1
|
Global Transcriptional Analyses of the Wnt-Induced Development of Neural Stem Cells from Human Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms22147473. [PMID: 34299091 PMCID: PMC8308016 DOI: 10.3390/ijms22147473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
The differentiation of human pluripotent stem cells (hPSCs) to neural stem cells (NSCs) is the key initial event in neurogenesis and is thought to be dependent on the family of Wnt growth factors, their receptors and signaling proteins. The delineation of the transcriptional pathways that mediate Wnt-induced hPSCs to NSCs differentiation is vital for understanding the global genomic mechanisms of the development of NSCs and, potentially, the creation of new protocols in regenerative medicine. To understand the genomic mechanism of Wnt signaling during NSCs development, we treated hPSCs with Wnt activator (CHIR-99021) and leukemia inhibitory factor (LIF) in a chemically defined medium (N2B27) to induce NSCs, referred to as CLNSCs. The CLNSCs were subcultured for more than 40 passages in vitro; were positive for AP staining; expressed neural progenitor markers such as NESTIN, PAX6, SOX2, and SOX1; and were able to differentiate into three neural lineage cells: neurons, astrocytes, and oligodendrocytes in vitro. Our transcriptome analyses revealed that the Wnt and Hedgehog signaling pathways regulate hPSCs cell fate decisions for neural lineages and maintain the self-renewal of CLNSCs. One interesting network could be the deregulation of the Wnt/β-catenin signaling pathway in CLNSCs via the downregulation of c-MYC, which may promote exit from pluripotency and neural differentiation. The Wnt-induced spinal markers HOXA1-4, HOXA7, HOXB1-4, and HOXC4 were increased, however, the brain markers FOXG1 and OTX2, were absent in the CLNSCs, indicating that CLNSCs have partial spinal cord properties. Finally, a CLNSC simple culture condition, when applied to hPSCs, supports the generation of NSCs, and provides a new and efficient cell model with which to untangle the mechanisms during neurogenesis.
Collapse
|
2
|
Zupanc GKH, Lehotzky D, Tripp IP. The Neurosphere Simulator: An educational online tool for modeling neural stem cell behavior and tissue growth. Dev Biol 2021; 469:80-85. [PMID: 32991866 PMCID: PMC7521883 DOI: 10.1016/j.ydbio.2020.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022]
Abstract
Until very recently, distance education, including digital science labs, served a rather small portion of postsecondary students in the United States and many other countries. This situation has, however, dramatically changed in 2020 in the wake of the COVID-19 pandemic, which forced colleges to rapidly transit from face-to-face instructions to online classes. Here, we report the development of an interactive simulator that is freely available on the web (http://neurosphere.cos.northeastern.edu/) for teaching lab classes in developmental biology. This simulator is based on cellular automata models of neural-stem-cell-driven tissue growth in the neurosphere assay. By modifying model parameters, users can explore the role in tissue growth of several developmental mechanisms, such as regulation of mitosis or apoptotic cell death by contact inhibition. Besides providing an instantaneous animation of the simulated development of neurospheres, the Neurosphere Simulator tool offers also the possibility to download data for detailed analysis. The simulator function is complemented by a tutorial that introduces students to computational modeling of developmental processes. We developed an interactive neurosphere simulator. Simulations are based on cellular automata models of neurosphere growth. This educational tool is freely available on the web. The simulator can be used for online lab classes in developmental biology. Students explore through exercises mechanisms of stem-cell-driven tissue growth.
