1
|
Xu J, Song Z. The role of different physical exercises as an anti-aging factor in different stem cells. Biogerontology 2025; 26:63. [PMID: 40009244 DOI: 10.1007/s10522-025-10205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
The senescence process is connected to the characteristics of cellular aging. Understanding their causal network helps develop a framework for creating new treatments to slow down the senescence process. A growing body of research indicates that aging may adversely affect stem cells (SCs). SCs change their capability to differentiate into different cell types and decrease their potential for renewal as they age. Research has indicated that consistent physical exercise offers several health advantages, including a reduced risk of age-associated ailments like tumors, heart disease, diabetes, and neurological disorders. Exercise is a potent physiological stressor linked to higher red blood cell counts and an enhanced immune system, promoting disease resistance. Sports impact mesenchymal SCs (MSCs), hematopoietic SCs (HSCs), neuronal SCs (NuSCs), and muscular SCs (MuSCs), among other aged SCs types. These changes to the niche will probably affect the amount and capability of adult SCs after exercise. In this work, we looked into how different types of SCs age. The impact of physical activity on the aging process has been studied. Additionally, there has been discussion and study on the impact of different sports and physical activities on SCs as an anti-aging component.
Collapse
Affiliation(s)
- Jia Xu
- College of Physical Education, North-West Normal University, Lanzhou, 730070, China
| | - Zhe Song
- Cangzhou Medical College, Cangzhou, 061001, China.
| |
Collapse
|
2
|
Li W, Chen L, Mohammad Sajadi S, Baghaei S, Salahshour S. The impact of acute and chronic aerobic and resistance exercise on stem cell mobilization: A review of effects in healthy and diseased individuals across different age groups. Regen Ther 2024; 27:464-481. [PMID: 38745840 PMCID: PMC11091462 DOI: 10.1016/j.reth.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Stem cells (SCs) play a crucial role in tissue repair, regeneration, and maintaining physiological homeostasis. Exercise mobilizes and enhances the function of SCs. This review examines the effects of acute and chronic aerobic and resistance exercise on the population of SCs in healthy and diseased individuals across different age groups. Both acute intense exercise and moderate regular training increase circulating precursor cells CD34+ and, in particular, the subset of angiogenic progenitor cells (APCs) CD34+/KDR+. Conversely, chronic exercise training has conflicting effects on circulating CD34+ cells and their function, which are likely influenced by exercise dosage, the health status of the participants, and the methodologies employed. While acute activity promotes transient mobilization, regular exercise often leads to an increased number of progenitors and more sustainable functionality. Short interventions lasting 10-21 days mobilize CD34+/KDR + APCs in sedentary elderly individuals, indicating the inherent capacity of the body to rapidly activate tissue-reparative SCs during activity. However, further investigation is needed to determine the optimal exercise regimens for enhancing SC mobilization, elucidating the underlying mechanisms, and establishing functional benefits for health and disease prevention. Current evidence supports the integration of intense exercise with chronic training in exercise protocols aimed at activating the inherent regenerative potential through SC mobilization. The physical activity promotes endogenous repair processes, and research on exercise protocols that effectively mobilize SCs can provide innovative guidelines designed for lifelong tissue regeneration. An artificial neural network (ANN) was developed to estimate the effects of modifying elderly individuals and implementing chronic resistance exercise on stem cell mobilization and its impact on individuals and exercise. The network's predictions were validated using linear regression and found to be acceptable compared to experimental results.
Collapse
Affiliation(s)
- Wei Li
- Department of Sports Medicine, Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Lingzhen Chen
- Department of Sports and Arts, Zhejiang Gongshang University HangZhou College of Commerce, No. 66, South Huancheng Road, Tonglu, Hangzhou, China
| | | | - Sh. Baghaei
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Iran
| | - Soheil Salahshour
- Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
3
|
Günaştı Ö, Özdemir Ç, Özgünen KT, Çiftdal G, Gezgin E, Eryılmaz SK, Boyraz ÖC, Kılcı A, Adaş Ü, Antmen B, Kurdak SS. Changes in hematopoietic stem cell numbers following acute exercise in non-athlete marathon runners. Adv Med Sci 2024; 69:416-420. [PMID: 39284497 DOI: 10.1016/j.advms.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 09/13/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE Hematopoietic stem cell (HSC) transplant is one of the curative methods for some patients with hematological malignancies. Granulocyte colony-stimulating factor (G-CSF) is the most common drug used to mobilize CD34+ cells, generally found in small numbers. Recent evidence showed that exercise causes transient mobilization in HSC. However, the type and intensity of exercise have not been fully revealed. We aimed to detect a significant increase in stem cell levels following 60 min of running at a personalized running pace. MATERIALS/METHODS Eighteen runners, 48.2 ± 1.9 years with peak oxygen consumption of 46.2 ± 1.4 ml/kg/min, were enrolled in the study. The cardiopulmonary exercise test was performed to determine the individual running pace, and the participants ran 60-min on a treadmill at an intensity close to their ventilatory threshold (VT). The blood sampling for HSC count was performed before, immediately after, at the 1st, 4th and 24th hour after the 60-min running. RESULTS The CD34+ HSCs were 13.9 ± 2.3 cells/μl before and significantly increased immediately after to 19.5 ± 3.6 cells/μl (p < 0.05). The consecutive HSC counts were 15.3 ± 2.2, 19.5 ± 4.8 and 15.1 ± 3.4 cells/μl at the 1st, 4th, and 24th hour, respectively. CONCLUSION The individual data showed that some runners had higher HSC levels than the transplantation limit before and after the 60-min running trail, which was maintained for 24 h. Pre-running high CD34+ HSCs may reflect an adaptive response to regular exercise, with a 60-min run near the VT further elevating HSCs. Individualized exercise may be a valuable tool to mobilize the CD34+ HSCs in peripheral blood for donors.
Collapse
Affiliation(s)
- Özgür Günaştı
- Department of Physiology, Medical Faculty, Çukurova University, Adana, Turkey
| | - Çiğdem Özdemir
- Department of Physiology, Medical Faculty, Çukurova University, Adana, Turkey
| | - Kerem T Özgünen
- Department of Physiology, Medical Faculty, Çukurova University, Adana, Turkey
| | - Gizem Çiftdal
- Department of Pediatric Hematology, Acıbadem Adana Hospital, Adana, Turkey
| | - Ertuğrul Gezgin
- Department of Physiology, Medical Faculty, Çukurova University, Adana, Turkey
| | - Selcen Korkmaz Eryılmaz
- Department of Athletic Training, Sports Sciences Faculty, Çukurova University, Adana, Turkey
| | - Ömer Cumhur Boyraz
- Department of Athletic Training, Sports Sciences Faculty, Çukurova University, Adana, Turkey
| | - Abdullah Kılcı
- Department of Athletic Training, Sports Sciences Faculty, Çukurova University, Adana, Turkey
| | - Ümüt Adaş
- Department of Athletic Training, Sports Sciences Faculty, Çukurova University, Adana, Turkey
| | - Bülent Antmen
- Department of Pediatric Hematology, Acıbadem Adana Hospital, Adana, Turkey
| | - Sanlı Sadi Kurdak
- Department of Physiology, Medical Faculty, Çukurova University, Adana, Turkey.
| |
Collapse
|
4
|
Khair L, Hayes K, Tutto A, Samant A, Ferreira L, Nguyen TT, Brehm M, Messina LM. Physical activity regulates the immune response to breast cancer by a hematopoietic stem cell-autonomous mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560299. [PMID: 37873380 PMCID: PMC10592839 DOI: 10.1101/2023.09.30.560299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Physical activity is a modifiable lifestyle factor that is associated with a decreased risk for the development of breast cancer. While the exact mechanisms for the reduction in cancer risk due to physical activity are largely unknown, it is postulated that the biological reduction in cancer risk is driven by improvements in inflammation and immune function with exercise. Hematopoietic stem cells (HSCs) are the progenitor for all of the cells of the immune system and are involved in cancer immunosurveillance through differentiation into cytotoxic cell population. In this study, we investigate the role of physical activity (PA) in a spontaneously occurring model of breast cancer over time, with a focus on tumor incidence, circulating and tumor-infiltrating immune cells as well gene expression profiles of tumors and hematopoietic stem cells. Furthermore, we show that, in addition to a direct effect of PA on the immune cells of tumor-bearing mice, PA reduces the oxidative stress in HSCs of wildtype and tumor-bearing mice, and by doing so, alters the differentiation of the HSCs towards T cells in order to enhance cancer immunosurveillance.
