1
|
El-Zehery IM, El-Mesery M, El-Sherbiny M, El Gayar AM, Eisa NH. Carbenoxolone upregulates TRAIL\TRAILR2 expression and enhances the anti-neoplastic effect of doxorubicin in experimentally induced hepatocellular carcinoma in rats. Biochem Biophys Res Commun 2024; 741:150876. [PMID: 39579528 DOI: 10.1016/j.bbrc.2024.150876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/25/2024]
Abstract
AIMS This study investigates the in vivo anticancer activity of carbenoxolone (CBX) and its role in fighting hepatocellular carcinoma (HCC) progression and alleviating resistance against doxorubicin (DOX). Moreover, the molecular mechanism of action of CBX is explored. METHODS HCC was induced in Sprague Dawley rats via biweekly administration of thioacetamide (TAA) (200 mg/kg) intraperitoneally (i.p.) for 16 weeks after administering a single dose of diethylnitrosamine (DEN) (200 mg/kg, i.p.). A prophylactic model was established by treating rats with i.p. CBX (20 mg/kg/day) for 4 weeks starting on week 13 post-TAA injection. A therapeutic model was established by treating rats with CBX, DOX, or their combination for 7 weeks following 16 weeks of TAA administration. Serum Alpha-fetoprotein (AFP) and biochemical markers of hepatic functions were assessed. Histopathological examinations of hepatic tissues were performed. Immunohistochemical and qRT-PCR analyses were applied to assess the differential expressions of TRAIL/TRAILR2, Bcl-2, TGF-β1, and caspases 3, 8, and 9. RESULTS CBX markedly improved hepatic functions, reduced serum AFP levels, and alleviated TAA-induced hepatic histopathological alterations. CBX triggered apoptosis as evident by upregulating apoptotic markers: TRAIL/TRAILR2, caspases 3, 8, and 9, and downregulating the antiapoptotic protein Bcl-2. CBX downregulated TGF-β1. Interestingly, CBX/DOX combination mitigated hepatic damage and induced apoptosis in a way that surpassed DOX-only treatment. CONCLUSION The current study proposes that CBX is a promising anti-tumor compound, which can work effectively under prophylactic and therapeutic modes. Interestingly, CBX enhanced the anti-tumor effect of DOX. CBX exerted these effects via, in part, stimulating TRAIL-induced apoptosis along with attenuating fibrosis.
Collapse
MESH Headings
- Animals
- Doxorubicin
- Rats, Sprague-Dawley
- Male
- Carbenoxolone/pharmacology
- Rats
- Up-Regulation/drug effects
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/chemically induced
- Apoptosis/drug effects
- Antibiotics, Antineoplastic
- Drug Synergism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/chemically induced
- Liver Neoplasms/genetics
- Antineoplastic Agents/pharmacology
- TNF-Related Apoptosis-Inducing Ligand
Collapse
Affiliation(s)
- Iman M El-Zehery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Amal M El Gayar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Nada H Eisa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Mizdrak M, Ticinovic Kurir T, Mizdrak I, Kumric M, Krnic M, Bozic J. The Role of the Gap Junction Protein Connexin in Adrenal Gland Tumorigenesis. Int J Mol Sci 2024; 25:5399. [PMID: 38791437 PMCID: PMC11121959 DOI: 10.3390/ijms25105399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Gap junctions (GJs) are important in the regulation of cell growth, morphology, differentiation and migration. However, recently, more attention has been paid to their role in the pathogenesis of different diseases as well as tumorigenesis, invasion and metastases. The expression pattern and possible role of connexins (Cxs), as major GJ proteins, under both physiological and pathological conditions in the adrenal gland, were evaluated in this review. The databases Web of Science, PubMed and Scopus were searched. Studies were evaluated if they provided data regarding the connexin expression pattern in the adrenal gland, despite current knowledge of this topic not being widely investigated. Connexin expression in the adrenal gland differs according to different parts of the gland and depends on ACTH release. Cx43 is the most studied connexin expressed in the adrenal gland cortex. In addition, Cx26, Cx32 and Cx50 were also investigated in the human adrenal gland. Cx50 as the most widespread connexin, along with Cx26, Cx29, Cx32, Cx36 and Cx43, has been expressed in the adrenal medulla with distinct cellular distribution. Considerable effort has recently been directed toward connexins as therapeutically targeted molecules. At present, there exist several viable strategies in the development of potential connexin-based therapeutics. The differential and hormone-dependent distribution of gap junctions within adrenal glands, the relatively large gap junction within this gland and the increase in the gap junction size and number following hormonal treatment would indicate that gap junctions play a pivotal role in cell functioning in the adrenal gland.
Collapse
Affiliation(s)
- Maja Mizdrak
- Department of Internal Medicine, University Hospital of Split, 21000 Split, Croatia; (M.M.); (T.T.K.)
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Tina Ticinovic Kurir
- Department of Internal Medicine, University Hospital of Split, 21000 Split, Croatia; (M.M.); (T.T.K.)
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Ivan Mizdrak
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Split School of Medicine, 21000 Split, Croatia;
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, 21000 Split, Croatia
| | - Mladen Krnic
- Department of Internal Medicine, University Hospital of Split, 21000 Split, Croatia; (M.M.); (T.T.K.)
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
3
|
Xiong X, Chen W, Chen C, Wu Q, He C. Analysis of the function and therapeutic strategy of connexin 43 from its subcellular localization. Biochimie 2024; 218:1-7. [PMID: 37611889 DOI: 10.1016/j.biochi.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Connexins (Cxs) are a family of transmembrane proteins located in the plasma membrane of human cells, among which connexin 43 (Cx43) is abundantly expressed in various types of human cells. Cx43, encoded by the gap junction protein alpha 1 (GJA1) gene, assembles into a hexameric structure in the Golgi apparatus and translocates to the plasma membrane to form hemichannels (Hcs), which pair with those of the cells in contact with each other and form gap junction intercellular communication (GJIC). The role of Cx43 as a connexin localized at the plasma membrane to perform channel functions is well recognized in previous studies, but recent studies have found that it can also be localized in the nucleus, mitochondria, or present in extracellular vesicles (EVs) and tunneling nanotubes (TNTs). Cx43 in the nucleus is involved in gene transcription regulation, cytoskeleton formation, cell migration and adhesion. Cx43 in mitochondria is involved in mitochondrial respiration-related functions, and Cx43 in extracellular vesicles and tunneling nanotubes is involved in distant cellular information exchange. It is because of the diverse distribution of subcellular localization of Cx43 that it is possible to explore the corresponding functions by analyzing its localization. In this review, we summarize the important roles of Cx43 in disease development from the perspective of subcellular localization, and provide new ideas for Cx43 as a therapeutic target and the search for related pathological mechanisms.
