1
|
Brown JA, Bashir H, Zeng MY. Lifelong partners: Gut microbiota-immune cell interactions from infancy to old age. Mucosal Immunol 2025:S1933-0219(25)00006-6. [PMID: 39862964 DOI: 10.1016/j.mucimm.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Our immune system and gut microbiota are intricately coupled from birth, both going through maturation during early life and senescence during aging almost in a synchronized fashion. The symbiotic relationship between the human host and microbiota is critically dependent on a healthy immune system to keep our microbiota in check, while the microbiota provides essential functions to promote the development and fitness of our immune system. The partnership between our immune system and microbiota is particularly important during early life, when microbial ligands and metabolites shape the development of the immune cells and immune tolerance; during aging, having sufficient beneficial gut bacteria is critical for the maintenance of intact mucosal barriers, immune metabolic fitness, and strong immunity against pathogens. The immune system during childhood is programmed, with the support of the microbiota, to develop robust immune tolerance, and limit autoimmunity and metabolic dysregulation, which are prevalent during aging. This review comprehensively explores the mechanistic underpinnings of gut microbiota-immune cell interactions during infancy and old age, with the goal to gain a better understanding of potential strategies to leverage the gut microbiota to combat age-related immune decline.
Collapse
Affiliation(s)
- Julia A Brown
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States
| | - Hilal Bashir
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States
| | - Melody Y Zeng
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY 10065, United States.
| |
Collapse
|
2
|
Llewellyn J, Baratam R, Culig L, Beerman I. Cellular stress and epigenetic regulation in adult stem cells. Life Sci Alliance 2024; 7:e202302083. [PMID: 39348938 PMCID: PMC11443024 DOI: 10.26508/lsa.202302083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Stem cells are a unique class of cells that possess the ability to differentiate and self-renew, enabling them to repair and replenish tissues. To protect and maintain the potential of stem cells, the cells and the environment surrounding these cells (stem cell niche) are highly responsive and tightly regulated. However, various stresses can affect the stem cells and their niches. These stresses are both systemic and cellular and can arise from intrinsic or extrinsic factors which would have strong implications on overall aging and certain disease states. Therefore, understanding the breadth of drivers, namely epigenetic alterations, involved in cellular stress is important for the development of interventions aimed at maintaining healthy stem cells and tissue homeostasis. In this review, we summarize published findings of epigenetic responses to replicative, oxidative, mechanical, and inflammatory stress on various types of adult stem cells.
Collapse
Affiliation(s)
- Joey Llewellyn
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rithvik Baratam
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Luka Culig
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
3
|
Alexander M, Cho E, Gliozheni E, Salem Y, Cheung J, Ichii H. Pathology of Diabetes-Induced Immune Dysfunction. Int J Mol Sci 2024; 25:7105. [PMID: 39000211 PMCID: PMC11241249 DOI: 10.3390/ijms25137105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Diabetes is associated with numerous comorbidities, one of which is increased vulnerability to infections. This review will focus on how diabetes mellitus (DM) affects the immune system and its various components, leading to the impaired proliferation of immune cells and the induction of senescence. We will explore how the pathology of diabetes-induced immune dysfunction may have similarities to the pathways of "inflammaging", a persistent low-grade inflammation common in the elderly. Inflammaging may increase the likelihood of conditions such as rheumatoid arthritis (RA) and periodontitis at a younger age. Diabetes affects bone marrow composition and cellular senescence, and in combination with advanced age also affects lymphopoiesis by increasing myeloid differentiation and reducing lymphoid differentiation. Consequently, this leads to a reduced immune system response in both the innate and adaptive phases, resulting in higher infection rates, reduced vaccine response, and increased immune cells' senescence in diabetics. We will also explore how some diabetes drugs induce immune senescence despite their benefits on glycemic control.