Collapse
Affiliation(s)
- Lyne Khair
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center
- Diabetes Center of Excellence, UMass Chan Medical School
| | - Katherine Hayes
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center
| | - Amanda Tutto
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center
| | - Amruta Samant
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center
| | | | - Tammy T. Nguyen
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center
- Diabetes Center of Excellence, UMass Chan Medical School
| | - Michael Brehm
- Diabetes Center of Excellence, UMass Chan Medical School
- Program in Molecular Medicine, UMass Chan Medical School
| | - Louis M. Messina
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center
- Diabetes Center of Excellence, UMass Chan Medical School
| |
Collapse
|
5
|
Pax7 + Satellite Cells in Human Skeletal Muscle After Exercise: A Systematic Review and Meta-analysis. Sports Med 2023; 53:457-480. [PMID: 36266373 DOI: 10.1007/s40279-022-01767-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Skeletal muscle has extraordinary regenerative capabilities against challenge, mainly owing to its resident muscle stem cells, commonly identified by Pax7+, which expediently donate nuclei to the regenerating multinucleated myofibers. This local reserve of stem cells in damaged muscle tissues is replenished by undifferentiated bone marrow stem cells (CD34+) permeating into the surrounding vascular system. OBJECTIVE The purpose of the study was to provide a quantitative estimate for the changes in Pax7+ muscle stem cells (satellite cells) in humans following an acute bout of exercise until 96 h, in temporal relation to circulating CD34+ bone marrow stem cells. A subgroup analysis of age was also performed. METHODS Four databases (Web of Science, PubMed, Scopus, and BASE) were used for the literature search until February 2022. Pax7+ cells in human skeletal muscle were the primary outcome. Circulating CD34+ cells were the secondary outcome. The standardized mean difference (SMD) was calculated using a random-effects meta-analysis. Subgroup analyses were conducted to examine the influence of age, training status, type of exercise, and follow-up time after exercise. RESULTS The final search identified 20 studies for Pax7+ cells comprising a total of 370 participants between the average age of 21 and 74 years and 26 studies for circulating CD34+ bone marrow stem cells comprising 494 participants between the average age of 21 and 67 years. Only one study assessed Pax7+ cells immediately after aerobic exercise and showed a 32% reduction in exercising muscle followed by a fast repletion to pre-exercise level within 3 h. A large effect on increasing Pax7+ cell content in skeletal muscles was observed 24 h after resistance exercise (SMD = 0.89, p < 0.001). Pax7+ cells increased to ~ 50% above pre-exercise level 24-72 h after resistance exercise. For a subgroup analysis of age, a large effect (SMD = 0.81, p < 0.001) was observed on increasing Pax7+ cells in exercised muscle among adults aged > 50 years, whereas adults at younger age presented a medium effect (SMD = 0.64, p < 0.001). Both resistance exercise and aerobic exercise showed a medium overall effect in increasing circulating CD34+ cells (SMD = 0.53, p < 0.001), which declined quickly to the pre-exercise baseline level after exercise within 6 h. CONCLUSIONS An immediate depletion of Pax7+ cells in exercising skeletal muscle concurrent with a transient release of CD34+ cells suggest a replenishment of the local stem cell reserve from bone marrow. A protracted Pax7+ cell expansion in the muscle can be observed during 24-72 h after resistance exercise. This result provides a scientific basis for exercise recommendations on weekly cycles allowing for adequate recovery time. Exercise-induced Pax7+ cell expansion in muscle remains significant at higher age, despite a lower stem cell reserve after age 50 years. More studies are required to confirm whether Pax7+ cell increment can occur after aerobic exercise. CLINICAL TRIAL REGISTRATION Registered at the International Prospective Register of Systematic Reviews (PROSPERO) [identification code CRD42021265457].
Collapse
|
6
|
Hohenauer E, Freitag L, Herten M, Siallagan J, Pollock E, Taube W, Clijsen R. The Methodological Quality of Studies Investigating the Acute Effects of Exercise During Hypoxia Over the Past 40 years: A Systematic Review. Front Physiol 2022; 13:919359. [PMID: 35784889 PMCID: PMC9243659 DOI: 10.3389/fphys.2022.919359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Exercise under hypoxia and the physiological impact compared to normoxia or hypoxia has gained attention in the last decades. However, methodological quality assessment of articles in this area is lacking in the literature. Therefore, this article aimed to evaluate the methodologic quality of trials studying exercise under hypoxia. An electronic search was conducted until December 2021. The search was conducted in PubMed, CENTRAL, and PEDro using the PICO model. (P) Participants had to be healthy, (I) exercise under normobaric or hypobaric hypoxia had to be (C) compared to exercise in normoxia or hypoxia on (O) any physiological outcome. The 11-item PEDro scale was used to assess the methodological quality (internal validity) of the studies. A linear regression model was used to evaluate the evolution of trials in this area, using the total PEDro score of the rated trials. A total of n = 81 studies met the inclusion criteria and were processed in this study. With a mean score of 5.1 ± 0.9 between the years 1982 and 2021, the mean methodological quality can be described as "fair." Only one study reached the highest score of 8/10, and n = 2 studies reached the lowest observed value of 3/10. The linear regression showed an increase of the PEDro score of 0.1 points per decade. A positive and small tendency toward increased methodologic quality was observed. The current results demonstrate that a positive and small tendency can be seen for the increase in the methodological quality in the field of exercise science under hypoxia. A "good" methodological quality, reaching a PEDro score of 6 points can be expected in the year 2063, using a linear regression model analysis. To accelerate this process, future research should ensure that methodological quality criteria are already included during the planning phase of a study.
Collapse
Affiliation(s)
- Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Livia Freitag
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Miriam Herten
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Julia Siallagan
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Elke Pollock
- Department of Physiotherapy, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Wolfgang Taube
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Ron Clijsen
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Health, Bern University of Applied Sciences, Berne, Switzerland
| |
Collapse
|
7
|
Marino F, Scalise M, Cianflone E, Salerno L, Cappetta D, Salerno N, De Angelis A, Torella D, Urbanek K. Physical Exercise and Cardiac Repair: The Potential Role of Nitric Oxide in Boosting Stem Cell Regenerative Biology. Antioxidants (Basel) 2021; 10:1002. [PMID: 34201562 PMCID: PMC8300666 DOI: 10.3390/antiox10071002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022] Open
Abstract
Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the "nitroso-redox imbalance". Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.
Collapse
Affiliation(s)
- Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (N.S.)
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.)
| | - Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (N.S.)
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| |
Collapse
|
8
|
Systemic Administration of G-CSF Accelerates Bone Regeneration and Modulates Mobilization of Progenitor Cells in a Rat Model of Distraction Osteogenesis. Int J Mol Sci 2021; 22:ijms22073505. [PMID: 33800710 PMCID: PMC8037338 DOI: 10.3390/ijms22073505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) was shown to promote bone regeneration and mobilization of vascular and osteogenic progenitor cells. In this study, we investigated the effects of a systemic low dose of G-CSF on both bone consolidation and mobilization of hematopoietic stem/progenitor cells (HSPCs), endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs) in a rat model of distraction osteogenesis (DO). Neovascularization and mineralization were longitudinally monitored using positron emission tomography and planar scintigraphy. Histological analysis was performed and the number of circulating HSPCs, EPCs and MSCs was studied by flow cytometry. Contrary to control group, in the early phase of consolidation, a bony bridge with lower osteoclast activity and a trend of an increase in osteoblast activity were observed in the distracted callus in the G-CSF group, whereas, at the late phase of consolidation, a significantly lower neovascularization was observed. While no difference was observed in the number of circulating EPCs between control and G-CSF groups, the number of MSCs was significantly lower at the end of the latency phase and that of HSPCs was significantly higher 4 days after the bone lengthening. Our results indicate that G-CSF accelerates bone regeneration and modulates mobilization of progenitor cells during DO.