Collapse
Affiliation(s)
- Xinhai Xiong
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Wenjie Chen
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Cheng Chen
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China; 926 Hospital of the People's Liberation Army, Kaiyuan, Yunnan, 661600, China.
| | - Qi Wu
- The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Chaopeng He
- The Second Xiangya Hospital, Changsha, Hunan, 410011, China
| |
Collapse
|
4
|
杜 家, 李 彬, 朱 晨, 韩 家, 童 旭. [Carbenoxolone enhances inhibitory effect of RSL3 against cisplatin-resistant testicular cancer cells by promoting ferroptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:405-410. [PMID: 35426805 PMCID: PMC9010993 DOI: 10.12122/j.issn.1673-4254.2022.03.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the inhibitory effect of RSL3 on the proliferation, invasion and migration of cisplatinresistant testicular cancer cells (I-10/DDP) and the effect of carbenoxolone on the activity of RSL3 against testicular cancer. METHODS MTT assay was used to evaluate the survival rate of I-10/DDP cells following treatment with RSL3 (1, 2, 4, 8, 16 or 32 μmol/L) alone or in combination with carbenoxolone (100 μmol/L) or after treatment with Fer-1 (2 μmol/L), RSL3 (4 μmol/L), RSL3+Fer-1, RSL3+carbenoxolone (100 μmol/L), or RSL3+Fer-1+carbenoxolone. Colony formation assay was used to assess the proliferation ability of the treated cells; wounding-healing assay and Transwell assay were used to assess the invasion and migration ability of the cells. The expression of GPX4 was detected using Western blotting, the levels of lipid ROS were detected using C11 BODIPY 581/591 fluorescent probe, and the levels of Fe2+ were determined with FerroOrange fluorescent probe. RESULTS RSL3 dose-dependently decreased the survival rate of I-10/DDP cells, and the combined treatment with 2, 4, or 8 μmol/L RSL3 with carbenoxolone, as compared with RSL3 treatment alone, resulted in significant reduction of the cell survival rate. The combination with carbenoxolone significantly enhanced the inhibitory effect of RSL3 on colony formation, wound healing rate (P=0.005), invasion and migration of the cells (P < 0.001). Fer-1 obviously attenuated the inhibitory effects of RSL3 alone and its combination with carbenoxolone on I-10/DDP cells (P < 0.01). RSL3 treatment significantly decreased GPX4 expression (P=0.001) and increased lipid ROS level (P=0.001) and Fe2+ level in the cells, and these effects were further enhanced by the combined treatment with carbenoxolone (P < 0.01). CONCLUSION Carbenoxolone enhances the inhibitory effect of RSL3 on the proliferation, invasion and migration of cisplatin-resistant testicular cancer cells by promoting RSL3-induced ferroptosis.
Collapse
Affiliation(s)
- 家如 杜
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Anhui Provincial Engineering Research Center for Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 彬 李
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Anhui Provincial Engineering Research Center for Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 晨露 朱
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Anhui Provincial Engineering Research Center for Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 家乐 韩
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Anhui Provincial Engineering Research Center for Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 旭辉 童
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Anhui Provincial Engineering Research Center for Biochemical Pharmaceuticals, Bengbu 233030, China
| |
Collapse
|
5
|
Inhibition of Intercellular Cytosolic Traffic via Gap Junctions Reinforces Lomustine-Induced Toxicity in Glioblastoma Independent of MGMT Promoter Methylation Status. Pharmaceuticals (Basel) 2021; 14:ph14030195. [PMID: 33673490 PMCID: PMC7997332 DOI: 10.3390/ph14030195] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma is a malignant brain tumor and one of the most lethal cancers in human. Temozolomide constitutes the standard chemotherapeutic agent, but only shows limited efficacy in glioblastoma patients with unmethylated O-6-methylguanine-DNA methyltransferase (MGMT) promoter status. Recently, it has been shown that glioblastoma cells communicate via particular ion-channels-so-called gap junctions. Interestingly, inhibition of these ion channels has been reported to render MGMT promoter-methylated glioblastoma cells more susceptible for a therapy with temozolomide. However, given the percentage of about 65% of glioblastoma patients with an unmethylated MGMT promoter methylation status, this treatment strategy is limited to only a minority of glioblastoma patients. In the present study we show that-in contrast to temozolomide-pharmacological inhibition of intercellular cytosolic traffic via gap junctions reinforces the antitumoral effects of chemotherapeutic agent lomustine, independent of MGMT promoter methylation status. In view of the growing interest of lomustine in glioblastoma first and second line therapy, these findings might provide a clinically-feasible way to profoundly augment chemotherapeutic effects for all glioblastoma patients.
Collapse
|
6
|
Yang TT, Qian F, Liu L, Peng XC, Huang JR, Ren BX, Tang FR. Astroglial connexins in epileptogenesis. Seizure 2021; 84:122-128. [PMID: 33348235 DOI: 10.1016/j.seizure.2020.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022] Open
Abstract
The astroglial network connected through gap junctions assembling from connexins physiologically balances the concentrations of ions and neurotransmitters around neurons. Astrocytic dysfunction has been associated with many neurological disorders including epilepsy. Dissociated gap junctions result in the increased activity of connexin hemichannels which triggers brain pathophysiological changes. Previous studies in patients and animal models of epilepsy indicate that the reduced gap junction coupling from assembled connexin hemichannels in the astrocytes may play an important role in epileptogenesis. This abnormal cell-to-cell communication is now emerging as an important feature of brain pathologies and being considered as a novel therapeutic target for controlling epileptogenesis. In particular, candidate drugs with ability of inhibition of connexin hemichannel activity and enhancement of gap junction formation in astrocytes should be explored to prevent epileptogenesis and control epilepsy.
Collapse
Affiliation(s)
- Ting-Ting Yang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Feng Qian
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China.
| | - Lian Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Xiao-Chun Peng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Jiang-Rong Huang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Bo-Xu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Feng-Ru Tang
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore.
| |
Collapse
|
7
|
Li C, Shi L, Peng C, Yu G, Zhang Y, Du Z. Lead-induced cardiomyocytes apoptosis by inhibiting gap junction intercellular communication via autophagy activation. Chem Biol Interact 2020; 337:109331. [PMID: 33242459 DOI: 10.1016/j.cbi.2020.109331] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/01/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Lead (Pb) is one of the most common heavy metal contaminants in the environment. Pb can cause pathophysiological changes in several organ systems, including the cardiovascular system, but the molecular mechanism remains elusive. The study aimed to study the effects of Pb on Gap junction intercellular communication (GJIC) and its role in Pb-induced apoptosis. The present study aims to determine whether Pb-induced autophagy promotes apoptosis of rat cardiac myocytes (H9c2 cells) by downregulating GJIC using CCK-8 Kit, scrape loading/dye transfer assay, Annexin V/PI assays, Western blot analysis and double-immunofluorescence experiments. The results showed that Pb elicited cytotoxicity in a time- and concentration-dependent manner and led to increased apoptosis in a concentration-dependent manner in H9c2 cells. Pb also reduced GJIC in H9c2 cells in a concentration-dependent manner through the downregulation of connexin (Cx) 43. Inhibition of gap junctions by gap junction blocker carbenoxolone disodium (CBX) resulted in increased apoptosis. Furthermore, Pb increased autophagy in a concentration-dependent manner in H9c2 cells, decreasing the distribution of Cx43 on the cell membrane, and targeted Cx43 to autophagosome via light chain 3 (LC3). However, autophagy inhibitor 3-Methyladenine (3-MA) can slow down the downregulation of Cx43 induced by Pb in H9c2 cells. In conclusion, our results provide evidence that Pb-decreased GJIC promotes apoptosis in cardiomyocytes. This is probably because of the fact that Pb-induced autophagy exacerbates GJIC inhibition and downregulation of Cx43.