Collapse
Affiliation(s)
- Michael Alexander
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Eric Cho
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Eiger Gliozheni
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Yusuf Salem
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Joshua Cheung
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Hirohito Ichii
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| |
Collapse
|
4
|
Park HS, Lee BC, Chae DH, Yu A, Park JH, Heo J, Han MH, Cho K, Lee JW, Jung JW, Dunbar CE, Oh MK, Yu KR. Cigarette smoke impairs the hematopoietic supportive property of mesenchymal stem cells via the production of reactive oxygen species and NLRP3 activation. Stem Cell Res Ther 2024; 15:145. [PMID: 38764093 PMCID: PMC11103961 DOI: 10.1186/s13287-024-03731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/10/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) play important roles in tissue homeostasis by providing a supportive microenvironmental niche for the hematopoietic system. Cigarette smoking induces systemic abnormalities, including an impeded recovery process after hematopoietic stem cell transplantation. However, the role of cigarette smoking-mediated alterations in MSC niche function have not been investigated. METHODS In the present study, we investigated whether exposure to cigarette smoking extract (CSE) disrupts the hematopoietic niche function of MSCs, and pathways impacted. To investigate the effects on bone marrow (BM)-derived MSCs and support of hematopoietic stem and progenitor cells (HSPCs), mice were repeatedly infused with the CSE named 3R4F, and hematopoietic stem and progenitor cells (HSPCs) supporting function was determined. The impact of 3R4F on MSCs at cellular level were screened by bulk-RNA sequencing and subsequently validated through qRT-PCR. Specific inhibitors were treated to verify the ROS or NLRP3-specific effects, and the cells were then transplanted into the animal model or subjected to coculture with HSPCs. RESULTS Both direct ex vivo and systemic in vivo MSC exposure to 3R4F resulted in impaired engraftment in a humanized mouse model. Furthermore, transcriptomic profile analysis showed significantly upregulated signaling pathways related to reactive oxygen species (ROS), inflammation, and aging in 3R4F-treated MSCs. Notably, ingenuity pathway analysis revealed the activation of NLRP3 inflammasome signaling pathway in 3R4F-treated MSCs, and pretreatment with the NLRP3 inhibitor MCC950 rescued the HSPC-supporting ability of 3R4F-treated MSCs. CONCLUSION In conclusion, these findings indicate that exposure to CSE reduces HSPCs supportive function of MSCs by inducing robust ROS production and subsequent NLRP3 activation.
Collapse
Affiliation(s)
- Hyun Sung Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Byung-Chul Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Dong-Hoon Chae
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Aaron Yu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jae Han Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jiyoung Heo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Myoung Hee Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Keonwoo Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Joong Won Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Korea
| | - Ji-Won Jung
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Korea
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mi-Kyung Oh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Kyung-Rok Yu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
5
|
Goel C, Kumar N, Tripathi A, Tiwari S, Shrivastava A. Assessment of Malondialdehyde and Organochlorine Pesticides in Aplastic Anemia Severity Groups: Insights Into Oxidative Stress and Exposure. Cureus 2024; 16:e59698. [PMID: 38841016 PMCID: PMC11150336 DOI: 10.7759/cureus.59698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 06/07/2024] Open
Abstract
Background There is little evidence that pesticide exposure is the primary cause of acquired aplastic anemia (AAA), even though the prevalence of aplastic anemia (AA) is substantially higher in underdeveloped countries than in affluent countries. AA caused by pesticides has not yet been fully understood. This study aimed to examine the potential link between plasma levels of malondialdehyde (MDA) and organochlorine pesticides (OCPs) as risk factors for developing AAA in the North Indian population. Methods This case-control study was conducted at a tertiary care hospital in North India. A total of 99 participants were chosen for the study, of whom 45 were cases of AA. These cases attended the Clinical Hematology department over a period of 1.5 years (May 2018 to November 2019). Forty-five controls were age and sex-matched, apparently healthy subjects. Written informed consent was obtained from each subject before performing the study. Exclusion criteria included patients unwilling to give consent, those using medication to treat AA, those genetically predisposed to AA, those with characteristics including granuloma and dysplasia of bone marrow, any other systemic illness, and subjects with a history of smoking, drinking, or using tobacco in any form. Gas chromatography-tandem mass spectrometry (GC-MS/MS) was used to evaluate the plasma levels of organochlorines. The estimation of plasma MDA, i.e., the lipid peroxide content, was measured. Results The severity of AA is significantly associated with plasma levels of α-Hexachlorocyclohexane (p = 0.040), Heptachlor (p = 0.006), Aldrin (p < 0.001), p,p'-Dichlorodiphenyldichloroethane (p = 0.004), Endosulfan sulfate (p = 0.010), and Methoxychlor (p = 0.001). There was a statistically non-significant difference in MDA levels between cases and controls (p = 0.145); however, a statistically significant linear increase in MDA levels (p < 0.001) was observed according to the severity of AA. Conclusion Our study suggests that oxidative stress may be linked to the severity of AA. Pesticide exposure (plasma organochlorine levels) could act as a stressor, potentially initiating an alarmin response of oxidative stress in the form of lipid peroxidation (MDA) from damaged tissue, which could then lead to suppression of hematopoiesis and be a possible factor in the development of AA.
