1
|
Xu J, Fang L, Zhou J, Jiang H, Wu Y, Liang Y, Xiao C, Liu Q, Sun X, Lin Z. PEG 300 Promotes Mesodermal Differentiation in iPSC-Derived Embryoid Body Formation In Vitro. Adv Biol (Weinh) 2024; 8:e2400081. [PMID: 38977421 DOI: 10.1002/adbi.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/31/2024] [Indexed: 07/10/2024]
Abstract
Embryoid bodies (EB) are sensitive to changes in the culture conditions. Recent studies show that the addition of PEG 300 to culture medium affects cell growth and differentiation; however, its effect on the embryoid body is unclear. This study aims to understand the role of PEG 300 in the process of EB formation and germ layer differentiation. EBs formed more efficiently and differentiated toward the mesoderm when cultured in a medium supplemented with appropriate concentrations of PEG 300. The expression of T/Bry, a marker of mesodermal differentiation, increases in EBs in the PEG group, and the expression of TUBB3 generally decreases, showing a quantitative relationship with PEG. Furthermore, further differentiation of PEG-pretreated EB into vascular smooth muscle cells (VSMCs) by directional induction shows that PEG 300-pretreated induced VSMCs have higher expression of phenotypic markers and greater secretory and contractile functions. This study highlights the role of PEG 300 in the culture medium during EB differentiation, which can significantly enhance mesodermal gene expression and the efficiency of subsequent differentiation into smooth muscle cells and other target cells.
Collapse
Affiliation(s)
- Jianyi Xu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Lijun Fang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Jiahui Zhou
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Hongjing Jiang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yindi Wu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yuanfeng Liang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Cong Xiao
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Qing Liu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xuheng Sun
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Zhanyi Lin
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong, 528200, China
| |
Collapse
|
2
|
Bagger MM, Sjölund J, Kim J, Kohler KT, Villadsen R, Jafari A, Kassem M, Pietras K, Rønnov-Jessen L, Petersen OW. Evidence of steady-state fibroblast subtypes in the normal human breast as cells-of-origin for perturbed-state fibroblasts in breast cancer. Breast Cancer Res 2024; 26:11. [PMID: 38229104 PMCID: PMC10790388 DOI: 10.1186/s13058-024-01763-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Human breast cancer most frequently originates within a well-defined anatomical structure referred to as the terminal duct lobular unit (TDLU). This structure is endowed with its very own lobular fibroblasts representing one out of two steady-state fibroblast subtypes-the other being interlobular fibroblasts. While cancer-associated fibroblasts (CAFs) are increasingly appreciated as covering a spectrum of perturbed states, we lack a coherent understanding of their relationship-if any-with the steady-state fibroblast subtypes. To address this, we here established two autologous CAF lines representing inflammatory CAFs (iCAFs) and myofibroblast CAFs (myCAFs) and compared them with already established interlobular- and lobular fibroblasts with respect to their origin and impact on tumor formation. METHODS Primary breast tumor-derived CAFs were transduced to express human telomerase reverse transcriptase (hTERT) and sorted into CD105low and CD105high populations using fluorescence-activated cell sorting (FACS). The two populations were tested for differentiation similarities to iCAF and myCAF states through transcriptome-wide RNA-Sequencing (RNA-Seq) including comparison to an available iCAF-myCAF cell state atlas. Inference of origin in interlobular and lobular fibroblasts relied on RNA-Seq profiles, immunocytochemistry and growth characteristics. Osteogenic differentiation and bone formation assays in culture and in vivo were employed to gauge for origin in bone marrow-derived mesenchymal stem cells (bMSCs). Functional characteristics were assessed with respect to contractility in culture and interaction with tumor cells in mouse xenografts. The cells' gene expression signatures were tested for association with clinical outcome of breast cancer patients using survival data from The Cancer Genome Atlas database. RESULTS We demonstrate that iCAFs have properties in common with interlobular fibroblasts while myCAFs and lobular fibroblasts are related. None of the CAFs qualify as bMSCs as revealed by lack of critical performance in bone formation assays. Functionally, myCAFs and lobular fibroblasts are almost equally tumor promoting as opposed to iCAFs and interlobular fibroblasts. A myCAF gene signature is found to associate with poor breast cancer-specific survival. CONCLUSIONS We propose that iCAFs and myCAFs originate in interlobular and lobular fibroblasts, respectively, and more importantly, that the tumor-promoting properties of lobular fibroblasts render the TDLU an epicenter for breast cancer evolution.