Collapse
Affiliation(s)
- Chao Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China; Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China
| | - Liang Shi
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China
| | - Cheng Peng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, 4108, Queensland, Australia
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China; Laboratory Animal Center, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China.
| |
Collapse
|
8
|
Khosla K, Naus CC, Sin WC. Cx43 in Neural Progenitors Promotes Glioma Invasion in a 3D Culture System. Int J Mol Sci 2020; 21:ijms21155216. [PMID: 32717889 PMCID: PMC7432065 DOI: 10.3390/ijms21155216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
The environment that envelops the cancer cells intimately affects the malignancy of human cancers. In the case of glioma, an aggressive adult brain cancer, its high rate of recurrence after total resection is responsible for a poor prognosis. Connexin43 (Cx43) is a gap junction protein with a prominent presence in glioma-associated normal brain cells, specifically in the reactive astrocytes. We previously demonstrated that elimination of Cx43 in these astrocytes reduces glioma invasion in a syngeneic mouse model. To further our investigation in human glioma cells, we developed a scaffold-free 3D platform that takes into account both the tumor and its interaction with the surrounding tissue. Using cell-tracking dyes and 3D laser scanning confocal microscopy, we now report that the elimination of Cx43 protein in neural progenitor spheroids reduced the invasiveness of human brain tumor-initiating cells, confirming our earlier observation in an intact mouse brain. By investigating the glioma invasion in a defined multicellular system with a tumor boundary that mimics the intact brain environment, our findings strengthen Cx43 as a candidate target for glioma control.
Collapse
|
9
|
Abitbol J, Beach R, Barr K, Esseltine J, Allman B, Laird D. Cisplatin-induced ototoxicity in organotypic cochlear cultures occurs independent of gap junctional intercellular communication. Cell Death Dis 2020; 11:342. [PMID: 32393745 PMCID: PMC7214471 DOI: 10.1038/s41419-020-2551-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Cisplatin is a very effective chemotherapeutic, but severe and permanent hearing loss remains a prevalent side effect. The processes underpinning cisplatin-induced ototoxicity are not well understood. Gap junction channels composed of connexin (Cx) subunits allow for the passage of small molecules and ions between contacting neighboring cells. These specialized channels have been postulated to enhance cisplatin-induced cell death by spreading “death signals” throughout the supporting cells of the organ of Corti. This study sought to investigate the role of Cx43 in cisplatin-induced ototoxicity using organotypic cochlear cultures from control and two Cx43-mutant mouse strains harboring either a moderate (Cx43I130T/+) or severe (Cx43G60S/+) reduction of Cx43 function. Cochlear cultures from Cx43-mutant mice with a severe reduction in Cx43-based gap junctional intercellular communication (GJIC) had an enhanced number of hair cells that were positive for cleaved caspase 3, a marker of active apoptosis, after cisplatin treatment. In cisplatin-treated organotypic cochlear cultures, there was a decrease in the co-localization of Cx26 and Cx30 compared with untreated cultures, suggesting that cisplatin causes reorganization of connexin composition in supporting cells. Both Cx26 and Cx30 protein expression as well as GJIC were decreased in organotypic cochlear cultures treated with the gap-junction blocker carbenoxolone. When cisplatin and carbenoxolone were co-administered, there were no differences in hair cell loss compared with cisplatin treatment alone. Using cisplatin-treated control and Cx43-ablated organ of Corti derived HEI-OC1 mouse cells, we found that greatly reducing GJIC led to preferential induction of an ER stress pathway. Taken together, this study strongly suggests that inhibition of GJIC in organ of Corti cells does not lead to differential susceptibility to cisplatin-induced ototoxicity. Although cisplatin causes the same degree of cell death in gap junction competent and incompetent cochlear cells, the engagement of the mitochondrial dysregulation and ER stress differs.
Collapse
Affiliation(s)
- Julia Abitbol
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Rianne Beach
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Kevin Barr
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Jessica Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Brian Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Dale Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
10
|
Madsen SD, Jones SH, Tucker HA, Giler MK, Muller DC, Discher CT, Russell KC, Dobek GL, Sammarco MC, Bunnell BA, O'Connor KC. Survival of aging CD264 + and CD264 - populations of human bone marrow mesenchymal stem cells is independent of colony-forming efficiency. Biotechnol Bioeng 2019; 117:223-237. [PMID: 31612990 DOI: 10.1002/bit.27195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
In vivo mesenchymal stem cell (MSC) survival is relevant to therapeutic applications requiring engraftment and potentially to nonengraftment applications as well. MSCs are a mixture of progenitors at different stages of cellular aging, but the contribution of this heterogeneity to the survival of MSC implants is unknown. Here, we employ a biomarker of cellular aging, the decoy TRAIL receptor CD264, to compare the survival kinetics of two cell populations in human bone marrow MSC (hBM-MSC) cultures. Sorted CD264+ hBM-MSCs from two age-matched donors have elevated β-galactosidase activity, decreased differentiation potential and form in vitro colonies inefficiently relative to CD264- hBM-MSCs. Counterintuitive to their aging phenotype, CD264+ hBM-MSCs exhibited comparable survival to matched CD264- hBM-MSCs from the same culture during in vitro colony formation and in vivo when implanted ectopically in immunodeficient NIH III mice. In vitro and in vivo survival of these two cell populations were independent of colony-forming efficiency. These findings have ramifications for the preparation of hBM-MSC therapies given the prevalence of aging CD264+ cells in hBM-MSC cultures and the popularity of colony-forming efficiency as a quality control metric in preclinical and clinical studies with MSCs.
