published description of human embryonic stem cells in 1998. In particular, there has been extensive effort to optimize protocols and develop defined culture systems with a view toward future clinical applications of embryonic stem cell-derived products. Here, we review the current status of methodology for human embryonic stem cell derivation and culture, and we highlight the challenges that remain for workers in the field.
Collapse
Affiliation(s)
- Kouichi Hasegawa
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
31
|
Meng G, Liu S, Li X, Krawetz R, Rancourt DE. Derivation of human embryonic stem cell lines after blastocyst microsurgery. Biochem Cell Biol 2010; 88:479-90. [PMID: 20555390 DOI: 10.1139/o09-188] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. Because of their ability to differentiate into a variety of cell types, human embryonic stem cells (hESCs) provide an unlimited source of cells for clinical medicine and have begun to be used in clinical trials. Presently, although several hundred hESC lines are available in the word, only few have been widely used in basic and applied research. More and more hESC lines with differing genetic backgrounds are required for establishing a bank of hESCs. Here, we report the first Canadian hESC lines to be generated from cryopreserved embryos and we discuss how we navigated through the Canadian regulatory process. The cryopreserved human zygotes used in this study were cultured to the blastocyst stage, and used to isolate ICM via microsurgery. Unlike previous microsurgery methods, which use specialized glass or steel needles, our method conveniently uses syringe needles for the isolation of ICM and subsequent hESC lines. ICM were cultured on MEF feeders in medium containing FBS or serum replacer (SR). Resulting outgrowths were isolated, cut into several cell clumps, and transferred onto fresh feeders. After more than 30 passages, the two hESC lines established using this method exhibited normal morphology, karyotype, and growth rate. Moreover, they stained positively for a variety of pluripotency markers and could be differentiated both in vitro and in vivo. Both cell lines could be maintained under a variety of culture conditions, including xeno-free conditions we have previously described. We suggest that this microsurgical approach may be conducive to deriving xeno-free hESC lines when outgrown on xeno-free human foreskin fibroblast feeders.
Collapse
Affiliation(s)
- Guoliang Meng
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
32
|
Kibschull M, Mileikovsky M, Michael IP, Lye SJ, Nagy A. Human embryonic fibroblasts support single cell enzymatic expansion of human embryonic stem cells in xeno-free cultures. Stem Cell Res 2010; 6:70-82. [PMID: 20934930 DOI: 10.1016/j.scr.2010.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 07/07/2010] [Accepted: 08/19/2010] [Indexed: 12/01/2022] Open
Abstract
The future application of human embryonic stem cells (hESC) for therapeutic approaches requires the development of xeno-free culture conditions to prevent the potential transmission of animal pathogens or xenobiotic substances to hESC. An important component of the majority of hESC culture systems developed is the requirement for fibroblasts to serve as feeders. For this purpose, several studies have used human foreskin fibroblasts established under xeno-free conditions. In this study we report xeno-free establishment and maintenance of human embryonic fibroblasts (XHEF) and demonstrate their ability to support long-term self-renewal of hESC under xeno-free culture conditions, using a commercially available complete medium. Importantly, our culture conditions allow enzymatic passaging of hESC. In contrast, hESC cultured on human foreskin fibroblasts (XHFF) under the same conditions were poorly maintained and rapidly subject to differentiation. Our study clearly shows that the source of human fibroblasts is essential for long-term xeno-free hESC maintenance.
Collapse
Affiliation(s)
- Mark Kibschull
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, M5T 3H7, Canada.
| | | | | | | | | |
Collapse
|
33
|
Ramirez JM, Bai Q, Dijon-Grinand M, Assou S, Gerbal-Chaloin S, Hamamah S, De Vos J. Human pluripotent stem cells: from biology to cell therapy. World J Stem Cells 2010; 2:24-33. [PMID: 21607113 PMCID: PMC3097919 DOI: 10.4252/wjsc.v2.i2.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/08/2010] [Accepted: 03/15/2010] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells (PSCs), encompassing embryonic stem cells and induced pluripotent stem cells, proliferate extensively and differentiate into virtually any desired cell type. PSCs endow regenerative medicine with an unlimited source of replacement cells suitable for human therapy. Several hurdles must be carefully addressed in PSC research before these theoretical possibilities are translated into clinical applications. These obstacles are: (1) cell proliferation; (2) cell differentiation; (3) genetic integrity; (4) allogenicity; and (5) ethical issues. We discuss these issues and underline the fact that the answers to these questions lie in a better understanding of the biology of PSCs. To contribute to this aim, we have developed a free online expression atlas, Amazonia!, that displays for each human gene a virtual northern blot for PSC samples and adult tissues (http://www.amazonia.transcriptome.eu).
Collapse
Affiliation(s)
- Jean-Marie Ramirez
- Jean-Marie Ramirez, Qiang Bai, Marilyne Dijon-Grinand, Said Assou, Samir Hamamah, John De Vos, INSERM, U847, Montpellier, F 34000, France
| | | | | | | | | | | | | |
Collapse
|