Collapse
Affiliation(s)
- Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA.
| | - Dávid Lehotzky
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA
| | - Isabel P Tripp
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
3
|
Sipahi R, Zupanc GKH. Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis. J Theor Biol 2019; 445:151-165. [PMID: 29477556 DOI: 10.1016/j.jtbi.2018.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 01/05/2018] [Accepted: 02/22/2018] [Indexed: 12/18/2022]
Abstract
Neural stem and progenitor cells isolated from the central nervous system form, under specific culture conditions, clonal cell clusters known as neurospheres. The neurosphere assay has proven to be a powerful in vitro system to study the behavior of such cells and the development of their progeny. However, the theory of neurosphere growth has remained poorly understood. To overcome this limitation, we have, in the present paper, developed a cellular automata model, with which we examined the effects of proliferative potential, contact inhibition, cell death, and clearance of dead cells on growth rate, final size, and composition of neurospheres. Simulations based on this model indicated that the proliferative potential of the founder cell and its progenitors has a major influence on neurosphere size. On the other hand, contact inhibition of proliferation limits the final size, and reduces the growth rate, of neurospheres. The effect of this inhibition is particularly dramatic when a stem cell becomes encapsulated by differentiated or other non-proliferating cells, thereby suppressing any further mitotic division - despite the existing proliferative potential of the stem cell. Conversely, clearance of dead cells through phagocytosis is predicted to accelerate growth by reducing contact inhibition. A surprising prediction derived from our model is that cell death, while resulting in a decrease in growth rate and final size of neurospheres, increases the degree of differentiation of neurosphere cells. It is likely that the cellular automata model developed as part of the present investigation is applicable to the study of tissue growth in a wide range of systems.
Collapse
Affiliation(s)
- Rifat Sipahi
- Complex Dynamic Systems and Control Laboratory, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
4
|
Johnson MB, Walsh CA. Cerebral cortical neuron diversity and development at single-cell resolution. Curr Opin Neurobiol 2016; 42:9-16. [PMID: 27888678 PMCID: PMC5316371 DOI: 10.1016/j.conb.2016.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 01/08/2023]
Abstract
Over a century of efforts to categorize the astonishing diversity of cortical neurons has relied on criteria of morphology, electrophysiology, ontology, and the expression of a few transcripts and proteins. The rapid development of single-cell RNA sequencing (scRNA-seq) adds genome-wide gene expression patterns to this list of criteria, and promises to reveal new insights into the transitions that establish neuronal identity during development, differentiation, activity, and disease. Comparing single neuron data to reference atlases constructed from hundreds of thousands of single-cell transcriptomes will be critical to understanding these transitions and the molecular mechanisms that drive them. We review early efforts, and discuss future challenges and opportunities, in applying scRNA-seq to the elucidation of neuronal subtypes and their development.
Collapse
Affiliation(s)
- Matthew B Johnson
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Gaelzer MM, Santos MSD, Coelho BP, de Quadros AH, Simão F, Usach V, Guma FCR, Setton-Avruj P, Lenz G, Salbego CG. Hypoxic and Reoxygenated Microenvironment: Stemness and Differentiation State in Glioblastoma. Mol Neurobiol 2016; 54:6261-6272. [DOI: 10.1007/s12035-016-0126-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023]
|
6
|
Narayanan G, Yu YH, Tham M, Gan HT, Ramasamy S, Sankaran S, Hariharan S, Ahmed S. Enumeration of Neural Stem Cells Using Clonal Assays. J Vis Exp 2016. [PMID: 27768074 PMCID: PMC5092163 DOI: 10.3791/54456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Neural stem cells (NSCs) have the ability to self-renew and generate the three major neural lineages — astrocytes, neurons and oligodendrocytes. NSCs and neural progenitors (NPs) are commonly cultured in vitro as neurospheres. This protocol describes in detail how to determine the NSC frequency in a given cell population under clonal conditions. The protocol begins with the seeding of the cells at a density that allows for the generation of clonal neurospheres. The neurospheres are then transferred to chambered coverslips and differentiated under clonal conditions in conditioned medium, which maximizes the differentiation potential of the neurospheres. Finally, the NSC frequency is calculated based on neurosphere formation and multipotency capabilities. Utilities of this protocol include the evaluation of candidate NSC markers, purification of NSCs, and the ability to distinguish NSCs from NPs. This method takes 13 days to perform, which is much shorter than current methods to enumerate NSC frequency.