Collapse
Affiliation(s)
- Mikkel Morsing Bagger
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden.
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Jonas Sjölund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Moustapha Kassem
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Molecular Endocrinology, KMEB, Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Lone Rønnov-Jessen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Pluripotent-derived Mesenchymal Stem/stromal Cells: an Overview of the Derivation Protocol Efficacies and the Differences Among the Derived Cells. Stem Cell Rev Rep 2021; 18:94-125. [PMID: 34545529 DOI: 10.1007/s12015-021-10258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) are remarkable tools for regenerative medicine. Therapeutic approaches using these cells can promote increased activity and viability in several cell types through diverse mechanisms such as paracrine and immunomodulatory activities, contributing substantially to tissue regeneration and functional recovery. However, biological samples of human MSCs, usually obtained from adult tissues, often exhibit variable behavior during in vitro culture, especially with respect to cell population heterogeneity, replicative senescence, and consequent loss of functionality. Accordingly, it is necessary to establish standard protocols to generate high-quality, stable cell cultures, for example, by using pluripotent stem cells (PSCs) in derivation protocols of MSC-like cells since PSCs maintain their characteristics consistently during culture. However, the available protocols seem to generate distinct populations of PSC-derivedMSCs (PSC-MSCs) with peculiar attributes, which do not always resemble bona fide primary MSCs. The present review addresses the developmental basis behind some of these derivation protocols, exposing the differences among them and discussing the functional properties of PSC-MSCs, shedding light on elements that may help determine standard characterizations and criteria to evaluate and define these cells.
Collapse
|
4
|
Morsing M, Kim J, Villadsen R, Goldhammer N, Jafari A, Kassem M, Petersen OW, Rønnov-Jessen L. Fibroblasts direct differentiation of human breast epithelial progenitors. Breast Cancer Res 2020; 22:102. [PMID: 32993755 PMCID: PMC7526135 DOI: 10.1186/s13058-020-01344-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer arises within specific regions in the human breast referred to as the terminal duct lobular units (TDLUs). These are relatively dynamic structures characterized by sex hormone driven cyclic epithelial turnover. TDLUs consist of unique parenchymal entities embedded within a fibroblast-rich lobular stroma. Here, we established and characterized a new human breast lobular fibroblast cell line against its interlobular counterpart with a view to assessing the role of region-specific stromal cues in the control of TDLU dynamics. METHODS Primary lobular and interlobular fibroblasts were transduced to express human telomerase reverse transcriptase (hTERT). Differentiation of the established cell lines along lobular and interlobular pathways was determined by immunocytochemical staining and genome-wide RNA sequencing. Their functional properties were further characterized by analysis of mesenchymal stem cell (MSC) differentiation repertoire in culture and in vivo. The cells' physiological relevance for parenchymal differentiation was examined in heterotypic co-culture with fluorescence-activated cell sorting (FACS)-purified normal breast primary luminal or myoepithelial progenitors. The co-cultures were immunostained for quantitative assessment of epithelial branching morphogenesis, polarization, growth, and luminal epithelial maturation. In extension, myoepithelial progenitors were tested for luminal differentiation capacity in culture and in mouse xenografts. To unravel the significance of transforming growth factor-beta (TGF-β)-mediated crosstalk in TDLU-like morphogenesis and differentiation, fibroblasts were incubated with the TGF-β signaling inhibitor, SB431542, prior to heterotypic co-culture with luminal cells. RESULTS hTERT immortalized fibroblast cell lines retained critical phenotypic traits in culture and linked to primary fibroblasts. Cell culture assays and transplantation to mice showed that the origin of fibroblasts determines TDLU-like and ductal-like differentiation of epithelial progenitors. Whereas lobular fibroblasts supported a high level of branching morphogenesis by luminal cells, interlobular fibroblasts supported ductal-like myoepithelial characteristics. TDLU-like morphogenesis, at least in part, relied on intact TGF-β signaling. CONCLUSIONS The significance of the most prominent cell type in normal breast stroma, the fibroblast, in directing epithelial differentiation is largely unknown. Through establishment of lobular and interlobular fibroblast cell lines, we here demonstrate that epithelial progenitors are submitted to stromal cues for site-specific differentiation. Our findings lend credence to considering stromal subtleties of crucial importance in the development of normal breast and, in turn, breast cancer.