Collapse
|
9
|
Kröpfl JM, Beltrami FG, Rehm M, Gruber HJ, Stelzer I, Spengler CM. Acute exercise-induced glycocalyx shedding does not differ between exercise modalities, but is associated with total antioxidative capacity. J Sci Med Sport 2021; 24:689-695. [PMID: 33632661 DOI: 10.1016/j.jsams.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/02/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Regular physical exercise is known to protect endothelial integrity. It has been proposed that acute exercise-induced changes of the (anti-)oxidative system influence early (glycocalyx shedding) and sustained endothelial activation (shedding of endothelial cells, ECs) as well as endothelial-cell repair by circulating hematopoietic stem and progenitor cells (HPCs). However, results are not conclusive and data in trained participants performing different exercise modalities is lacking. DESIGN Eighteen healthy, well-trained participants (9 runners, 9 cyclists; age: 29.7 ± 4.2 yrs) performed a strenuous acute exercise session consisting of 4 bouts of 4-min high-intensity with decreasing power profile and 3-min low-intensity in-between. METHODS Average power/speed of intense phases was 85% of the peak achieved in a previous incremental test. Before and shortly after exercise, total oxidative and antioxidative capacities (TAC), shedding of syndecan-1, heparan sulfate, hyaluronan, ECs, and circulating HPCs were investigated. RESULTS TAC decreased from 1.81 ± 0.42 nmol/L to 1.47 ± 0.23 nmol/L post-exercise (p = 0.010) only in runners. Exercise-induced early and sustained endothelial activation were enhanced post-exercise- syndecan-1: 103.2 ± 63.3 ng/mL to 111.3 ± 71.3 ng/mL, heparan sulfate: from 2637.9 ± 800.1 ng/mL to 3197.1 ± 1416.3 ng/mL, both p < 0.05; hyaluronan: 84.3 ± 21.8 ng/mL to 121.4 ± 29.4 ng/mL, ECs: from 6.6 ± 4.5 cells/μL to 9.5 ± 6.2 cells/μL, both p < 0.01; results were not different between exercise modalities and negatively related to TAC concentrations post-exercise. HPC proportions and self-renewal ability were negatively, while EC concentrations were positively associated with circulating hyaluronan concentrations. CONCLUSIONS These results highlight the importance of the antioxidative system to prevent the endothelium from acute exercise-induced vascular injury - independent of exercise modality - in well-trained participants. Endothelial-cell repair is associated with hyluronan signaling, possibly a similar mechanism as in wound repair.
Collapse
Affiliation(s)
- Julia M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland
| | - Fernando G Beltrami
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland
| | - Markus Rehm
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, Germany
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Ingeborg Stelzer
- Institute of Medical and Chemical Laboratory Diagnostics, LKH Hochsteiermark, Austria
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland.
| |
Collapse
|
10
|
Moazzami K, Lima BB, Hammadah M, Ramadan R, Al Mheid I, Kim JH, Alkhoder A, Obideen M, Levantsevych O, Shah A, Liu C, Bremner JD, Kutner M, Sun YV, Waller EK, Hesaroieh IG, Raggi P, Vaccarino V, Quyyumi AA. Association Between Change in Circulating Progenitor Cells During Exercise Stress and Risk of Adverse Cardiovascular Events in Patients With Coronary Artery Disease. JAMA Cardiol 2021; 5:147-155. [PMID: 31799987 PMCID: PMC6902161 DOI: 10.1001/jamacardio.2019.4528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Stem and progenitor cells mobilize from the bone marrow in response to myocardial ischemia. However, the association between the change in circulating progenitor cell (CPC) counts and disease prognosis among patients with ischemia is unknown. Objective To investigate the association between the change in CPC counts during stress testing and the risk of adverse cardiovascular events in patients with stable coronary artery disease (CAD). Design, Setting, and Participants This prospective cohort study included a population-based sample of 454 patients with stable CAD who were recruited between June 1, 2011, and August 15, 2014, at Emory University-affiliated hospitals and followed up for 3 years. Data were analyzed from September 15, 2018, to October 15, 2018. Exposures Myocardial perfusion imaging with technetium Tc 99m sestamibi at rest and 30 to 60 minutes after conventional stress testing. Main Outcomes and Measures Circulating progenitor cells were enumerated with flow cytometry as CD34-expressing mononuclear cells (CD45med/CD34+), with additional quantification of subsets coexpressing the chemokine (C-X-C motif) receptor 4 (CD34+/CXCR4+). Changes in CPC counts were calculated as poststress minus resting CPC counts. Cox proportional hazards regression models were used to identify factors associated with the combined end point of cardiovascular death and myocardial infarction after adjusting for clinical covariates, including age, sex, race, smoking history, body mass index, and history of heart failure, hypertension, dyslipidemia, and diabetes. Results Of the 454 patients (mean [SD] age, 63 [9] years; 76% men) with stable CAD enrolled in the study, 142 (31.3%) had stress-induced ischemia and 312 (68.7%) did not, as measured by single-photon emission computed tomography. During stress testing, patients with stress-induced ischemia had a mean decrease of 20.2% (interquartile range [IQR], -45.3 to 5.5; P < .001) in their CD34+/CXCR4+ counts, and patients without stress-induced ischemia had a mean increase of 3.2% (IQR, -20.6 to 35.1; P < .001) in their CD34+/CXCR4+ counts. Twenty-four patients (5.2%) experienced adverse events. After adjustment, baseline CPC counts were associated with worse adverse outcomes, but this association was not present after stress-induced ischemia was included in the model. However, the change in CPC counts during exercise remained significantly associated with adverse events (hazard ratio, 2.59; 95% CI, 1.15-5.32, per 50% CD34+/CXCR4+ count decrease), even after adjustment for clinical variables and the presence of ischemia. The discrimination of risk factors associated with incident adverse events improved (increase in C statistic from 0.72 to 0.77; P = .003) with the addition of the change in CD34+/CXCR4+ counts to a model that included clinical characteristics, baseline CPC count, and ischemia. Conclusions and Relevance In this study of patients with CAD, a decrease in CPC counts during exercise is associated with a worse disease prognosis compared with the presence of stress-induced myocardial ischemia. Further studies are needed to evaluate whether strategies to improve CPC responses during exercise stress will be associated with improvements in the prognosis of patients with CAD.
Collapse
Affiliation(s)
- Kasra Moazzami
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Bruno B Lima
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Mohammad Hammadah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Ronnie Ramadan
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Ibhar Al Mheid
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Jeong Hwan Kim
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Ayman Alkhoder
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Malik Obideen
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Oleksiy Levantsevych
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Amit Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | - Chang Liu
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - J Douglas Bremner
- Atlanta VA Medical Center, Decatur, Georgia.,Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Michael Kutner
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Edmund K Waller
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Iraj Ghaini Hesaroieh
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Canada
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
11
|
Schmid M, Kröpfl JM, Spengler CM. Changes in Circulating Stem and Progenitor Cell Numbers Following Acute Exercise in Healthy Human Subjects: a Systematic Review and Meta-analysis. Stem Cell Rev Rep 2021; 17:1091-1120. [PMID: 33389632 PMCID: PMC8316227 DOI: 10.1007/s12015-020-10105-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/22/2022]
Abstract
Despite of the increasing number of investigations on the effects of acute exercise on circulating stem and progenitor cell (SC) numbers, and in particular on respective subgroups, i.e. endothelial (ESC), hematopoietic (HSC), and mesenchymal (MSC) stem and progenitor cells, a consensus regarding mechanisms and extent of these effects is still missing. The aim of this meta-analysis was to systematically evaluate the overall-effects of acute exercise on the different SC-subgroups and investigate possible subject- and intervention-dependent factors affecting the extent of SC-mobilization in healthy humans. Trials assessing SC numbers before and at least one timepoint after acute exercise, were identified in a systematic computerized search. Compared to baseline, numbers were significantly increased for early and non-specified SCs (enSCs) until up to 0.5 h after exercise (0–5 min: +0.64 [Standardized difference in means], p < 0.001; 6–20 min: +0.42, p < 0.001; 0.5 h: +0.29, p = 0.049), for ESCs until 12–48 h after exercise (0–5 min: +0.66, p < 0.001; 6–20 min: +0.43 p < 0.001; 0.5 h: +0.43, p = 0.002; 1 h: +0.58, p = 0.001; 2 h: +0.50, p = 0.002; 3–8 h: +0.70, p < 0.001; 12–48 h: +0.38, p = 0.003) and for HSCs at 0–5 min (+ 0.47, p < 0.001) and at 3 h after exercise (+ 0.68, p < 0.001). Sex, intensity and duration of the intervention had generally no influence. The extent and kinetics of the exercise-induced mobilization of SCs differ between SC-subpopulations. However, also definitions of SC-subpopulations are non-uniform. Therefore, finding a consensus with a clear definition of cell surface markers defining ESCs, HSCs and MSCs is a first prerequisite for understanding this important topic. ![]()
Collapse
Affiliation(s)
- M Schmid
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - J M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - C M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
12
|
Kröpfl JM, Beltrami FG, Gruber HJ, Stelzer I, Spengler CM. Exercise-Induced Circulating Hematopoietic Stem and Progenitor Cells in Well-Trained Subjects. Front Physiol 2020; 11:308. [PMID: 32457637 PMCID: PMC7220991 DOI: 10.3389/fphys.2020.00308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
It has been proposed that exercise-induced systemic oxidative stress increases circulating hematopoietic stem and progenitor cell (HPC) number in active participants, while HPC clonogenicity is reduced post-exercise. However, HPCs could be protected against exercise-induced reactive oxygen species in a trained state. Therefore, we characterized the acute exercise-induced HPC profile of well-trained participants including cell number, clonogenicity, and clearance. Twenty-one healthy, well-trained participants-12 runners, 9 cyclists; age 30.0 (4.3) years-performed a strenuous acute exercise session consisting of 4 bouts of 4-min high-intensity with 3-min low-intensity in-between, which is known to elicit oxidative stress. Average power/speed of intense phases was 85% of the peak achieved in a previous incremental test. Before and 10 min after exercise, CD34+/45dim cell number and clonogenicity, total oxidative (TOC), and antioxidative (TAC) capacities, as well as CD31 expression on detected HPCs were investigated. TOC significantly decreased from 0.093 (0.059) nmol/l to 0.083 (0.052) nmol/l post-exercise (p = 0.044). Although HPC proportions significantly declined below baseline (from 0.103 (0.037)% to 0.079 (0.028)% of mononuclear cells, p < 0.001), HPC concentrations increased post-exercise [2.10 (0.75) cells/μl to 2.46 (0.98) cells/μl, p = 0.002] without interaction between exercise modalities, while HPC clonogenicity was unaffected. Relating HPC concentrations and clonogenicity to exercise session specific (anti-) oxidative parameters, no association was found. CD31 median fluorescent intensity expression on detected HPCs was diminished post-exercise [from 1,675.9 (661.0) to 1,527.1 (558.9), p = 0.023] and positively correlated with TOC (r rm = 0.60, p = 0.005). These results suggest that acute exercise-reduced oxidative stress influences HPC clearance but not mobilization in well-trained participants. Furthermore, a well-trained state protected HPCs' clonogenicity from post-exercise decline.