Collapse
Affiliation(s)
- Gunaseelan Narayanan
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR);
| | - Yuan Hong Yu
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Muly Tham
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Hui Theng Gan
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Srinivas Ramasamy
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Shvetha Sankaran
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Srivats Hariharan
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Sohail Ahmed
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| |
Collapse
|
7
|
Neurosphere Based Differentiation of Human iPSC Improves Astrocyte Differentiation. Stem Cells Int 2015; 2016:4937689. [PMID: 26798357 PMCID: PMC4699090 DOI: 10.1155/2016/4937689] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 11/30/2022] Open
Abstract
Neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) are traditionally maintained and proliferated utilizing two-dimensional (2D) adherent monolayer culture systems. However, NPCs cultured using this system hardly reflect the intrinsic spatial development of brain tissue. In this study, we determined that culturing iPSC-derived NPCs as three-dimensional (3D) floating neurospheres resulted in increased expression of the neural progenitor cell (NPC) markers, PAX6 and NESTIN. Expansion of NPCs in 3D culture methods also resulted in a more homogenous PAX6 expression when compared to 2D culture methods. Furthermore, the 3D propagation method for NPCs resulted in a significant higher expression of the astrocyte markers GFAP and aquaporin 4 (AQP4) in the differentiated cells. Thus, our 3D propagation method could constitute a useful tool to promote NPC homogeneity and also to increase the differentiation potential of iPSC towards astrocytes.
Collapse
|
8
|
Yu YH, Narayanan G, Sankaran S, Ramasamy S, Chan SY, Lin S, Chen J, Yang H, Srivats H, Ahmed S. Purification, Visualization, and Molecular Signature of Neural Stem Cells. Stem Cells Dev 2015; 25:189-201. [PMID: 26464067 PMCID: PMC4770853 DOI: 10.1089/scd.2015.0190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neural stem cells (NSCs) are isolated from primary brain tissue and propagated as a heterogeneous mix of cells, including neural progenitors. To date, NSCs have not been purified in vitro to allow study of their biology and utility in regenerative medicine. In this study, we identify C1qR1 as a novel marker for NSCs and show that it can be used along with Lewis-X (LeX) to yield a highly purified population of NSCs. Using time-lapse microscopy, we are able to follow NSCs forming neurospheres, allowing their visualization. Finally, using single-cell polymerase chain reaction (PCR), we determine the molecular signature of NSCs. The single-cell PCR data suggest that along with the Notch and Shh pathways, the Hippo pathway plays an important role in NSC activity.
Collapse
Affiliation(s)
- Yuan Hong Yu
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Gunaseelan Narayanan
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Shvetha Sankaran
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Srinivas Ramasamy
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Shi Yu Chan
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Shuping Lin
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Jinmiao Chen
- 2 Bioinformatics Laboratory , Singapore Immunology Network, Singapore, Singapore
| | - Henry Yang
- 2 Bioinformatics Laboratory , Singapore Immunology Network, Singapore, Singapore
| | - Hariharan Srivats
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Sohail Ahmed
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| |
Collapse
|
9
|
Long-range evolutionary constraints reveal cis-regulatory interactions on the human X chromosome. Nat Commun 2015; 6:6904. [PMID: 25908307 PMCID: PMC4423230 DOI: 10.1038/ncomms7904] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 03/12/2015] [Indexed: 01/31/2023] Open
Abstract
Enhancers can regulate the transcription of genes over long genomic distances. This is thought to lead to selection against genomic rearrangements within such regions that may disrupt this functional linkage. Here we test this concept experimentally using the human X chromosome. We describe a scoring method to identify evolutionary maintenance of linkage between conserved noncoding elements and neighbouring genes. Chromatin marks associated with enhancer function are strongly correlated with this linkage score. We test >1,000 putative enhancers by transgenesis assays in zebrafish to ascertain the identity of the target gene. The majority of active enhancers drive a transgenic expression in a pattern consistent with the known expression of a linked gene. These results show that evolutionary maintenance of linkage is a reliable predictor of an enhancer's function, and provide new information to discover the genetic basis of diseases caused by the mis-regulation of gene expression. Enhancers regulate the transcription of genes over long genomic distances. Here, the authors show that enhancer function is correlated with maintenance of linkage between non-coding elements and neighbouring genes in the human X chromosome and that enhancers in zebrafish drive expression in a pattern consistent with the expression of a linked gene.