Collapse
Affiliation(s)
- Mikkel Morsing
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark.,Present Address: Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nadine Goldhammer
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Molecular Endocrinology, KMEB, Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Moustapha Kassem
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Molecular Endocrinology, KMEB, Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lone Rønnov-Jessen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Nakayama N, Pothiawala A, Lee JY, Matthias N, Umeda K, Ang BK, Huard J, Huang Y, Sun D. Human pluripotent stem cell-derived chondroprogenitors for cartilage tissue engineering. Cell Mol Life Sci 2020; 77:2543-2563. [PMID: 31915836 PMCID: PMC11104892 DOI: 10.1007/s00018-019-03445-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
The cartilage of joints, such as meniscus and articular cartilage, is normally long lasting (i.e., permanent). However, once damaged, especially in large animals and humans, joint cartilage is not spontaneously repaired. Compensating the lack of repair activity by supplying cartilage-(re)forming cells, such as chondrocytes or mesenchymal stromal cells, or by transplanting a piece of normal cartilage, has been the basis of therapy for biological restoration of damaged joint cartilage. Unfortunately, current biological therapies face problems on a number of fronts. The joint cartilage is generated de novo from a specialized cell type, termed a 'joint progenitor' or 'interzone cell' during embryogenesis. Therefore, embryonic chondroprogenitors that mimic the property of joint progenitors might be the best type of cell for regenerating joint cartilage in the adult. Pluripotent stem cells (PSCs) are expected to differentiate in culture into any somatic cell type through processes that mimic embryogenesis, making human (h)PSCs a promising source of embryonic chondroprogenitors. The major research goals toward the clinical application of PSCs in joint cartilage regeneration are to (1) efficiently generate lineage-specific chondroprogenitors from hPSCs, (2) expand the chondroprogenitors to the number needed for therapy without loss of their chondrogenic activity, and (3) direct the in vivo or in vitro differentiation of the chondroprogenitors to articular or meniscal (i.e., permanent) chondrocytes rather than growth plate (i.e., transient) chondrocytes. This review is aimed at providing the current state of research toward meeting these goals. We also include our recent achievement of successful generation of "permanent-like" cartilage from long-term expandable, hPSC-derived ectomesenchymal chondroprogenitors.
Collapse
Affiliation(s)
- Naoki Nakayama
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA.
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston Medical School, Houston, TX, USA.
| | - Azim Pothiawala
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
| | - John Y Lee
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nadine Matthias
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
| | - Katsutsugu Umeda
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
- Department of Pediatrics, Kyoto University School of Medicine, Kyoto, Japan
| | - Bryan K Ang
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
- Weil Cornell Medicine, New York, NY, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston Medical School, Houston, TX, USA
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Yun Huang
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, USA
| | - Deqiang Sun
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, USA
| |
Collapse
|
6
|
Peng L, Ming Y, Zhang L, Zhou J, Xiang W, Zeng S, He H, Chen L. MicroRNA-30a suppresses self-renewal and tumorigenicity of glioma stem cells by blocking the NT5E-dependent Akt signaling pathway. FASEB J 2020; 34:5128-5143. [PMID: 32067282 DOI: 10.1096/fj.201802629rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 01/15/2023]
Abstract
Over the past decade, increasing researches have demonstrated the implication of microRNAs (miRNAs or miRs) in tumorigenicity of glioma stem cells (GSCs). The regulatory functions of miRNAs in GSCs have emerged as potential therapeutic candidates for glioma treatment. Herein, we aim to investigate the role of miR-30a in the proliferation and self-renewal of GSCs and the possible mechanism in relation to ecto-5'-nucleotidase (NT5E)-dependent Akt signaling pathway. RT-qPCR and Western blot analysis were performed to determine the expression of miR-30a and NT5E in glioma tissues and cell lines. GSCs were isolated from glioma cells and identified using flow cytometry. The relationship between miR-30a and NT5E was determined by dual-luciferase reporter gene assay. Gain- and loss-of-function experiments were performed to examine the effects of miR-30a and NT5E on sphere formation, colony formation, and proliferation of GSCs in vitro, as well as orthotopic tumor growth of GSCs in nude mice. Additionally, the Akt signaling pathway was blocked with an Akt inhibitor, LY294002, to investigate its involvement in the regulatory effect of miR30a. miR-30a was poorly expressed in glioma tissues and cell lines as well as GSCs. NT5E, highly expressed in GSCs, was identified as a target of miR-30a. In addition, miR-30a upregulation or NT5E silencing could reduce GSC sphere formation, clone formation, proliferation, and orthotopic tumor growth in nude mice. Moreover, miR-30a inhibited the activation of the Akt signaling pathway by targeting NT5E, and ultimately suppressing the self-renewal and orthotopic tumor growth of GSCs. Our results demonstrate that miR-30a targets NT5E to inhibit the Akt signaling pathway, by which could suppress the self-renewal and orthotopic tumor growth of GSCs. Those findings may provide theoretical basis of miR-30a as a therapeutic target to suppress the glioma progression.