Collapse
Affiliation(s)
- Sean D Madsen
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Sean H Jones
- Department of Comparative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - H Alan Tucker
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Margaret K Giler
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Dyllan C Muller
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana
| | - Carson T Discher
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana
| | - Katie C Russell
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana
| | - Georgina L Dobek
- Department of Comparative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Mimi C Sammarco
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana.,Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana.,Center for Aging, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana.,Center for Aging, School of Medicine, Tulane University, New Orleans, Louisiana.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Kim C O'Connor
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana.,Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana.,Center for Aging, School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
11
|
Kouzi F, Zibara K, Bourgeais J, Picou F, Gallay N, Brossaud J, Dakik H, Roux B, Hamard S, Le Nail LR, Hleihel R, Foucault A, Ravalet N, Rouleux-Bonnin F, Gouilleux F, Mazurier F, Bene MC, Akl H, Gyan E, Domenech J, El-Sabban M, Herault O. Disruption of gap junctions attenuates acute myeloid leukemia chemoresistance induced by bone marrow mesenchymal stromal cells. Oncogene 2019; 39:1198-1212. [PMID: 31649334 PMCID: PMC7002301 DOI: 10.1038/s41388-019-1069-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 01/09/2023]
Abstract
The bone marrow (BM) niche impacts the progression of acute myeloid leukemia (AML) by favoring the chemoresistance of AML cells. Intimate interactions between leukemic cells and BM mesenchymal stromal cells (BM-MSCs) play key roles in this process. Direct intercellular communications between hematopoietic cells and BM-MSCs involve connexins, components of gap junctions. We postulated that blocking gap junction assembly could modify cell–cell interactions in the leukemic niche and consequently the chemoresistance. The comparison of BM-MSCs from AML patients and healthy donors revealed a specific profile of connexins in BM-MSCs of the leukemic niche and the effects of carbenoxolone (CBX), a gap junction disruptor, were evaluated on AML cells. CBX presents an antileukemic effect without affecting normal BM-CD34+ progenitor cells. The proapoptotic effect of CBX on AML cells is in line with the extinction of energy metabolism. CBX acts synergistically with cytarabine (Ara-C) in vitro and in vivo. Coculture experiments of AML cells with BM-MSCs revealed that CBX neutralizes the protective effect of the niche against the Ara-C-induced apoptosis of leukemic cells. Altogether, these results suggest that CBX could be of therapeutic interest to reduce the chemoresistance favored by the leukemic niche, by targeting gap junctions, without affecting normal hematopoiesis.
Collapse
Affiliation(s)
- Farah Kouzi
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,PRASE, DSST, Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- PRASE, DSST, Lebanese University, Beirut, Lebanon.,Biology Department, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Jerome Bourgeais
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| | - Frederic Picou
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| | - Nathalie Gallay
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| | - Julie Brossaud
- Department of Nuclear Medicine, Bordeaux University Hospital, Pessac, France
| | - Hassan Dakik
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France
| | - Benjamin Roux
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| | - Sophie Hamard
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France
| | | | - Rita Hleihel
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amelie Foucault
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| | - Noemie Ravalet
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| | - Florence Rouleux-Bonnin
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France
| | - Fabrice Gouilleux
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France
| | - Frederic Mazurier
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France
| | - Marie C Bene
- Department of Biological Hematology, Nantes University Hospital, CRCINA, Nantes, France
| | - Haidar Akl
- PRASE, DSST, Lebanese University, Beirut, Lebanon.,Biology Department, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Emmanuel Gyan
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Hematology and Cell Therapy, Tours University Hospital, Tours, France
| | - Jorge Domenech
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Olivier Herault
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France. .,EA7501 GICC, University of Tours, Faculty of Medicine, Tours, France. .,Department of Biological Hematology, Tours University Hospital, Tours, France.
| |
Collapse
|
12
|
A drug library screen identifies Carbenoxolone as novel FOXO inhibitor that overcomes FOXO3-mediated chemoprotection in high-stage neuroblastoma. Oncogene 2019; 39:1080-1097. [PMID: 31591479 PMCID: PMC6989399 DOI: 10.1038/s41388-019-1044-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023]
Abstract
The transcription factor FOXO3 has been associated in different tumor entities with hallmarks of cancer, including metastasis, tumor angiogenesis, maintenance of tumor-initiating stem cells, and drug resistance. In neuroblastoma (NB), we recently demonstrated that nuclear FOXO3 promotes tumor angiogenesis in vivo and chemoresistance in vitro. Hence, inhibiting the transcriptional activity of FOXO3 is a promising therapeutic strategy. However, as no FOXO3 inhibitor is clinically available to date, we used a medium-throughput fluorescence polarization assay (FPA) screening in a drug-repositioning approach to identify compounds that bind to the FOXO3-DNA-binding-domain (DBD). Carbenoxolone (CBX), a glycyrrhetinic acid derivative, was identified as a potential FOXO3-inhibitory compound that binds to the FOXO3-DBD with a binding affinity of 19 µM. Specific interaction of CBX with the FOXO3-DBD was validated by fluorescence-based electrophoretic mobility shift assay (FAM-EMSA). CBX inhibits the transcriptional activity of FOXO3 target genes, as determined by chromatin immunoprecipitation (ChIP), DEPP-, and BIM promoter reporter assays, and real-time RT-PCR analyses. In high-stage NB cells with functional TP53, FOXO3 triggers the expression of SESN3, which increases chemoprotection and cell survival. Importantly, FOXO3 inhibition by CBX treatment at pharmacologically relevant concentrations efficiently repressed FOXO3-mediated SESN3 expression and clonogenic survival and sensitized high-stage NB cells to chemotherapy in a 2D and 3D culture model. Thus, CBX might be a promising novel candidate for the treatment of therapy-resistant high-stage NB and other "FOXO-resistant" cancers.
Collapse
|
13
|
Inhibition of Gap Junctions Sensitizes Primary Glioblastoma Cells for Temozolomide. Cancers (Basel) 2019; 11:cancers11060858. [PMID: 31226836 PMCID: PMC6628126 DOI: 10.3390/cancers11060858] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Gap junctions have recently been shown to interconnect glioblastoma cells to a multicellular syncytial network, thereby allowing intercellular communication over long distances as well as enabling glioblastoma cells to form routes for brain microinvasion. Against this backdrop gap junction-targeted therapies might provide for an essential contribution to isolate cancer cells within the brain, thus increasing the tumor cells’ vulnerability to the standard chemotherapeutic agent temozolomide. By utilizing INI-0602—a novel gap junction inhibitor optimized for crossing the blood brain barrier—in an oncological setting, the present study was aimed at evaluating the potential of gap junction-targeted therapy on primary human glioblastoma cell populations. Pharmacological inhibition of gap junctions profoundly sensitized primary glioblastoma cells to temozolomide-mediated cell death. On the molecular level, gap junction inhibition was associated with elevated activity of the JNK signaling pathway. With the use of a novel gap junction inhibitor capable of crossing the blood–brain barrier—thus constituting an auspicious drug for clinical applicability—these results may constitute a promising new therapeutic strategy in the field of current translational glioblastoma research.