Collapse
Affiliation(s)
- Julia M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Fernando G Beltrami
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Ingeborg Stelzer
- Institute of Medical and Chemical Laboratory Diagnostics, LKH Hochsteiermark, Leoben, Austria
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Abstract
Unhealthy diet, lack of exercise, psychosocial stress, and insufficient sleep are increasingly prevalent modifiable risk factors for cardiovascular disease. Accumulating evidence indicates that these risk factors may fuel chronic inflammatory processes that are active in atherosclerosis and lead to myocardial infarction and stroke. In concert with hyperlipidemia, maladaptive immune system activities can contribute to disease progression and increase the probability of adverse events. In this review, we discuss recent insight into how the above modifiable risk factors influence innate immunity. Specifically, we focus on pathways that raise systemic myeloid cell numbers and modulate immune cell phenotypes, reviewing hematopoiesis, leukocyte trafficking, and innate immune cell accumulation in cardiovascular organs. Often, relevant mechanisms that begin with lifestyle choices and lead to cardiovascular events span multiple organ systems, including the central nervous, endocrine, metabolic, hematopoietic, immune and, finally, the cardiovascular system. We argue that deciphering such pathways provides not only support for preventive interventions but also opportunities to develop biomimetic immunomodulatory therapeutics that mitigate cardiovascular inflammation.
Collapse
Affiliation(s)
- Maximilian J Schloss
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.).,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.N.).,Department of Internal Medicine I, University Hospital Wuerzburg, Germany (M.N.)
| |
Collapse
|
14
|
Kröpfl JM, Kammerer T, Faihs V, Gruber HJ, Stutz J, Rehm M, Stelzer I, Schäfer ST, Spengler CM. Acute Exercise in Hypobaric Hypoxia Attenuates Endothelial Shedding in Subjects Unacclimatized to High Altitudes. Front Physiol 2020; 10:1632. [PMID: 32116736 PMCID: PMC7010936 DOI: 10.3389/fphys.2019.01632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/26/2019] [Indexed: 11/13/2022] Open
Abstract
Travel of unacclimatized subjects to a high altitude has been growing in popularity. Changes in endothelial shedding [circulating endothelial cells (ECs)] and hematopoietic stem and progenitor cells (CPCs) during physical exercise in hypobaric hypoxia, however, are not well understood. We investigated the change in ECs and CPCs when exposed to high altitude, after acute exercise therein, and after an overnight stay in hypobaric hypoxia in 11 healthy unacclimatized subjects. Blood withdrawal was done at baseline (520 m a.s.l.; baseline), after passive ascent to 3,883 m a.s.l. (arrival), after acute physical exercise (±400 m, postexercise) and after an overnight stay at 3,883 m a.s.l. (24 h). Mature blood cells, ECs, and CPCs were assessed by a hematology analyzer and flow cytometry, respectively. The presence of matrix metalloproteinases (MMPs), their activity, and hematopoietic cytokines were assessed in serum and plasma. EC and CPC concentrations significantly decreased after exercise (p = 0.019, p = 0.007, respectively). CPCs remained low until the next morning (24 h, p = 0.002), while EC concentrations returned back to baseline. MMP-9 decreased at arrival (p = 0.021), stayed low postexercise (p = 0.033), and returned to baseline at 24 h (p = 0.035 to postexercise). MMP-activity did not change throughout the study. Circulating MMP-9 concentrations, but not MMP-activity, were associated with EC concentrations (rrm = 0.48, p = 0.010). CPC concentrations were not linked to hematopoietic cytokines. Acute exercise at high altitude attenuated endothelial shedding, but did not enhance regenerative CPCs. Results were not linked to endothelial matrix remodeling or CPC mobilization. These results provide information to better understand the endothelium and immature immune system during an active, short-term sojourn at high altitude.
Collapse
Affiliation(s)
- Julia M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zürich, Zurich, Switzerland
| | - Tobias Kammerer
- Department of Anaesthesiology, Ludwig Maximilian University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, Ludwig Maximilian University of Munich, Munich, Germany.,Institute of Anesthesiology, Heart and Diabetes Center NRW, Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Valentina Faihs
- Department of Anaesthesiology, Ludwig Maximilian University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Jan Stutz
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zürich, Zurich, Switzerland
| | - Markus Rehm
- Department of Anaesthesiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ingeborg Stelzer
- Institute of Medical and Chemical Laboratory Diagnostics, LKH Hochsteiermark, Leoben, Austria
| | - Simon T Schäfer
- Department of Anaesthesiology, Ludwig Maximilian University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zürich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Abstract
Enforced egress of hematopoietic stem cells (HSCs) out of the bone marrow (BM) into the peripheral circulation, termed mobilization, has come a long way since its discovery over four decades ago. Mobilization research continues to be driven by the need to optimize the regimen currently available in the clinic with regard to pharmacokinetic and pharmacodynamic profile, costs, and donor convenience. In this review, we describe the most recent findings in the field and how we anticipate them to affect the development of mobilization strategies in the future. Furthermore, the significance of mobilization beyond HSC collection, i.e. for chemosensitization, conditioning, and gene therapy as well as a means to study the interactions between HSCs and their BM microenvironment, is reviewed. Open questions, controversies, and the potential impact of recent technical progress on mobilization research are also highlighted.
Collapse
Affiliation(s)
- Darja Karpova
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, 69120, Germany
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine,, St. Louis, Missouri, 63110, USA
| |
Collapse
|
16
|
Zakirova EY, Valeeva AN, Aimaletdinov AM, Nefedovskaya LV, Akhmetshin RF, Rutland CS, Rizvanov AA. Potential therapeutic application of mesenchymal stem cells in ophthalmology. Exp Eye Res 2019; 189:107863. [PMID: 31669045 DOI: 10.1016/j.exer.2019.107863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/03/2019] [Accepted: 10/23/2019] [Indexed: 01/09/2023]
Abstract
At present a wide variety of methods have been proposed to treat eye disorders, drug therapies are most commonly used. It should be noted that effective treatment modalities especially for degeneration of the retina and optic nerve are lacking. In the last few years stem cell transplantation has been proposed as an alternative method. The opportunities that stem cells provide within clinical use are almost unlimited. These cells are presently applied to treat various traumatic and degenerative disorders due to their unique biologic properties. Stem cells have high proliferative capabilities and are a self-maintained population of cells capable of differentiating into different cell types. Thus, they are represent a very primary stage of a cell lineage. Their ability to differentiate into different pathways provides animals with great plasticity in the renewal of somatic cells in postnatal ontogenesis. Pre-clinical and clinical ophthalmology studies where mesenchymal stem cells are applied and various methods of their administration are discussed herein. In addition the safety and efficacy of using bone marrow- and adipose tissue-derived mesenchymal stem cells have been discussed.