Collapse
Affiliation(s)
- Lilei Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| | - Yang Ming
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| | - Ling Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| | - Shan Zeng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| | - Haiping He
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| |
Collapse
|
7
|
Zhou P, Han Y, Shi J, Zhang R, Ren X, Li H, Lan F. Investigation of the optimal suspension culture time for the osteoblastic differentiation of human induced pluripotent stem cells using the embryoid body method. Biochem Biophys Res Commun 2019; 515:586-592. [PMID: 31178132 DOI: 10.1016/j.bbrc.2019.05.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/30/2019] [Indexed: 11/30/2022]
Abstract
The differentiation of human induced pluripotent stem cells (hiPSCs) into osteoblasts provides a new paradigm in the field of bone tissue regeneration. The embryoid body (EB) differentiation method is commonly used for the osteogenic differentiation of hiPSCs. However, the spontaneous differentiation process of EBs is poorly understood, as evidenced by the inconsistency of the suspension time among previously reported studies as well as the low osteoblastic differentiation efficiency of hiPSCs. In the present study, we investigated the effects of the suspension culture time of EBs on the osteogenic differentiation of hiPSCs. Under chemically defined conditions, the expression of key genes related to presomitic mesoderm, neural crest, mesenchymal and pre-osteoblast cells in EBs derived from hiPSCs was examined daily by quantitative RT-PCR. Then, EBs with varying times in suspension (3, 5, 7 or 10 days) were attached onto gelatine surfaces, and their osteoblastic differentiation efficiencies after 14 days of culture in osteogenic induction medium were determined. Our results showed that EBs derived from hiPSCs subjected to 4 days of suspension culture produced the most mesenchymal stem cells, and exhibited the best osteogenic differentiation efficiency. Our research is valuable to standardizing, the time in suspension for the osteogenic differentiation of hiPSCs through the EB method, and facilitated the development of a high-efficiency in vitro osteogenic differentiation system for hiPSCs.
Collapse
Affiliation(s)
- Ping Zhou
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Yu Han
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Jiamin Shi
- College of Life Sciences, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Rui Zhang
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Xiaolin Ren
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Hongjiao Li
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Feng Lan
- Beijing Lab for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
8
|
Harkness L, Chen X, Gillard M, Gray PP, Davies AM. Media composition modulates human embryonic stem cell morphology and may influence preferential lineage differentiation potential. PLoS One 2019; 14:e0213678. [PMID: 30889226 PMCID: PMC6424453 DOI: 10.1371/journal.pone.0213678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
Undifferentiated human embryonic stem cells have a distinct morphology (hESC). Changes in cell morphology during culture can be indicative of differentiation. hESC, maintained in diverse medias, demonstrated alterations in morphological parameters and subsequent alterations in underlying transcript expression and lineage differentiation. Analysis of morphological parameters showed distinct and significant differences between the undefined, less defined and Xeno-free medias while still maintaining pluripotency markers. This suggested that the less defined media may be creating dynamic instability in the cytoskeleton, with the cytoskeleton becoming more stabilised in the Xeno-free media as demonstrated by smaller and rounder cells. Examination of early lineage markers during undirected differentiation using d5 embryoid bodies demonstrated increased mesodermal lineage preference as compared to endodermal or ectoderm in cells originally cultured in Xeno-free media. Undefined media showed preference for mesoderm and ectoderm lineages, while less defined media (BSA present) demonstrated no preference. These data reveal that culture media may produce fundamental changes in cell morphology which are reflected in early lineage differentiation choice.