Collapse
Affiliation(s)
- Charu Goel
- Physiology, King George's Medical University, Lucknow, IND
- Physiology, Kalyan Singh Government Medical College, Bulandshahr, IND
| | - Nidhish Kumar
- Pathology, Autonomous State Medical College, Shahjahanpur, IND
| | - Anil Tripathi
- Clinical Hematology, King George's Medical University, Lucknow, IND
- Hematology, Hind Institute of Medical Sciences, Barabanki, IND
| | - Sunita Tiwari
- Physiology, King George's Medical University, Lucknow, IND
- Physiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, IND
| | | |
Collapse
|
6
|
Chi M, Jiang T, He X, Peng H, Li Y, Zhang J, Wang L, Nian Q, Ma K, Liu C. Role of Gut Microbiota and Oxidative Stress in the Progression of Transplant-Related Complications following Hematopoietic Stem Cell Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3532756. [PMID: 37113743 PMCID: PMC10129428 DOI: 10.1155/2023/3532756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 11/24/2022] [Indexed: 04/29/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT), also known as bone marrow transplantation, has curative potential for various hematologic malignancies but is associated with risks such as graft-versus-host disease (GvHD), severe bloodstream infection, viral pneumonia, idiopathic pneumonia syndrome (IPS), lung fibrosis, and sinusoidal obstruction syndrome (SOS), which severely deteriorate clinical outcomes and limit the wide application of HSCT. Recent research has provided important insights into the effects of gut microbiota and oxidative stress (OS) on HSCT complications. Therefore, based on recent studies, we describe intestinal dysbiosis and OS in patients with HSCT and review recent molecular findings underlying the causal relationships of gut microbiota, OS, and transplant-related complications, focusing particularly on the involvement of gut microbiota-mediated OS in postengraftment complications. Also, we discuss the use of antioxidative and anti-inflammatory probiotics to manipulate gut microbiota and OS, which have been associated with promising effects in improving HSCT outcomes.
Collapse
Affiliation(s)
- Mingxuan Chi
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Tao Jiang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province 610072, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunlong Li
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Li Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Blood Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chi Liu
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| |
Collapse
|
7
|
Jing P, Song X, Xiong L, Wang B, Wang Y, Wang L. Angelica sinensis polysaccharides prevents hematopoietic regression in D-Galactose-Induced aging model via attenuation of oxidative stress in hematopoietic microenvironment. Mol Biol Rep 2023; 50:121-132. [PMID: 36315330 DOI: 10.1007/s11033-022-07898-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Extrinsic molecular mechanisms that regulate hematopoietic stem/progenitor cell (HSPC) aging are still poorly understood, and a potential protective medication needs to be explored. MATERIALS AND METHODS The senescent parameters of hematopoietic cells and bone marrow stromal cells (BMSCs) including cell cycle analysis, senescence-associated SA-β-gal staining and signals, hematopoietic factors and cellular junction were analyzed in femur and tibia of rats. Furthermore, Sca-1+ HSPCs and BMSCs co-culture system was established to evaluate the direct effects of BMSC feeder layer to HSPCs. Oxidative DNA damage indicators in Sca-1+ HSCs and senescence-associated secretory phenotype (SASP) of BMSCs, gap junction intercellular communication between BMSCs, osteogenesis/adipogenisis differentiation balance of BMSCs were detected. RESULTS In the D-gal pre-administrated rats, ASP treatment rescued senescence of hematopoietic cells and BMSCs, reserved CFU-GEMM; also, ASP treatment attenuated stromal oxidative load, ameliorated SCF, CXCL12, and GM-CSF production, increased Connexin-43 (Cx43) expression. BMSCs and Sca-1+ HSPCs co-cultivation demonstrated that ASP treatment prevented oxidative DNA damage response in co-cultured Sca-1+ HSPCs induced by D-gal pre-administration of feeder layer and the underlying mechanism may be related to ASP ameliorating feeder layer dysfunction due to D-gal induced senescence via inhibiting secretion of IL-1, IL-6, TNF-α, and RANTES, enhancing Cx43-mediated intercellular communication, improving Runx2 expression whereas decreasing PPARγ expression in BMSCs. CONCLUSION The antioxidant property of ASP may provide a stroma-mediated potential therapeutic strategy for HSPC aging.
Collapse
Affiliation(s)
- Pengwei Jing
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Xiaoying Song
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China.,The People's Hospital of Jiajiang, 614100, Leshan, China
| | - Lirong Xiong
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Biyao Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China.,Department of Histology and Embryology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Lu Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China. .,Department of Histology and Embryology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, 400016, Chongqing, China.