Collapse
Affiliation(s)
| | - A N Valeeva
- Kazan Federal University, Kazan, Russia; Kazan State Medical University, Kazan, Russia
| | | | | | | | | | | |
Collapse
|
17
|
Circulating adult stem and progenitor cell numbers-can results be trusted? Stem Cell Res Ther 2019; 10:305. [PMID: 31623690 PMCID: PMC6798345 DOI: 10.1186/s13287-019-1403-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Within the last years, the interest in physical exercise as non-invasive stimulus influencing circulating hematopoietic stem and progenitor cell (CPC) concentrations has constantly grown. Cell estimates are often derived by determining the subgroup of CPC as percent lymphocytes (LYM) or mononuclear cells (MNC) via flow cytometry and back calculation over whole blood (WB) cell counts. However, results might depend on the used cell isolation technique and/or gating strategy. We aimed to investigate MNC loss and apoptosis during the flow cytometry sample preparation process preceded by either density gradient centrifugation (DGC) or red blood cell lysis (RBCL) and the potential difference between results derived from back calculation at different stages of cell isolation and from WB. METHODS Human blood was subjected to DGC and RBCL. Samples were stained for flow cytometry analysis of CPC (CD34+/CD45dim) and apoptosis analysis (Annexin V) of MNC and CPC subsets. MNC and LYM gating strategies were compared. RESULTS Both DGC as well as RBCL yielded comparable CPC concentrations independent of the gating strategy when back calculated over WB values. However, cell loss and apoptosis differed between techniques, where after DGC LYM, and monocyte (MONO) concentrations significantly decreased (p < 0.01 and p < 0.05, respectively), while after RBCL LYM concentrations significantly decreased (p < 0.05) and MONO concentrations increased (p < 0.001). LYM apoptosis was comparable between techniques, but MONO apoptosis was higher after DGC than RBCL (p < 0.001). CONCLUSIONS Investigated MNC counts (LYM/MONO ratio) after cell isolation and staining did not always mimic WB conditions. Thus, final CPC results should be corrected accordingly, especially when reporting live CPC concentrations after DGC; otherwise, the CPC regenerative potential in circulation could be biased. This is of high importance in the context of non-invasively induced CPC mobilization such as by acute physical exercise, since these cell changes are small and conclusions drawn from published results might affect further applications of physical exercise as non-invasive therapy.
Collapse
|
18
|
Landers-Ramos RQ, Sapp RM, Shill DD, Hagberg JM, Prior SJ. Exercise and Cardiovascular Progenitor Cells. Compr Physiol 2019; 9:767-797. [PMID: 30892694 DOI: 10.1002/cphy.c180030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autologous stem/progenitor cell-based methods to restore blood flow and function to ischemic tissues are clinically appealing for the substantial proportion of the population with cardiovascular diseases. Early preclinical and case studies established the therapeutic potential of autologous cell therapies for neovascularization in ischemic tissues. However, trials over the past ∼15 years reveal the benefits of such therapies to be much smaller than originally estimated and a definitive clinical benefit is yet to be established. Recently, there has been an emphasis on improving the number and function of cells [herein generally referred to as circulating angiogenic cells (CACs)] used for autologous cell therapies. CACs include of several subsets of circulating cells, including endothelial progenitor cells, with proangiogenic potential that is largely exerted through paracrine functions. As exercise is known to improve CV outcomes such as angiogenesis and endothelial function, much attention is being given to exercise to improve the number and function of CACs. Accordingly, there is a growing body of evidence that acute, short-term, and chronic exercise have beneficial effects on the number and function of different subsets of CACs. In particular, recent studies show that aerobic exercise training can increase the number of CACs in circulation and enhance the function of isolated CACs as assessed in ex vivo assays. This review summarizes the roles of different subsets of CACs and the effects of acute and chronic exercise on CAC number and function, with a focus on the number and paracrine function of circulating CD34+ cells, CD31+ cells, and CD62E+ cells. © 2019 American Physiological Society. Compr Physiol 9:767-797, 2019.
Collapse
Affiliation(s)
- Rian Q Landers-Ramos
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| | - Ryan M Sapp
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Daniel D Shill
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - James M Hagberg
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Steven J Prior
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Kröpfl JM, Tschakert G, Stelzer I, Pekovits K, Zelzer S, Dohr G, Holasek S, Stojakovic T, Scharnagl H, Spengler CM, Hofmann P. Acute Exercise-Induced Circulating Haematopoietic Stem and Progenitor Cells in Cardiac Patients - A Case Series. Heart Lung Circ 2018; 28:e54-e58. [PMID: 29933914 DOI: 10.1016/j.hlc.2018.05.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/18/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Exercise-induced circulating haematopoietic stem and progenitor cell (HPC) number has been discussed in the context of regeneration in heart disease patients. OBJECTIVE The aim of this pilot study was to compare the effect of different exercise protocols usually applied in cardiac rehabilitation on the number of acute, exercise-induced HPCs, related to potential mediators, e.g. biomarkers of sympathetic and oxidative stress, and inflammation. METHODS This is a case series comprising seven patients suffering from coronary heart disease (CHD) undertaken at the Center for Ambulant Cardiac Rehabilitation. Patients (n=6) performed two exercise modes (constant-load, CLE; high-intensity interval, HIIE) in randomised order. Venous blood was drawn before and immediately after each test to assess CD34+/CD45+ HPC number by flow cytometry and biomarkers in blood plasma. The primary outcome was the change in HPC number, the secondary outcomes were changes in sympathetic/oxidative stress and markers of inflammation. RESULTS Both exercise modes resulted in a non-significant increase in HPC number after exercise, even when the results of both tests were combined. Overall, free norepinephrine increased significantly and was positively related to exercise-induced HPC number (r=0.70, p<0.05). Markers of sympathetic activation (fNE), oxidative stress (myeloperoxidase) and inflammation (interleukin-6) significantly increased after CLE and HIIE with no difference between tests. CONCLUSIONS Interestingly, acute CLE and HIIE did not stimulate significant HPC mobilisation in CHD, although both exercise modes elevated circulating concentrations of sympathetic activation. Haematopoietic stem and progenitor cell mobilisation could be blunted due to disease-related bone-marrow exhaustion.
Collapse
Affiliation(s)
- J M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland; Institute of Biophysics, Medical University of Graz, Graz, Austria.