Collapse
Affiliation(s)
- Linda Harkness
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
- * E-mail:
| | - Xiaoli Chen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Marianne Gillard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Peter Paul Gray
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Anthony Mitchell Davies
- Translational Cell Imaging Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
9
|
Yang M, Fan Z, Wang F, Tian ZH, Ma B, Dong B, Li Z, Zhang M, Zhao W. BMP-2 enhances the migration and proliferation of hypoxia-induced VSMCs via actin cytoskeleton, CD44 and matrix metalloproteinase linkage. Exp Cell Res 2018; 368:248-257. [DOI: 10.1016/j.yexcr.2018.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 12/24/2022]
|
10
|
Song L, Ye W, Cui Y, Lu J, Zhang Y, Ding N, Hu W, Pei H, Yue Z, Zhou G. Ecto-5'-nucleotidase (CD73) is a biomarker for clear cell renal carcinoma stem-like cells. Oncotarget 2018; 8:31977-31992. [PMID: 28404888 PMCID: PMC5458263 DOI: 10.18632/oncotarget.16667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
Identification of a specific biomarker for cancer stem cells (CSCs) is of potential applications in the development of effective therapeutic strategies for renal cell carcinoma (RCC). In this study, both the RCC cell line 786-O and surgically removed clear cell RCC (ccRCC) tissues were implemented to grew as spheroids in serum-free medium supplemented with mitogens. This subpopulation possessed key characteristics defining CSCs. We also identified that surgically removed ccRCC tissues were heterogenic and there was a subpopulation of cells that was highly stained with rhodamine-123. Based on membrane-proteomic analyses, CD73 was identified as a candidate biomarker. We further found that CD73high cells were highly tumorigenic. As few as 100 CD73high cells were capable of forming xenograft tumors in non obese diabetic/severe combined immunodeficiency disease mice, whereas 1 × 105 CD73low cells did not initiate tumor formation. During successive culture, the CD73high population regenerated both CD73high and CD73low cells, whereas the CD73low population remained low expression level of CD73. Furthermore, the CD73high cells were more resistant to radiation and DNA-damaging agents than the CD73low cells, and expressed a panel of 'stemness' genes at a higher level than the CD73low cells. These findings suggest that a high level of CD73 expression is a bona fide biomarker of ccRCC stem-like cells. Future research will aim at the elucidation of the underlying mechanisms of CD73 in RCC development and the distinct aspects of ccRCC stem-like cells from other tumor types.
Collapse
Affiliation(s)
- Lei Song
- Medical College, Northwest Minzu University, Lanzhou 730030, China.,Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenling Ye
- Medical College, Henan University, Kaifeng 475001, China.,Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong Cui
- Department of Urology Surgery, Shuyang Hospital of Traditional Chinese Medicine, Suqian 223600, China.,Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jianzhong Lu
- Institute of Urology, Department of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yanan Zhang
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Nan Ding
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modem Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wentao Hu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Hailong Pei
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhongjin Yue
- Institute of Urology, Department of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Guangming Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
11
|
Ibrahim A, Bulstrode NW, Whitaker IS, Eastwood DM, Dunaway D, Ferretti P. Nanotechnology for Stimulating Osteoprogenitor Differentiation. Open Orthop J 2016; 10:849-861. [PMID: 28217210 PMCID: PMC5299582 DOI: 10.2174/1874325001610010849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/25/2016] [Accepted: 05/31/2016] [Indexed: 12/25/2022] Open
Abstract
Background: Bone is the second most transplanted tissue and due to its complex structure, metabolic demands and various functions, current reconstructive options such as foreign body implants and autologous tissue transfer are limited in their ability to restore defects. Most tissue engineering approaches target osteoinduction of osteoprogenitor cells by modifying the extracellular environment, using scaffolds or targeting intracellular signaling mechanisms or commonly a combination of all of these. Whilst there is no consensus as to what is the optimal cell type or approach, nanotechnology has been proposed as a powerful tool to manipulate the biomolecular and physical environment to direct osteoprogenitor cells to induce bone formation. Methods: Review of the published literature was undertaken to provide an overview of the use of nanotechnology to control osteoprogenitor differentiation and discuss the most recent developments, limitations and future directions. Results: Nanotechnology can be used to stimulate osteoprogenitor differentiation in a variety of way. We have principally classified research into nanotechnology for bone tissue engineering as generating biomimetic scaffolds, a vector to deliver genes or growth factors to cells or to alter the biophysical environment. A number of studies have shown promising results with regards to directing ostroprogenitor cell differentiation although limitations include a lack of in vivo data and incomplete characterization of engineered bone. Conclusion: There is increasing evidence that nanotechnology can be used to direct the fate of osteoprogenitor and promote bone formation. Further analysis of the functional properties and long term survival in animal models is required to assess the maturity and clinical potential of this.