Collapse
|
10
|
Kainov Y, Favorskaya I, Delektorskaya V, Chemeris G, Komelkov A, Zhuravskaya A, Trukhanova L, Zueva E, Tavitian B, Dyakova N, Zborovskaya I, Tchevkina E. CRABP1 provides high malignancy of transformed mesenchymal cells and contributes to the pathogenesis of mesenchymal and neuroendocrine tumors. Cell Cycle 2014; 13:1530-9. [PMID: 24626200 DOI: 10.4161/cc.28475] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CRABP1 (cellular retinoic acid binding protein 1) belongs to the family of fatty acid binding proteins. Retinoic acid binding is the only known functional activity of this protein. The role of CRABP1 in human carcinogenesis remains poorly understood. Here, for the first time we demonstrated pro-metastatic and pro-tumorigenic activity of CRABP1 in mesenchymal tumors. Further functional analysis revealed that the pro-tumorigenic effect of CRABP1 does not depend on retinoic acid binding activity. These results suggest that CRABP1 could have an alternative intracellular functional activity that contributes to the high malignancy of transformed mesenchymal cells. Microarray analysis detected CRABP1-mediated alterations in the expression of about 100 genes, including those encoding key regulatory proteins. CRABP1 is ubiquitously expressed in monophasic synovial sarcomas, while in biphasic synovial sarcomas it is expressed uniquely by the spindle cells of the aggressive mesenchymal component. High level of CRABP1 expression is associated with lymph node metastasis and poor differentiation/high grade of pancreatic neuroendocrine tumors (pNETs). Presented data suggest CRABP1 as a promising biomarker of pNETs' clinical behavior. Our results give the first evidence of pro-tumorigenic and pro-metastatic activity of CRABP1 in mesenchymal and neuroendocrine tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elina Zueva
- N.N. Blokhin Russian Cancer Research Center; Moscow, Russia
| | | | | | | | | |
Collapse
|
11
|
Yun SW, Leong C, Bi X, Ha HH, Yu YH, Tan YL, Narayanan G, Sankaran S, Kim JY, Hariharan S, Ahmed S, Chang YT. A fluorescent probe for imaging symmetric and asymmetric cell division in neurosphere formation. Chem Commun (Camb) 2014; 50:7492-4. [DOI: 10.1039/c4cc02974g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A fluorescent chemical probe CDy5, which binds to acid ceramidase, is distributed symmetrically or asymmetrically during mitosis of a neural stem/progenitor cell.
Collapse
Affiliation(s)
- Seong-Wook Yun
- Singapore Bioimaging Consortium
- Agency for Science
- Technology and Research
- Singapore
| | - Cheryl Leong
- Singapore Bioimaging Consortium
- Agency for Science
- Technology and Research
- Singapore
- NUS Graduate School for Integrative Sciences and Engineering
| | - Xuezhi Bi
- Singapore Bioimaging Consortium
- Agency for Science
- Technology and Research
- Singapore
| | - Hyung-Ho Ha
- Department of Chemistry & NUS MedChem Program of Life Sciences Institute
- National University of Singapore
- Singapore
| | - Yuan Hong Yu
- Institute of Medical Biology
- Agency for Science
- Technology and Research
- Singapore
| | - Yee Ling Tan
- Singapore Bioimaging Consortium
- Agency for Science
- Technology and Research
- Singapore
| | | | - Shvetha Sankaran
- Institute of Medical Biology
- Agency for Science
- Technology and Research
- Singapore
| | - Jun-Young Kim
- Department of Chemistry & NUS MedChem Program of Life Sciences Institute
- National University of Singapore
- Singapore
| | - Srivats Hariharan
- Institute of Medical Biology
- Agency for Science
- Technology and Research
- Singapore
| | - Sohail Ahmed
- Institute of Medical Biology
- Agency for Science
- Technology and Research
- Singapore
| | - Young-Tae Chang
- Singapore Bioimaging Consortium
- Agency for Science
- Technology and Research
- Singapore
- Department of Chemistry & NUS MedChem Program of Life Sciences Institute
| |
Collapse
|
12
|
Tsang KM, Croen LA, Torres AR, Kharrazi M, Delorenze GN, Windham GC, Yoshida CK, Zerbo O, Weiss LA. A genome-wide survey of transgenerational genetic effects in autism. PLoS One 2013; 8:e76978. [PMID: 24204716 PMCID: PMC3811986 DOI: 10.1371/journal.pone.0076978] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/28/2013] [Indexed: 12/15/2022] Open