| | - G Tschakert
- Exercise Physiology and Training Research Group, Institute of Sports Science, University of Graz, Graz, Austria
| | - I Stelzer
- Institute of Medical and Chemical Laboratory Diagnostics, LKH Hochsteiermark, Leoben, Austria
| | - K Pekovits
- Department of Ophthalmology, Medical University Graz, Graz, Austria
| | - S Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - G Dohr
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - S Holasek
- Institute for Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - T Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - H Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - C M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - P Hofmann
- Exercise Physiology and Training Research Group, Institute of Sports Science, University of Graz, Graz, Austria
| |
Collapse
|
20
|
Niemiro GM, Parel J, Beals J, van Vliet S, Paluska SA, Moore DR, Burd NA, De Lisio M. Kinetics of circulating progenitor cell mobilization during submaximal exercise. J Appl Physiol (1985) 2017; 122:675-682. [DOI: 10.1152/japplphysiol.00936.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/23/2016] [Accepted: 01/08/2017] [Indexed: 12/28/2022] Open
Abstract
Circulating progenitor cells (CPCs) are a heterogeneous population of stem/progenitor cells in peripheral blood that includes hematopoietic stem and progenitor cells (HSPCs and HSCs), endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs) that are involved in tissue repair and adaptation. CPC mobilization during exercise remains uncharacterized in young adults. The purpose of this study was to investigate the kinetics of CPC mobilization during and after submaximal treadmill running and their relationship to mobilization factors. Seven men [age = 25.3 ± 2.4 yr, body mass index = 23.5 ± 1.0 kg/m2, peak O2uptake (V̇o2peak) = 60.9 ± 2.74 ml·kg−1·min−1] ran on a treadmill for 60 min at 70% V̇o2peak. Blood sampling occurred before (Pre), during [20 min (20e), 40 min (40e), 60 min (60e)], and after exercise [15 min (15p), 60 min (60p), 120 min (120p)] for quantification of CPCs (CD34+), HSPCs (CD34+/CD45low), HSCs (CD34+/CD45low/CD38−), CD34+MSCs (CD45−/CD34+/CD31−/CD105+), CD34−MSCs (CD45−/CD34−/CD31−/CD105+), and EPCs (CD45−/CD34+/CD31+) via flow cytometry. CPC concentration increased compared with Pre at 20e and 40e (2.7- and 2.4-fold, respectively, P < 0.05). HSPCs and HSCs increased at 20e compared with 60p (2.7- and 2.8-fold, respectively, P < 0.05), whereas EPCs and both MSC populations did not change. CXC chemokine ligand (CXCL) 12 (1.5-fold; P < 0.05) and stem cell factor (1.3-fold; P < 0.05) were increased at 40e and remained elevated postexercise. The peak increase in CPCs was positively correlated to concentration of endothelial cells during exercise with no relationship to CXCL12 and SCF. Our data show the kinetics of progenitor cell mobilization during exercise that could provide insight into cellular mediators of exercise-induced adaptations, and have implication for the use of exercise as an adjuvant therapy for CPC collection in hematopoietic stem cell transplant.NEW & NOTEWORTHY Using a comprehensive evaluation of circulating progenitor cells (CPCs), we show that CPC mobilization during exercise is related to tissue damage, and not plasma concentrations of CXC chemokine ligand 12 and stem cell factor. These data have implications for the use of exercise interventions as adjuvant therapy for CPC mobilization in the context of hematopoietic stem cell transplant and also support the role of mobilized progenitor cells as cellular mediators of systemic adaptations to exercise.
Collapse
Affiliation(s)
- Grace M. Niemiro
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Justin Parel
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Joseph Beals
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Stephan van Vliet
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Scott A. Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Daniel R. Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; and
| | - Nicholas A. Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
- School of Human Kinetics, Brain and Mind Institute, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Effects of voluntary exercise on the viability, proliferation and BDNF levels of bone marrow stromal cells in rat pups born from morphine- dependent mothers during pregnancy. Neurosci Lett 2016; 634:132-137. [PMID: 27746311 DOI: 10.1016/j.neulet.2016.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/28/2016] [Accepted: 10/12/2016] [Indexed: 02/02/2023]
Abstract
This study was designed to investigate whether free access to a running wheel during pregnancy in morphine-dependent mothers would influence the viability, proliferation and BDNF levels of bone marrow stromal cells in rat pups. Pregnant rats were made dependent by chronic administration of morphine in drinking water simultaneously with free access to a running wheel. Male pups are weaned at 21days of birth and their bones marrows were aspirated from the femurs and tibias and also the bone marrow stromal cells (BMSCs) cultured. MTT assay was used to determine cell viability and proliferation rate. The level of BDNF was measured in the supernant of BMSCs culture by ELISA. The sedentary morphine-dependent mothers' pups showed a significant increase in the percentage cell viability and proliferation rate and also a significant decrease in the BDNF protein levels in BMSCs. The rat pups borne from exercising the control and morphine-dependent mothers exhibited an increase in the percentage viability, proliferation rate and BDNF levels of the BMSCs. This study showed that maternal exercise during pregnancy in morphine-dependent and non-dependent mothers, with increasing of BDNF levels increased the proliferation and viability of BMSCs in the rat pups. Also, chronic administration of morphine during pregnancy was able to increase the proliferation and viability of BMSCs in the rat pups.
Collapse
|
22
|
Exercise as an Adjuvant Therapy for Hematopoietic Stem Cell Mobilization. Stem Cells Int 2016; 2016:7131359. [PMID: 27123008 PMCID: PMC4830735 DOI: 10.1155/2016/7131359] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cell transplant (HSCT) using mobilized peripheral blood hematopoietic stem cells (HSPCs) is the only curative strategy for many patients suffering from hematological malignancies. HSPC collection protocols rely on pharmacological agents to mobilize HSPCs to peripheral blood. Limitations including variable donor responses and long dosing protocols merit further investigations into adjuvant therapies to enhance the efficiency of HSPCs collection. Exercise, a safe and feasible intervention in patients undergoing HSCT, has been previously shown to robustly stimulate HSPC mobilization from the bone marrow. Exercise-induced HSPC mobilization is transient limiting its current clinical potential. Thus, a deeper investigation of the mechanisms responsible for exercise-induced HSPC mobilization and the factors responsible for removal of HSPCs from circulation following exercise is warranted. The present review will describe current research on exercise and HSPC mobilization, outline the potential mechanisms responsible for exercise-induced HSPC mobilization, and highlight potential sites for HSPC homing following exercise. We also outline current barriers to the implementation of exercise as an adjuvant therapy for HSPC mobilization and suggest potential strategies to overcome these barriers.
Collapse
|
23
|
Emmons R, Niemiro GM, Owolabi O, De Lisio M. Acute exercise mobilizes hematopoietic stem and progenitor cells and alters the mesenchymal stromal cell secretome. J Appl Physiol (1985) 2016; 120:624-32. [DOI: 10.1152/japplphysiol.00925.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/02/2016] [Indexed: 12/20/2022] Open
Abstract
Transplantation of hematopoietic stem and progenitor cells (HSPC), collected from peripheral blood, is the primary treatment for many hematological malignancies; however, variable collection efficacy with current protocols merits further examination into factors responsible for HSPC mobilization. HSPCs primarily reside within the bone marrow and are regulated by mesenchymal stromal cells (MSC). Exercise potently and transiently mobilizes HSPCs from the bone marrow into peripheral circulation. Thus the purpose of the present study was to evaluate potential factors in the bone marrow responsible for HSPC mobilization, investigate potential sites of HSPC homing, and assess changes in bone marrow cell populations following exercise. An acute exercise bout increased circulating HSPCs at 15 min (88%, P < 0.001) that returned to baseline at 60 min. Gene expression for HSPC homing factors (CXCL12, vascular endothelial growth factor-a, and angiopoietin-1) were increased at 15 min in skeletal muscle and HSPC content was increased in the spleen 48 h postexercise (45%, P < 0.01). Acute exercise did not alter HSPCs or MSCs quantity in the bone marrow; however, proliferation of HSPCs (40%, P < 0.001), multipotent progenitors (40%, P < 0.001), short-term hematopoietic stem cells (61%, P < 0.001), long-term hematopoietic stem cells (55%, P = 0.002), and MSCs (20%, P = 0.01) increased postexercise. Acute exercise increased the content of the mobilization agent granulocyte-colony stimulating factor, as well as stem cell factor, interleukin-3, and thrombopoeitin in conditioned media collected from bone marrow stromal cells 15 min postexercise. These findings suggest that the MSC secretome is responsible for HSPC mobilization and proliferation; concurrently, HSPCs are homing to extramedullary sites following exercise.
Collapse
Affiliation(s)
- Russell Emmons
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Grace M. Niemiro
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Olatomide Owolabi
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
24
|
Endurance Exercise Mobilizes Developmentally Early Stem Cells into Peripheral Blood and Increases Their Number in Bone Marrow: Implications for Tissue Regeneration. Stem Cells Int 2015; 2016:5756901. [PMID: 26664409 PMCID: PMC4655293 DOI: 10.1155/2016/5756901] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/26/2015] [Indexed: 11/17/2022] Open
Abstract
Endurance exercise has been reported to increase the number of circulating hematopoietic stem/progenitor cells (HSPCs) in peripheral blood (PB) as well as in bone marrow (BM). We therefore became interested in whether endurance exercise has the same effect on very small embryonic-like stem cells (VSELs), which have been described as a population of developmentally early stem cells residing in BM. Mice were run daily for 1 hour on a treadmill for periods of 5 days or 5 weeks. Human volunteers had trained in long-distance running for one year, six times per week. FACS-based analyses and RT-PCR of murine and human VSELs and HSPCs from collected bone marrow and peripheral blood were performed. We observed that endurance exercise increased the number of VSELs circulating in PB and residing in BM. In parallel, we observed an increase in the number of HSPCs. These observations were subsequently confirmed in young athletes, who showed an increase in circulating VSELs and HSPCs after intensive running exercise. We provide for the first time evidence that endurance exercise may have beneficial effects on the expansion of developmentally early stem cells. We hypothesize that these circulating stem cells are involved in repairing minor exercise-related tissue and organ injuries.