Collapse
|
14
|
Aasen T, Leithe E, Graham SV, Kameritsch P, Mayán MD, Mesnil M, Pogoda K, Tabernero A. Connexins in cancer: bridging the gap to the clinic. Oncogene 2019; 38:4429-4451. [PMID: 30814684 PMCID: PMC6555763 DOI: 10.1038/s41388-019-0741-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 01/26/2019] [Indexed: 02/08/2023]
Abstract
Gap junctions comprise arrays of intercellular channels formed by connexin proteins and provide for the direct communication between adjacent cells. This type of intercellular communication permits the coordination of cellular activities and plays key roles in the control of cell growth and differentiation and in the maintenance of tissue homoeostasis. After more than 50 years, deciphering the links among connexins, gap junctions and cancer, researchers are now beginning to translate this knowledge to the clinic. The emergence of new strategies for connexin targeting, combined with an improved understanding of the molecular bases underlying the dysregulation of connexins during cancer development, offers novel opportunities for clinical applications. However, different connexin isoforms have diverse channel-dependent and -independent functions that are tissue and stage specific. This can elicit both pro- and anti-tumorigenic effects that engender significant challenges in the path towards personalised medicine. Here, we review the current understanding of the role of connexins and gap junctions in cancer, with particular focus on the recent progress made in determining their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, Barcelona, Spain.
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital and K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), University of A Coruña, A Coruña, Spain
| | - Marc Mesnil
- STIM Laboratory, Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers, France
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany
| | - Arantxa Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
15
|
Fadhlullah SFB, Halim NBA, Yeo JYT, Ho RLY, Um P, Ang BT, Tang C, Ng WH, Virshup DM, Ho IAW. Pathogenic mutations in neurofibromin identifies a leucine-rich domain regulating glioma cell invasiveness. Oncogene 2019; 38:5367-5380. [PMID: 30967630 PMCID: PMC6755990 DOI: 10.1038/s41388-019-0809-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/14/2019] [Accepted: 03/23/2019] [Indexed: 12/25/2022]
Abstract
Glioblastoma (GBM) is the most aggressive tumor of the brain. NF1, a tumor suppressor gene and RAS-GTPase, is one of the highly mutated genes in GBM. Dysregulated NF1 expression promotes cell invasion, proliferation, and tumorigenesis. Loss of NF1 expression in glioblastoma is associated with increased aggressiveness of the tumor. Here, we show that NF1-loss in patient-derived glioma cells using shRNA increases self-renewal, heightens cell invasion, and promotes mesenchymal subtype and epithelial mesenchymal transition-specific gene expression that enhances tumorigenesis. The neurofibromin protein contains at least four major domains, with the GAP-related domain being the most well-studied. In this study, we report that the leucine-rich domain (LRD) of neurofibromin inhibits invasion of human glioblastoma cells without affecting their proliferation. Moreover, under conditions tested, the NF1-LRD fails to hydrolyze Ras-GTP to Ras-GDP, suggesting that its suppressive function is independent of Ras signaling. We further demonstrate that rare variants within the NF1-LRD domain found in a subset of the patients are pathogenic and reduce NF1-LRD’s invasion suppressive function. Taken together, our results show, for the first time, that NF1-LRD inhibits glioma invasion, and provides evidence of a previously unrecognized function of NF1-LRD in glioma biology.
Collapse
Affiliation(s)
- Siti Farah Bte Fadhlullah
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore.,Lucence Diagnostics Pte Ltd., Singapore, Singapore
| | | | - Jacqueline Y T Yeo
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Rachel L Y Ho
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Phoebe Um
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore.,University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beng Ti Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore, 308433, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,Singapore Institute for Clinical Sciences, A*STAR, Singapore, 117609, Singapore.,Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Carol Tang
- Department of Research, National Neuroscience Institute, Singapore, 308433, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Division of Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore
| | - Wai H Ng
- Department of Neurosurgery, National Neuroscience Institute, Singapore, 308433, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27703, USA
| | - Ivy A W Ho
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore. .,Duke-NUS Medical School, Singapore, 169857, Singapore.
| |
Collapse
|
16
|
Connexin 43 (Cx43) in cancer: Implications for therapeutic approaches via gap junctions. Cancer Lett 2018; 442:439-444. [PMID: 30472182 DOI: 10.1016/j.canlet.2018.10.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/30/2018] [Accepted: 10/25/2018] [Indexed: 01/11/2023]
Abstract
Gap junctions are membrane channels found in all cells of the human body that are essential to cellular physiology. Gap junctions are formed from connexin proteins and are responsible for transfer of biologically active molecules, metabolites, and salts between neighboring cells or cells and their extracellular environment. Over the last few years, aberrant connexin 43 (Cx43) expression has been associated with cancer recurrence, metastatic spread, and poor survival. Here we provide an overview of the general structure and function of gap junctions and review their roles in different cancer types. We discuss new therapeutic approaches targeting Cx43 and potential new ways of exploiting gap junction transfer for drug delivery and anti-cancer treatment. The permeability of Cx43 channels to small molecules and macromolecules makes them highly attractive targets for delivering drugs directly into the cytoplasm. Cancer cells overexpressing Cx43 may be more permeable and sensitive to chemotherapeutics. Because Cx43 can either act as a tumor suppressor or oncogene, biomarker analysis and a better understanding of how Cx43 contextually mediates cancer phenotypes will be required to develop clinically viable Cx43-based therapies.
Collapse
|
17
|
Morioka N, Fujii S, Kondo S, Zhang FF, Miyauchi K, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. Downregulation of spinal astrocytic connexin43 leads to upregulation of interleukin-6 and cyclooxygenase-2 and mechanical hypersensitivity in mice. Glia 2017; 66:428-444. [DOI: 10.1002/glia.23255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Shiori Fujii
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Syun Kondo
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Fang Fang Zhang
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
- Institute of Pharmacology, Taishan Medical University, 619 Changcheng Road; Taian Shandong 271016 China
| | - Kazuki Miyauchi
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Yoki Nakamura
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse IRP, Triad Suite 3305, 333 Cassell Drive; Baltimore MD 21224
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Yoshihiro Nakata
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| |
Collapse
|
18
|
Lai Y, Tao L, Zhao Y, Zhang X, Sun X, Wang Q, Xu C. Cx32 inhibits TNFα-induced extrinsic apoptosis with and without EGFR suppression. Oncol Rep 2017; 38:2885-2892. [PMID: 28901517 DOI: 10.3892/or.2017.5950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor α (TNFα) and TNF-related apoptosis-inducing ligand (TRAIL) can trigger the extrinsic apoptosis pathway. Our previous study indicated that connexin32 (Cx32) inhibited streptonigrin-induced intrinsic apoptosis via the epidermal growth factor receptor (EGFR) pathway. However, whether Cx32 can exert effects on the extrinsic apoptosis pathway through EGFR signaling remains unclear. In the present study, we investigated the role of Cx32 in extrinsic apoptosis induced by treatment with TNFα + cycloheximide (CHX) or afatinib in human cervical cancer (CaCx) cells. In stable inducible Cx32-transfected HeLa cells (HeLa-Cx32), Cx32 expression was induced by treatment with doxycycline (Dox). Furthermore, C-33A cells, which natively express high levels of Cx32, were used as a cell model for knockdown of Cx32 with siRNA. To determine the non-junctional function of Cx32 in apoptosis, 18α-glycyrrhetinic acid (18α-GA), a gap junction intracellular communication (GJIC) inhibitor, was used. Our results showed that Cx32 could inhibit apoptosis induced by TNFα + afatinib with or without the GJIC inhibitor. In clinical cervical tissue samples, we found that the expression of survivin was markedly higher in CaCx than in normal cervix tissue, which was in accordance with the expression of Cx32 in our previous study. In HeLa-Cx32 cells, we also found that Cx32 upregulated the expression of Cox-2. In addition, Cx32 upregulated EGFR expression in low-density culture (lacking GJ formation). Cx32 could also promote the expression of EGFR, phospho-STAT3 and phospho-ERK in HeLa-Cx32 cells following TNFα treatment. After knocking down Cx32 in C-33A cells, the expression levels of survivin and TNFα were downregulated. The present study verifies that Cx32 exerts an inhibitory effect on extrinsic apoptosis in CaCx cells, and suggests that Cx32 may regulate the progression and micro-environment of CaCx cells.