Abstract
Effects of parental genotype or parent-offspring genetic interaction are well established in model organisms for a variety of traits. However, these transgenerational genetic models are rarely studied in humans. We have utilized an autism case-control study with 735 mother-child pairs to perform genome-wide screening for maternal genetic effects and maternal-offspring genetic interaction. We used simple models of single locus parent-child interaction and identified suggestive results (P<10−4) that cannot be explained by main effects, but no genome-wide significant signals. Some of these maternal and maternal-child associations were in or adjacent to autism candidate genes including: PCDH9, FOXP1, GABRB3, NRXN1, RELN, MACROD2, FHIT, RORA, CNTN4, CNTNAP2, FAM135B, LAMA1, NFIA, NLGN4X, RAPGEF4, and SDK1. We attempted validation of potential autism association under maternal-specific models using maternal-paternal comparison in family-based GWAS datasets. Our results suggest that further study of parental genetic effects and parent-child interaction in autism is warranted.
Collapse
Affiliation(s)
- Kathryn M. Tsang
- Department of Psychiatry and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Anthony R. Torres
- Center for Persons with Disabilities, Utah State University, Logan, Utah, United States of America
| | - Martin Kharrazi
- Genetic Disease Screening Program, California Department of Health Services, Richmond, California, United States of America
| | - Gerald N. Delorenze
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Gayle C. Windham
- Division of Environmental and Occupational Disease Control, California Department of Health Services, Richmond, California, United States of America
| | - Cathleen K. Yoshida
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Ousseny Zerbo
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Lauren A. Weiss
- Department of Psychiatry and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Polarized neural stem cells derived from adult bone marrow stromal cells develop a rosette-like structure. In Vitro Cell Dev Biol Anim 2013; 49:638-52. [PMID: 23771792 DOI: 10.1007/s11626-013-9628-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/26/2013] [Indexed: 12/19/2022]
|
14
|
Ramasamy S, Narayanan G, Sankaran S, Yu YH, Ahmed S. Neural stem cell survival factors. Arch Biochem Biophys 2013; 534:71-87. [PMID: 23470250 DOI: 10.1016/j.abb.2013.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 12/21/2022]
Abstract
Neural stem and progenitor cells (NSCs and NPs) give rise to the central nervous system (CNS) during embryonic development. NSCs and NPs differentiate into three main cell-types of the CNS; astrocytes, oligodendrocytes, and neurons. NSCs are present in the adult CNS and are important in maintenance and repair. Adult NSCs hold great promise for endogenous or self-repair of the CNS. Intriguingly, NSCs have been implicated as the cells that give rise to brain tumors. Thus, the balance between survival, growth and differentiation is a critical aspect of NSC biology, during development, in the adult, and in disease processes. In this review, we survey what is known about survival factors that control both embryonic and adult NSCs. We discuss the neurosphere culture system as this is widely used to measure NSC activity and behavior in vitro and emphasize the importance of clonality. We define here NSC survival factors in their broadest sense to include any factor that influences survival and proliferation of NSCs and NPs. NSC survival factors identified to date include growth factors, morphogens, proteoglycans, cytokines, hormones, and neurotransmitters. Understanding NSC and NP interaction in response to these survival factors will provide insight to CNS development, disease and repair.
Collapse
Affiliation(s)
- Srinivas Ramasamy
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore
| | | | | | | | | |
Collapse
|