Collapse
|
25
|
Boppart MD, De Lisio M, Witkowski S. Exercise and Stem Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:423-56. [PMID: 26477925 DOI: 10.1016/bs.pmbts.2015.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cells are traditionally studied in the context of embryonic development, yet studies confirm that a fraction remains in the adult organism for the purpose of daily remodeling and rejuvenation of multiple tissues following injury. Adult stem cells (ASCs) are found in close proximity to vessels and respond to tissue-specific cues in the microenvironment that dictate their fate and function. Exercise can dramatically alter strain sensing, extracellular matrix composition, and inflammation, and such changes in the niche likely alter ASC quantity and function postexercise. The field of stem cell biology is still in its infancy and identification and terminology of ASCs continues to evolve; thus, current information regarding exercise and stem cells is lacking. This chapter summarizes the literature that reports on the ASC response to acute exercise and exercise training, with particular emphasis on hematopoietic stem cells, endothelial progenitor cells, and mesenchymal stem cells.
Collapse
Affiliation(s)
- Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, USA; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, USA.
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, USA
| | - Sarah Witkowski
- Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
26
|
Stelzer I, Kröpfl JM, Fuchs R, Pekovits K, Mangge H, Raggam RB, Gruber HJ, Prüller F, Hofmann P, Truschnig-Wilders M, Obermayer-Pietsch B, Haushofer AC, Kessler HH, Mächler P. Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function. Scand J Med Sci Sports 2014; 25:e442-50. [PMID: 25438993 DOI: 10.1111/sms.12347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2014] [Indexed: 01/18/2023]
Abstract
Although amateur sports have become increasingly competitive within recent decades, there are as yet few studies on the possible health risks for athletes. This study aims to determine the impact of ultra-endurance exercise-induced stress on the number and function of circulating hematopoietic progenitor cells (CPCs) and hematological, inflammatory, clinical, metabolic, and stress parameters in moderately trained amateur athletes. Following ultra-endurance exercise, there were significant increases in leukocytes, platelets, interleukin-6, fibrinogen, tissue enzymes, blood lactate, serum cortisol, and matrix metalloproteinase-9. Ultra-endurance exercise did not influence the number of CPCs but resulted in a highly significant decline of CPC functionality after the competition. Furthermore, Epstein-Barr virus was seen to be reactivated in one of seven athletes. The link between exercise-induced stress and decline of CPC functionality is supported by a negative correlation between cortisol and CPC function. We conclude that ultra-endurance exercise induces metabolic stress and an inflammatory response that affects not only mature hematopoietic cells but also the function of the immature hematopoietic stem and progenitor cell fraction, which make up the immune system and provide for regeneration.
Collapse
Affiliation(s)
- I Stelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - J M Kröpfl
- Institute of Human Movement Sciences and Sport, Exercise Physiology Lab, ETH Zurich, Zurich, Switzerland.,Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - R Fuchs
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - K Pekovits
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - H Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - R B Raggam
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - H-J Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - F Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - P Hofmann
- Institute of Sports Science, Karl-Franzens-University of Graz, Graz, Austria
| | - M Truschnig-Wilders
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - B Obermayer-Pietsch
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - A C Haushofer
- Institute of Medical and Chemical Laboratory Diagnostics Wels-Grieskirchen, Wels-Grieskirchen, Austria
| | - H H Kessler
- Research Unit Molecular Diagnostics, IHMEM, Medical University of Graz, Graz, Austria
| | - P Mächler
- Center for Cardiac Rehabilitation, SKA-PVA St. Radegund, Graz, Austria
| |
Collapse
|
27
|
Krüger K, Pilat C, Schild M, Lindner N, Frech T, Muders K, Mooren FC. Progenitor cell mobilization after exercise is related to systemic levels of G-CSF and muscle damage. Scand J Med Sci Sports 2014; 25:e283-91. [PMID: 25264280 DOI: 10.1111/sms.12320] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2014] [Indexed: 01/05/2023]
Abstract
Different types of exercise are characterized by the ability to induce specific physiological stimuli that might be able to induce the mobilization of progenitor cells. The aim of the current study was to investigate the mobilization of hematopoietic progenitor cells (HPCs) and endothelial progenitor cells (EPCs) in response to endurance, resistance, and eccentric endurance exercise and their relation to markers of muscle damage and inflammation. Healthy male subjects performed acute bouts of either endurance exercise, resistance exercise, or eccentric endurance exercise. Numbers of progenitor cells and several markers of muscle damage and inflammation were determined. Although the endurance exercise was followed by an immediate and short increase of both HPCs and EPCs, the eccentric exercise evoked a long lasting increase up to 24 h for HPCs and 48 h for EPCs (P < 0.05). After resistance exercise, an increase of HPCs was only found 3 h after exercise (P < 0.05). A correlation was found between mobilized progenitor cells and systemic levels of granulocyte colony-stimulating factor (G-CSF) levels (r = 0.54 and r = 0.51, P < 0.05) as well as for HPCs and creatine kinase levels (r = 0.57, P < 0.05). These results suggest that mobilization of progenitor cells is related to the type of exercise and possibly mediated by G-CSF and muscle damage.
Collapse
Affiliation(s)
- K Krüger
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany
| | - C Pilat
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany
| | - M Schild
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany
| | - N Lindner
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany
| | - T Frech
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany
| | - K Muders
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany
| | - F C Mooren
- Department of Sports Medicine, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
28
|
Kröpfl JM, Stelzer I, Mangge H, Pekovits K, Fuchs R, Allard N, Schinagl L, Hofmann P, Dohr G, Wallner-Liebmann S, Domej W, Müller W. Exercise-induced norepinephrine decreases circulating hematopoietic stem and progenitor cell colony-forming capacity. PLoS One 2014; 9:e106120. [PMID: 25180783 PMCID: PMC4152172 DOI: 10.1371/journal.pone.0106120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
A recent study showed that ergometry increased circulating hematopoietic stem and progenitor cell (CPC) numbers, but reduced hematopoietic colony forming capacity/functionality under normoxia and normobaric hypoxia. Herein we investigated whether an exercise-induced elevated plasma free/bound norepinephrine (NE) concentration could be responsible for directly influencing CPC functionality. Venous blood was taken from ten healthy male subjects (25.3+/-4.4 yrs) before and 4 times after ergometry under normoxia and normobaric hypoxia (FiO2<0.15). The circulating hematopoietic stem and progenitor cell numbers were correlated with free/bound NE, free/bound epinephrine (EPI), cortisol (Co) and interleukin-6 (IL-6). Additionally, the influence of exercise-induced NE and blood lactate (La) on CPC functionality was analyzed in a randomly selected group of subjects (n = 6) in vitro under normoxia by secondary colony-forming unit granulocyte macrophage assays. Concentrations of free NE, EPI, Co and IL-6 were significantly increased post-exercise under normoxia/hypoxia. Ergometry-induced free NE concentrations found in vivo showed a significant impairment of CPC functionality in vitro under normoxia. Thus, ergometry-induced free NE was thought to trigger CPC mobilization 10 minutes post-exercise, but as previously shown impairs CPC proliferative capacity/functionality at the same time. The obtained results suggest that an ergometry-induced free NE concentration has a direct negative effect on CPC functionality. Cortisol may further influence CPC dynamics and functionality.