Collapse
Affiliation(s)
- Yongchang Lai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yifan Zhao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiaomin Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xingjuan Sun
- Traditional Chinese Medicine Hospital of Guangdong, Guangzhou, Guangdong 510120, P.R. China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chengfang Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
19
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
20
|
Madsen SD, Russell KC, Tucker HA, Glowacki J, Bunnell BA, O'Connor KC. Decoy TRAIL receptor CD264: a cell surface marker of cellular aging for human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2017; 8:201. [PMID: 28962588 PMCID: PMC5622446 DOI: 10.1186/s13287-017-0649-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/14/2017] [Accepted: 08/22/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are a mixture of progenitors that are heterogeneous in their regenerative potential. Development of MSC therapies with consistent efficacy is hindered by the absence of an immunophenotype of MSC heterogeneity. This study evaluates decoy TRAIL receptor CD264 as potentially the first surface marker to detect cellular aging in heterogeneous MSC cultures. METHODS CD264 surface expression, regenerative potential, and metrics of cellular aging were assessed in vitro for marrow MSCs from 12 donors ages 20-60 years old. Male and female donors were age matched. Expression of CD264 was compared with that of p16, p21, and p53 during serial passage of MSCs. RESULTS When CD264+ cell content was 20% to 35%, MSC cultures from young (ages 20-40 years) and older (ages 45-60 years) donors proliferated rapidly and differentiated extensively. Older donor MSCs containing < 35% CD264+ cells had a small size and negligible senescence despite the donor's advanced chronological age. Above the 35% threshold, CD264 expression inversely correlated with proliferation and differentiation potential. When CD264+ cell content was 75%, MSCs were enlarged and mostly senescent with severely compromised regenerative potential. There was no correlation of the older donors' chronological age to either CD264+ cell content or the regenerative potential of the donor MSCs. CD264 was upregulated after p53 and had a similar expression profile to that of p21 during serial passage of MSCs. No sex-linked differences were detected in this study. CONCLUSIONS These results suggest that CD264 is a surface marker of cellular age for MSCs, not the chronological age of the MSC donor. CD264 is first upregulated in MSCs at an intermediate stage of cellular aging and remains upregulated as aging progresses towards senescence. The strong inverse correlation of CD264+ cell content to the regenerative potential of MSCs has possible application to assess the therapeutic potential of patient MSCs, standardize the composition and efficacy of MSC therapies, and facilitate aging research on MSCs.
Collapse
Affiliation(s)
- Sean D Madsen
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA.,Biomedical Sciences Graduate Program, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Katie C Russell
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA.,Biomedical Sciences Graduate Program, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - H Alan Tucker
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce A Bunnell
- Biomedical Sciences Graduate Program, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Center for Aging, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Kim C O'Connor
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA. .,Biomedical Sciences Graduate Program, Tulane University School of Medicine, New Orleans, Louisiana, USA. .,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA. .,Center for Aging, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| |
Collapse
|
21
|
Xiang BY, Chen L, Wang XJ, Xiang C. Mesenchymal stem cells as therapeutic agents and in gene delivery for the treatment of glioma *. J Zhejiang Univ Sci B 2017; 18:737-746. [PMCID: PMC5611545 DOI: 10.1631/jzus.b1600337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/22/2016] [Indexed: 06/13/2024]
Abstract
Mesenchymal stem cells (MSCs) are plastic-adherent cells with a characteristic surface phenotype and properties of self-renewal, differentiation, and high proliferative potential. The characteristics of MSCs and their tumor-tropic capability make them an ideal tool for use in cell-based therapies for cancer, including glioma. These cells can function either through a bystander effect or as a delivery system for genes and drugs. MSCs have been demonstrated to inhibit the growth of glioma and to improve survival following transplantation into the brain. We briefly review the current data regarding the use of MSCs in the treatment of glioma and discuss the potential strategies for development of a more specific and effective therapy.
Collapse
|
22
|
Yulyana Y, Tovmasyan A, Ho IAW, Sia KC, Newman JP, Ng WH, Guo CM, Hui KM, Batinic-Haberle I, Lam PYP. Redox-Active Mn Porphyrin-based Potent SOD Mimic, MnTnBuOE-2-PyP(5+), Enhances Carbenoxolone-Mediated TRAIL-Induced Apoptosis in Glioblastoma Multiforme. Stem Cell Rev Rep 2016; 12:140-55. [PMID: 26454429 DOI: 10.1007/s12015-015-9628-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme is the most malignant tumor of the brain and is challenging to treat due to its highly invasive nature and heterogeneity. Malignant brain tumor displays high metabolic activity which perturbs its redox environment and in turn translates to high oxidative stress. Thus, pushing the oxidative stress level to achieve the maximum tolerable threshold that induces cell death is a potential strategy for cancer therapy. Previously, we have shown that gap junction inhibitor, carbenoxolone (CBX), is capable of enhancing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) -induced apoptosis in glioma cells. Since CBX is known to induce oxidative stress, we hypothesized that the addition of another potent mediator of oxidative stress, powerful SOD mimic MnTnBuOE-2-PyP(5+) (MnBuOE), could further enhance TRAIL-driven therapeutic efficacy in glioma cells. Our results showed that combining TRAIL + CBX with MnBuOE significantly enhances cell death of glioma cell lines and this enhancement could be further potentiated by CBX pretreatment. MnBuOE-driven cytotoxicity is due to its ability to take advantage of oxidative stress imposed by CBX + TRAIL system, and enhance it in the presence of endogenous reductants, ascorbate and thiol, thereby producing cytotoxic H2O2, and in turn inducing death of glioma cells but not normal astrocytes. Most importantly, combination treatment significantly reduces viability of TRAIL-resistant Asian patient-derived glioma cells, thus demonstrating the potential clinical use of our therapeutic system. It was reported that H2O2 is involved in membrane depolarization-based sensitization of cancer cells toward TRAIL. MnBuOE is entering Clinical Trials as a normal brain radioprotector in glioma patients at Duke University increasing Clinical relevance of our studies.