Collapse
Affiliation(s)
- A Ibrahim
- Department of Plastic Surgery, Great Ormond Street Hospital For Children NHS Trust, London, UK; Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Hospital Institute of Child Health, University College London, UK; Reconstructive Surgery and Regenerative Medicine Research Group, The Welsh Centre for Burns & Plastic Surgery, Swansea, UK; European Centre of Nano Health, Swansea University Medical School, Swansea, UK
| | - N W Bulstrode
- Department of Plastic Surgery, Great Ormond Street Hospital For Children NHS Trust, London, UK; Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Hospital Institute of Child Health, University College London, UK
| | - I S Whitaker
- Reconstructive Surgery and Regenerative Medicine Research Group, The Welsh Centre for Burns & Plastic Surgery, Swansea, UK; European Centre of Nano Health, Swansea University Medical School, Swansea, UK
| | - D M Eastwood
- Department of Plastic Surgery, Great Ormond Street Hospital For Children NHS Trust, London, UK
| | - D Dunaway
- Department of Plastic Surgery, Great Ormond Street Hospital For Children NHS Trust, London, UK; Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Hospital Institute of Child Health, University College London, UK
| | - P Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Hospital Institute of Child Health, University College London, UK
| |
Collapse
|
12
|
Katsuta E, Tanaka S, Mogushi K, Shimada S, Akiyama Y, Aihara A, Matsumura S, Mitsunori Y, Ban D, Ochiai T, Kudo A, Fukamachi H, Tanaka H, Nakayama K, Arii S, Tanabe M. CD73 as a therapeutic target for pancreatic neuroendocrine tumor stem cells. Int J Oncol 2016; 48:657-669. [PMID: 26691441 DOI: 10.3892/ijo.2015.3299] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/05/2015] [Indexed: 11/06/2022] Open
Abstract
Identification and purification of cancer stem cells (CSCs) lead to the discovery of novel therapeutic targets; however, there has been no study on isolation of the CSC population among pancreatic neuroendocrine tumors (pNETs). This study aimed to identify pNET CSCs and to characterize a therapeutic candidate for pNET CSCs. We identified CSCs by aldehyde dehydrogenase (ALDH) activity in pNET clinical specimens and cell lines. We verified whether or not these cells have the stemness property in vivo and in vitro. ALDHhigh cells, but not control bulk cells, formed spheres, proliferated under hypoxic condition as well as normoxic condition and promoted cell motility, which are features of CSCs. Injection of as few as 10 ALDHhigh cells led to subcutaneous tumor formation, and 105 ALDHhigh cells, but not control bulk cells, established metastases in mice. Comprehensive gene expression analysis revealed that genes associated with mesenchymal stem cells, including CD73, were overexpressed in ALDHhigh cells. Additionally, the in vitro and in vivo effects of an inhibitor of CD73 were investigated. The CD73 inhibitor APCP significantly attenuated in vitro sphere formation and cell motility, as well as in vivo tumor growth observed for ALDHhigh cells. Finally, its expression was evaluated using clinical pNET tissue samples. Immunohistochemical analysis of clinical tissue samples demonstrated CD73 expression was significantly correlated with the invasion into adjacent organs. Since recent studies revealed CD73 as a potential biomarker of anti-PD-1 immune checkpoint therapy, CD73 might be a promising therapeutic target for pNET CSCs.