Collapse
Affiliation(s)
- Julia M. Kröpfl
- Institute of Human Movement Sciences and Sport, Exercise Physiology Lab, ETH Zurich, Zurich, Switzerland
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Ingeborg Stelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Research Unit on Lifestyle and Inflammation-associated Risk Biomarkers, Medical University of Graz, Graz, Austria
- Institute for Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Research Unit on Lifestyle and Inflammation-associated Risk Biomarkers, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Karl-Franzens University & Technical University & Medical University of Graz, Graz, Austria
| | - Karin Pekovits
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Robert Fuchs
- Institute for Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Nathalie Allard
- Institute for Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Lukas Schinagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Research Unit on Lifestyle and Inflammation-associated Risk Biomarkers, Medical University of Graz, Graz, Austria
- Institute for Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Peter Hofmann
- Institute of Sports Science, Karl-Franzens University of Graz, Graz, Austria
| | - Gottfried Dohr
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | | | - Wolfgang Domej
- Department of Pulmonology, Medical University of Graz, Graz, Austria
| | - Wolfram Müller
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| |
Collapse
|
29
|
Corral L, Javierre C, Blasi J, Viscor G, Ricart A, Ventura JL. Combined intermittent hypobaric hypoxia and muscle electro-stimulation: a method to increase circulating progenitor cell concentration? J Transl Med 2014; 12:174. [PMID: 24947505 PMCID: PMC4074133 DOI: 10.1186/1479-5876-12-174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our goal was to test whether short-term intermittent hypobaric hypoxia (IHH) at a level well tolerated by healthy humans could, in combination with muscle electro-stimulation (ME), mobilize circulating progenitor cells (CPC) and increase their concentration in peripheral circulation. METHODS Nine healthy male subjects were subjected, as the active group (HME), to a protocol involving IHH plus ME. IHH exposure consisted of four, three-hour sessions at a barometric pressure of 540 hPa (equivalent to an altitude of 5000 m). These sessions took place on four consecutive days. ME was applied in two separate 20-minute periods during each IHH session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment, and then 24 h, 48 h, 4 days, 7 days and 14 days after the last day of hypoxic exposure. Four months later a control study was carried out involving seven of the original subjects (CG), who underwent the same protocol of blood samples but without receiving any special stimulus. RESULTS In comparison with the CG the HME group showed only a non-significant increase in the number of CPC CD34+ cells on the fourth day after the combined IHH and ME treatment. CONCLUSION CPC levels oscillated across the study period and provide no firm evidence to support an increased CPC count after IHH plus ME, although it is not possible to know if this slight increase observed is physiologically relevant. Further studies are required to understand CPC dynamics and the physiology and physiopathology of the hypoxic stimulus.
Collapse
Affiliation(s)
- Luisa Corral
- Intensive Care Unit of Bellvitge University Hospital and Department of Physiological Sciences II of University of Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat-08907, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
30
|
Ghosh S, Hughes D, Parma DL, Ramirez A, Li R. Association of obesity and circulating adipose stromal cells among breast cancer survivors. Mol Biol Rep 2014; 41:2907-16. [PMID: 24458825 DOI: 10.1007/s11033-014-3146-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/13/2014] [Indexed: 12/26/2022]
Abstract
A positive association of obesity with breast cancer incidence and mortality is well established. Recent reports indicate that adipose stromal cells (ASCs) play an important role in breast cancer development and progression by producing estrogens and tumor-promoting cytokines. Furthermore, circulating ASCs have been uniquely detected in obese individuals, which is likely due to increased tissue remodeling and cell mobilization. The number of circulating ASCs is even more prominent in obese patients with colon and prostate cancers, both of which are exacerbated by obesity. To determine whether a similar association exists for breast cancer, we collected blood samples from a cohort of breast cancer survivors and enumerated circulating ASCs by flow cytometry on the basis of the previously established ASC-associated immunophenotype (CD34+/CD31-/CD45-). We found significantly higher levels of circulating ASCs (p<0.001) in breast cancer survivors with body mass index (BMI)≥30 kg/m2 than their non-obese counterparts (BMI<30). We also compared circulating ASCs before and after exercise of only the obese subjects enrolled in a 6-month individualized exercise program, but found no statistically significant difference, likely due to limited number of subjects in the study. Our findings suggest that circulating ASCs can serve as a potential biomarker for future studies of the impacts of obesity and physical activity on breast cancer recurrence and survival.
Collapse
Affiliation(s)
- Sagar Ghosh
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | | | | | | | | |
Collapse
|
31
|
Zelzer S, Oberreither R, Bernecker C, Stelzer I, Truschnig-Wilders M, Fauler G. Measurement of total and free malondialdehyde by gas-chromatography mass spectrometry--comparison with high-performance liquid chromatography methology. Free Radic Res 2013; 47:651-6. [PMID: 23745592 DOI: 10.3109/10715762.2013.812205] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Malondialdehyde (MDA) is considered to be a biomarker for enzymatic degradation and lipid peroxidation of polyunsaturated fatty acids. Usually, MDA determination from different biological materials is performed by reaction with thiobarbituric acid (TBA) followed by high-performance liquid chromatography (HPLC) analysis and fluorometric detection. As this method lacks specificity and sensitivity, we developed a gas chromatography-mass spectrometry (GC-MS) method based on derivatization of MDA with 2,4-dinitrophenylhydrazine. Representative ions in negative ion chemical ionization (NICI) mode were recorded at m/z 204 for MDA and at m/z 206 for the deuterated analogon (MDA-d₂) as internal standard. This stable and precise GC-MS method showed good linearity (r² = 0.999) and higher specificity and sensitivity than the HPLC method and was validated for both total MDA (t-MDA) and free MDA (f-MDA). Within-day precisions were 1.8-5.4%, between-day precisions were 4.8-9.2%; and accuracies were between 99% and 101% for the whole calibration range (0.156-5.0 μmol/L for t-MDA and 0.039-0.625 μmol/L for f-MDA). Although comparison of t-MDA levels from GC-MS and HPLC results using Passing-Bablok regression analysis as well as Bland-Altman plot showed a correlation of the data, a tendency to increased results for the HPLC values was detectable, due to possible formation of unspecific products of the TBA reaction.
Collapse
Affiliation(s)
- S Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.
| | | | | | | | | | | |
Collapse
|
32
|
Yokota H, Hamamura K, Chen A, Dodge TR, Tanjung N, Abedinpoor A, Zhang P. Effects of salubrinal on development of osteoclasts and osteoblasts from bone marrow-derived cells. BMC Musculoskelet Disord 2013; 14:197. [PMID: 23816340 PMCID: PMC3711788 DOI: 10.1186/1471-2474-14-197] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/14/2013] [Indexed: 11/26/2022] Open
Abstract
Background Osteoporosis is a skeletal disease leading to an increased risk of bone fracture. Using a mouse osteoporosis model induced by administration of a receptor activator of nuclear factor kappa-B ligand (RANKL), salubrinal was recently reported as a potential therapeutic agent. To evaluate the role of salubrinal in cellular fates as well as migratory and adhesive functions of osteoclast/osteoblast precursors, we examined the development of primary bone marrow-derived cells in the presence and absence of salubrinal. We addressed a question: are salubrinal’s actions more potent to the cells isolated from the osteoporotic mice than those isolated from the control mice? Methods Using the RANKL-injected and control mice, bone marrow-derived cells were harvested. Osteoclastogenesis was induced by macrophage-colony stimulating factor and RANKL, while osteoblastogenesis was driven by dexamethasone, ascorbic acid, and β-glycerophosphate. Results The results revealed that salubrinal suppressed the numbers of colony forming-unit (CFU)-granulocyte/macrophages and CFU-macrophages, as well as formation of mature osteoclasts in a dosage-dependent manner. Salubrinal also suppressed migration and adhesion of pre-osteoclasts and increased the number of CFU-osteoblasts. Salubrinal was more effective in exerting its effects in the cells isolated from the RANKL-injected mice than the control. Consistent with cellular fates and functions, salubrinal reduced the expression of nuclear factor of activated T cells c1 (NFATc1) as well as tartrate-resistant acid phosphatase. Conclusions The results support the notion that salubrinal exhibits significant inhibition of osteoclastogenesis as well as stimulation of osteoblastogenesis in bone marrow-derived cells, and its efficacy is enhanced in the cells harvested from the osteoporotic bone samples.
Collapse
Affiliation(s)
- Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci 2013; 70:3813-27. [PMID: 23423530 PMCID: PMC3781313 DOI: 10.1007/s00018-013-1286-4] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/14/2013] [Accepted: 01/30/2013] [Indexed: 02/06/2023]
Abstract
Neutrophils are essential effector cells in the host defense against invading pathogens. Recently, novel neutrophil functions have emerged in addition to their classical anti-microbial role. One of these functions is the suppression of T cell responses. In this respect, neutrophils share similarities with granulocytic myeloid-derived suppressor cells (G-MDSCs). In this review, we will discuss the similarities and differences between neutrophils and G-MDSCs. Various types of G-MDSCs have been described, ranging from immature to mature cells shaping the immune response by different immune suppressive mechanisms. However, all types of G-MDSCs share distinct features of neutrophils, such as surface markers and morphology. We propose that G-MDSCs are heterogeneous and represent novel phenotypes of neutrophils, capable of suppressing the immune response. In this review, we will attempt to clarify the differences and similarities between neutrophils and G-MDSCs and attempt to facilitate further research.
Collapse
|