Collapse
Affiliation(s)
- Yulyana Yulyana
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Research Drive 281b/285 MSRB I, Box 3455, Durham, NC, 27710, USA
| | - Ivy A W Ho
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.,National Neuroscience Institute, Singapore, Singapore
| | - Kian Chuan Sia
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.,National University of Singapore, Singapore, Singapore
| | - Jennifer P Newman
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Wai Hoe Ng
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Chang Ming Guo
- Department of Orthopedics, Singapore General Hospital, Singapore, Singapore
| | - Kam Man Hui
- Bek Chai Heah Laboratory of Cancer Genomics, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre of Singapore, Singapore, Singapore.,Cancer and Stem Cells Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Research Drive 281b/285 MSRB I, Box 3455, Durham, NC, 27710, USA. .,Duke Cancer Institute, Duke University Medical Centre, Durham, NC, USA.
| | - Paula Y P Lam
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore. .,Cancer and Stem Cells Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
Naoum GE, Tawadros F, Farooqi AA, Qureshi MZ, Tabassum S, Buchsbaum DJ, Arafat W. Role of nanotechnology and gene delivery systems in TRAIL-based therapies. Ecancermedicalscience 2016; 10:660. [PMID: 27594905 PMCID: PMC4990059 DOI: 10.3332/ecancer.2016.660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 12/11/2022] Open
Abstract
Since its identification as a member of the tumour necrosis factor (TNF) family, TRAIL (TNF-related apoptosis-inducing ligand) has emerged as a new avenue in apoptosis-inducing cancer therapies. Its ability to circumvent the chemoresistance of conventional therapeutics and to interact with cancer stem cells (CSCs) self-renewal pathways, amplified its potential as a cancer apoptotic agent. Many recombinant preparations of this death ligand and monoclonal antibodies targeting its death receptors have been tested in monotherapy and combinational clinical trials. Gene therapy is a new approach for cancer treatment which implies viral or non-viral functional transgene induction of apoptosis in cancer cells or repair of the underlying genetic abnormality on a molecular level. The role of this approach in overcoming the traditional barriers of radiation and chemotherapeutics systemic toxicity, risk of recurrence, and metastasis made it a promising platform for cancer treatment. The recent first Food Drug Administration (FDA) approved oncolytic herpes virus for melanoma treatment brings forth the potency of the cancer gene therapy approach in the future. Many gene delivery systems have been studied for intratumoural TRAIL gene delivery alone or in combination with chemotherapeutic agents to produce synergistic cancer cytotoxicity. However, there still remain many obstacles to be conquered for this different gene delivery systems. Nanomedicine on the other hand offers a new frontier for clinical trials and biomedical research. The FDA approved nanodrugs motivates horizon exploration for other nanoscale designed particles’ implications in gene delivery. In this review we aim to highlight the molecular role of TRAIL in apoptosis and interaction with cancer stem cells (CSCs) self-renewal pathways. Finally, we also aim to discuss the different roles of gene delivery systems, mesenchymal cells, and nanotechnology designs in TRAIL gene delivery.
Collapse
Affiliation(s)
| | - Fady Tawadros
- East Tennessee State University, 1276 Gilbreath Dr, Johnson City, TN 37604, USA
| | | | | | - Sobia Tabassum
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Donald J Buchsbaum
- University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL 35233, USA
| | - Waleed Arafat
- University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL 35233, USA; University of Alexandria, El-Gaish Rd, Egypt, Alexandria, Egypt
| |
Collapse
|
24
|
Attar R, Sajjad F, Qureshi MZ, Tahir F, Hussain E, Fayyaz S, Farooqi AA. TRAIL based therapy: overview of mesenchymal stem cell based delivery and miRNA controlled expression of TRAIL. Asian Pac J Cancer Prev 2015; 15:6495-7. [PMID: 25169476 DOI: 10.7314/apjcp.2014.15.16.6495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Rapidly increasing number of outstanding developments in the field of TRAIL mediated signaling have revolutionized our current information about inducing and maximizing TRAIL mediated apoptosis in resistant cancer cells. Data obtained with high-throughput technologies have provided finer resolution of tumor biology and now it is known that a complex structure containing malignant cells strictly coupled with a large variety of surrounding cells constitutes the tumor stroma. Utility of mesenchymal stem cells (MSCs) as cellular vehicles has added new layers of information. There is sufficient experimental evidence substantiating efficient gene deliveries into MSCs by retroviral, lentiviral and adenoviral vectors. Moreover, there is a paradigm shift in molecular oncology and recent high impact research has shown controlled expression of TRAIL in cancer cells on insertion of complementary sequences for frequently downregulated miRNAs. In this review we have attempted to provide an overview of utility of TRAIL engineered MSCs for effective killing of tumor and potential of using miRNA response elements as rheostat like switch to control expression of TRAIL in cancer cells.
Collapse
Affiliation(s)
- Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University Hospital, Istanbul, Turkey E-mail :
| | | | | | | | | | | | | |
Collapse
|
25
|
Hitomi M, Deleyrolle LP, Mulkearns-Hubert EE, Jarrar A, Li M, Sinyuk M, Otvos B, Brunet S, Flavahan WA, Hubert CG, Goan W, Hale JS, Alvarado AG, Zhang A, Rohaus M, Oli M, Vedam-Mai V, Fortin JM, Futch HS, Griffith B, Wu Q, Xia CH, Gong X, Ahluwalia MS, Rich JN, Reynolds BA, Lathia JD. Differential connexin function enhances self-renewal in glioblastoma. Cell Rep 2015; 11:1031-42. [PMID: 25959821 PMCID: PMC4502443 DOI: 10.1016/j.celrep.2015.04.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 03/10/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022] Open
Abstract
The coordination of complex tumor processes requires cells to rapidly modify their phenotype and is achieved by direct cell-cell communication through gap junction channels composed of connexins. Previous reports have suggested that gap junctions are tumor suppressive based on connexin 43 (Cx43), but this does not take into account differences in connexin-mediated ion selectivity and intercellular communication rate that drive gap junction diversity. We find that glioblastoma cancer stem cells (CSCs) possess functional gap junctions that can be targeted using clinically relevant compounds to reduce self-renewal and tumor growth. Our analysis reveals that CSCs express Cx46, while Cx43 is predominantly expressed in non-CSCs. During differentiation, Cx46 is reduced, while Cx43 is increased, and targeting Cx46 compromises CSC maintenance. The difference between Cx46 and Cx43 is reflected in elevated cell-cell communication and reduced resting membrane potential in CSCs. Our data demonstrate a pro-tumorigenic role for gap junctions that is dependent on connexin expression.
Collapse
Affiliation(s)
- Masahiro Hitomi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA; Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Loic P Deleyrolle
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0261, USA
| | - Erin E Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Awad Jarrar
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Meizhang Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Maksim Sinyuk
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Balint Otvos
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Sylvain Brunet
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - William A Flavahan
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Christopher G Hubert
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Winston Goan
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - James S Hale
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Alvaro G Alvarado
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA; Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ao Zhang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Mark Rohaus
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0261, USA
| | - Muna Oli
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0261, USA
| | - Vinata Vedam-Mai
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0261, USA
| | - Jeff M Fortin
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0261, USA
| | - Hunter S Futch
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0261, USA
| | - Benjamin Griffith
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0261, USA
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Chun-Hong Xia
- Berkeley Stem Cell Center, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaohua Gong
- Berkeley Stem Cell Center, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Manmeet S Ahluwalia
- Rose Ella Burkhardt Brain Tumor and Neuro Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Jeremy N Rich
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA; Rose Ella Burkhardt Brain Tumor and Neuro Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Brent A Reynolds
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0261, USA.