Collapse
Affiliation(s)
- Eriko Katsuta
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kaoru Mogushi
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arihiro Aihara
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Matsumura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Mitsunori
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Ban
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Ochiai
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Fukamachi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Tanaka
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koh Nakayama
- Oxygen Biology Unit, Frontier Research Laboratory, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeki Arii
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Zheng YL, Sun YP, Zhang H, Liu WJ, Jiang R, Li WY, Zheng YH, Zhang ZG. Mesenchymal Stem Cells Obtained from Synovial Fluid Mesenchymal Stem Cell-Derived Induced Pluripotent Stem Cells on a Matrigel Coating Exhibited Enhanced Proliferation and Differentiation Potential. PLoS One 2015; 10:e0144226. [PMID: 26649753 PMCID: PMC4674106 DOI: 10.1371/journal.pone.0144226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 11/16/2015] [Indexed: 01/27/2023] Open
Abstract
Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) serve as a promising source for cell-based therapies in regenerative medicine. However, optimal methods for transforming iPSCs into MSCs and the characteristics of iPSC-MSCs obtained from different methods remain poorly understood. In this study, we developed a one-step method for obtaining iPSC-MSCs (CD146+STRO-1+ MSCs) from human synovial fluid MSC-derived induced iPSCs (SFMSC-iPSCs). CD146-STRO-1-SFMSCs were reprogrammed into iPSCs by transduction with lentivirus-mediated Sox2, Oct-3/4, klf4, and c-Myc. SFMSC-iPSCs were maintained with mTeSR1 medium in Matrigel-coated culture plates. Single dissociated cells were obtained by digesting the SFMSC-iPSCs with trypsin. The dissociated cells were then plated into Matrigel-coated culture plate with alpha minimum essential medium supplemented with 10% fetal bovine serum, 1× Glutamax, and the ROCK inhibitor Y-27632. Cells were then passaged in standard cell culture plates with alpha minimum essential medium supplemented with 10% fetal bovine serum and 1× Glutamax. After passaging in vitro, the cells showed a homogenous spindle-shape similar to their ancestor cells (SFMSCs), but with more robust proliferative activity. Flow cytometric analysis revealed typical MSC surface markers, including expression of CD73, CD90, CD105, and CD44 and lack of CD45, CD34, CD11b, CD19, and HLA-DR. However, these cells were positive for CD146 and stro-1, which the ancestor cells were not. Moreover, the cells could also be induced to differentiate in osteogenic, chondrogenic, and adipogenic lineages in vitro. The differentiation potential was improved compared with the ancestor cells in vitro. The cells were not found to exhibit oncogenicity in vivo. Therefore, the method presented herein facilitated the generation of STRO-1+CD146+ MSCs from SFMSC-iPSCs exhibiting enhanced proliferation and differentiation potential.
Collapse
Affiliation(s)
- Yu-Liang Zheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
- Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong, P.R. China
| | - Yang-Peng Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
- * E-mail: (ZZ); (YS)
| | - Hong Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
| | - Wen-Jing Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Rui Jiang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Wen-Yu Li
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - You-Hua Zheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
| | - Zhi-Guang Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
- * E-mail: (ZZ); (YS)
| |
Collapse
|
14
|
Zaher W, Harkness L, Jafari A, Kassem M. An update of human mesenchymal stem cell biology and their clinical uses. Arch Toxicol 2014; 88:1069-82. [PMID: 24691703 DOI: 10.1007/s00204-014-1232-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/18/2014] [Indexed: 12/13/2022]
Abstract
In the past decade, an increasing urge to develop new and novel methods for the treatment of degenerative diseases where there is currently no effective therapy has lead to the emerging of the cell therapy or cellular therapeutics approach for the management of those conditions where organ functions are restored through transplantation of healthy and functional cells. Stem cells, because of their nature, are currently considered among the most suitable cell types for cell therapy. There are an increasing number of studies that have tested the stromal stem cell functionality both in vitro and in vivo. Consequently, stromal (mesenchymal) stem cells (MSCs) are being introduced into many clinical trials due to their ease of isolation and efficacy in treating a number of disease conditions in animal preclinical disease models. The aim of this review is to revise MSC biology, their potential translation in therapy, and the challenges facing their adaptation in clinical practice.
Collapse
Affiliation(s)
- Walid Zaher
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital, University of Southern Denmark, 5000, Odense C, Denmark
| | | | | | | |
Collapse
|