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA; Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Rose Ella Burkhardt Brain Tumor and Neuro Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Cleveland, OH 44106, USA.
| |
Collapse
|
26
|
Alexiou GA, Tsamis KI, Kyritsis AP. Targeting Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL): A Promising Therapeutic Strategy in Gliomas. Semin Pediatr Neurol 2015; 22:35-9. [PMID: 25976259 DOI: 10.1016/j.spen.2014.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been increasingly studied for the treatment of gliomas. TRAIL has the ability to specifically target cancer cells, without any harmful effects on normal cells, and induces apoptosis by interacting with specific receptors. Nevertheless, resistance mechanisms to TRAIL may occur at different points in the signaling pathways of TRAIL-induced apoptosis. Various approaches have been developed to overcome TRAIL resistance. Here, we have reviewed the known molecular pathways by which TRAIL exerts anticancer activity, possible resistance mechanisms, ways to sensitize resistant cancer cells, and finally the current clinical successes or limitations of TRAIL-based therapies.
Collapse
Affiliation(s)
- George A Alexiou
- Neurosurgical Institute, University of Ioannina School of Medicine, Ioannina, Greece.
| | - Konstantinos I Tsamis
- Neurosurgical Institute, University of Ioannina School of Medicine, Ioannina, Greece
| | - Athanasios P Kyritsis
- Neurosurgical Institute, University of Ioannina School of Medicine, Ioannina, Greece; Department of Neurology, University Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
27
|
Yulyana Y, Ho IAW, Sia KC, Newman JP, Toh XY, Endaya BB, Chan JKY, Gnecchi M, Huynh H, Chung AYF, Lim KH, Leong HS, Iyer NG, Hui KM, Lam PYP. Paracrine factors of human fetal MSCs inhibit liver cancer growth through reduced activation of IGF-1R/PI3K/Akt signaling. Mol Ther 2015; 23:746-56. [PMID: 25619723 DOI: 10.1038/mt.2015.13] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/16/2014] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death in the world. The multikinase inhibitor sorafenib only demonstrated marginal improvement in overall survival for advanced disease prompted the search for alternative treatment options. Human mesenchymal stem cells (MSCs) have the ability to home to tumor cells. However, its functional roles on the tumor microenvironment remain controversial. Herein, we showed that conditioned media derived from human fetal MSC (CM-hfMSCs) expressed high level of the insulin growth factor binding proteins IGFBPs and can sequester free insulin-like growth factors (IGFs) to inhibit HCC cell proliferation. The inhibitory effect of IGFBPs on IGF signaling was further evident from the reduction of activated IGF-1R and PI3K/Akt, leading eventually to the induction of cell cycle arrest. We also demonstrated that CM-hfMSCs could enhance the therapeutic efficacy of sorafenib and sunitinib. To the best of our knowledge, this is the first report to show that CM-hfMSCs has a tumor-specific, antiproliferative effect that is not observed with normal human hepatocyte cells and patient-derived matched normal tissues. Our results thus suggest that CM-hfMSCs can provide a useful tool to design alternative/adjuvant treatment strategies for HCC, especially in related function to potentiate the effects of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Yulyana Yulyana
- Division of Cellular and Molecular Research, National Cancer Centre, Singapore
| | - Ivy A W Ho
- Division of Cellular and Molecular Research, National Cancer Centre, Singapore
| | - Kian Chuan Sia
- Division of Cellular and Molecular Research, National Cancer Centre, Singapore
| | - Jennifer P Newman
- Division of Cellular and Molecular Research, National Cancer Centre, Singapore
| | - Xin Yi Toh
- Division of Cellular and Molecular Research, National Cancer Centre, Singapore
| | - Berwini B Endaya
- Griffith University, Griffith Health Institute, School of Medical Science, Southport, Australia
| | - Jerry K Y Chan
- 1] Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore [2] Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore [3] Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Massimiliano Gnecchi
- 1] Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy [2] Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Italy [3] Department of Medicine, University of Cape Town, South Africa
| | - Hung Huynh
- Division of Cellular and Molecular Research, National Cancer Centre, Singapore
| | | | - Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore
| | - Hui Sun Leong
- Division of Medical Sciences, National Cancer Centre, Singapore
| | | | - Kam Man Hui
- 1] Division of Cellular and Molecular Research, National Cancer Centre, Singapore [2] Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore [3] Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore [4] Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | - Paula Y P Lam
- 1] Division of Cellular and Molecular Research, National Cancer Centre, Singapore [2] Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore [3] Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
28
|
Abstract
Stem cell-based therapeutic strategies have emerged as very attractive treatment options over the past decade. Stem cells are now being utilized as delivery vehicles especially in cancer therapy to deliver a number of targeted proteins and viruses. This chapter aims to shed light on numerous studies that have successfully employed these strategies to target various cancer types with a special emphasis on numerous aspects that are critical to the success of future stem cell-based therapies for cancer.
Collapse
|
29
|
Carette D, Gilleron J, Chevallier D, Segretain D, Pointis G. Connexin a check-point component of cell apoptosis in normal and physiopathological conditions. Biochimie 2014; 101:1-9. [DOI: 10.1016/j.biochi.2013.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 11/18/2013] [Indexed: 12/16/2022]
|
30
|
Human mesenchymal stem cells and their paracrine factors for the treatment of brain tumors. Cancer Gene Ther 2013; 20:539-43. [PMID: 24052128 DOI: 10.1038/cgt.2013.59] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/16/2013] [Accepted: 08/18/2013] [Indexed: 12/20/2022]
Abstract
Glioblastoma multiforme (GBM or World Health Organization (WHO) grade IV) is the most malignant tumor of the brain. Despite conventional combination treatment of surgery, radiotherapy and chemotherapy, the survival of patients with GBM is generally <1 year. It is a great challenge to identify an effective drug that could efficiently inhibit (i) the growth of cancer cells; (ii) angiogenesis; (iii) metastasis; (iv) tumor-associated inflammation; (v) inactivate proliferative signal, (vi) induce specific apoptosis, and yet causes minimal harm to normal cells. Mesenchymal stem cells (MSCS) do possess some unique features (inherent tumor tropism; anti-inflammatory and immunosuppressive properties) that are not commonly found in current anticancer agents. These cells are known to secrete a vast array of proteins including growth factors, cytokines, chemokines and so on that regulate their biology in an autocrine or paracrine manner in accordance to the surrounding microenvironment. This review briefly summarizes the biology of MSCs and discusses their properties and new development for brain cancer treatment.
Collapse
|