| |
Collapse
|
8
|
Interplay between fat cells and immune cells in bone: Impact on malignant progression and therapeutic response. Pharmacol Ther 2022; 238:108274. [DOI: 10.1016/j.pharmthera.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
|
9
|
Abu-Kheit R, Kotev-Emeth S, Hiram-Bab S, Gabet Y, Savion N. S-allylmercapto- N-acetylcysteine protects bone cells from oxidation and improves femur microarchitecture in healthy and diabetic mice. Exp Biol Med (Maywood) 2022; 247:1489-1500. [PMID: 35658550 PMCID: PMC9493761 DOI: 10.1177/15353702221095047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Oxidative stress is involved in the deterioration of bone quality and mechanical strength in both diabetic and aging adults. Therefore, we studied the ability of the antioxidant compound, S-allylmercapto-N-acetylcysteine (ASSNAC) to protect bone marrow stromal cells (BMSCs) from advanced glycation end-products (AGEs) cytotoxicity and improve bone microarchitecture of adult healthy and obese/diabetic (db/db) female mice. ASSNAC effect on AGEs-treated cultured rat BMSCs was evaluated by Neutral Red and XTT cell survival and reactive oxygen species (ROS) level assays. Its effect on healthy (C57BL/6) and obese/diabetic (C57BLKS/J Leprdb+/+; db/db) female mice femur parameters, such as (1) number of adherent BMSCs, (2) percentage of CD73+/CD45- cells in bone marrow (BM), (3) glutathione level in BM cells, and (4) femur microarchitecture parameters by microcomputed tomography, was studied. ASSNAC treatment protected BMSCs by significantly decreasing AGEs-induced ROS production and increasing their cellular resistance to the cytotoxic effect of AGEs. ASSNAC treatment of healthy female mice (50 mg/kg/day; i.p.; age 12-20 weeks) significantly increased the number of BMSCs (+60%), CD73+/CD45- cells (+134%), and glutathione level (+110%) in the femur bone marrow. Furthermore, it increased the femur length (+3%), cortical diameter (+3%), and cortical areal moment of inertia (Ct.MOI; +10%) a surrogate for biomechanical strength. In db/db mice that demonstrated a compromised trabecular bone and growth plate microarchitecture, ASSNAC treatment restored the trabecular number (Tb.N, +29%), bone volume fraction (Tb.BV/TV, +130%), and growth plate primary spongiosa volumetric bone mineral density (PS-vBMD, +7%) and thickness (PS-Th, +18%). In conclusion, this study demonstrates that ASSNAC protects bone marrow cells from oxidative stress and may improve bone microarchitecture in adult healthy and diabetic female mice.
Collapse
Affiliation(s)
- Reem Abu-Kheit
- Department of Human Molecular Genetics and
Biochemistry and Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Shlomo Kotev-Emeth
- Department of Human Molecular Genetics and
Biochemistry and Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology,
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology,
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Naphtali Savion
- Department of Human Molecular Genetics and
Biochemistry and Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv
University, Tel Aviv 6997801, Israel;,Naphtali Savion.
| |
Collapse
|
10
|
Emerging Evidence of the Significance of Thioredoxin-1 in Hematopoietic Stem Cell Aging. Antioxidants (Basel) 2022; 11:antiox11071291. [PMID: 35883782 PMCID: PMC9312246 DOI: 10.3390/antiox11071291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The United States is undergoing a demographic shift towards an older population with profound economic, social, and healthcare implications. The number of Americans aged 65 and older will reach 80 million by 2040. The shift will be even more dramatic in the extremes of age, with a projected 400% increase in the population over 85 years old in the next two decades. Understanding the molecular and cellular mechanisms of ageing is crucial to reduce ageing-associated disease and to improve the quality of life for the elderly. In this review, we summarized the changes associated with the ageing of hematopoietic stem cells (HSCs) and what is known about some of the key underlying cellular and molecular pathways. We focus here on the effects of reactive oxygen species and the thioredoxin redox homeostasis system on ageing biology in HSCs and the HSC microenvironment. We present additional data from our lab demonstrating the key role of thioredoxin-1 in regulating HSC ageing.
Collapse
|
11
|
Aaron N, Costa S, Rosen CJ, Qiang L. The Implications of Bone Marrow Adipose Tissue on Inflammaging. Front Endocrinol (Lausanne) 2022; 13:853765. [PMID: 35360075 PMCID: PMC8962663 DOI: 10.3389/fendo.2022.853765] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 12/30/2022] Open
Abstract
Once considered an inert filler of the bone cavity, bone marrow adipose tissue (BMAT) is now regarded as a metabolically active organ that plays versatile roles in endocrine function, hematopoiesis, bone homeostasis and metabolism, and, potentially, energy conservation. While the regulation of BMAT is inadequately understood, it is recognized as a unique and dynamic fat depot that is distinct from peripheral fat. As we age, bone marrow adipocytes (BMAds) accumulate throughout the bone marrow (BM) milieu to influence the microenvironment. This process is conceivably signaled by the secretion of adipocyte-derived factors including pro-inflammatory cytokines and adipokines. Adipokines participate in the development of a chronic state of low-grade systemic inflammation (inflammaging), which trigger changes in the immune system that are characterized by declining fidelity and efficiency and cause an imbalance between pro-inflammatory and anti-inflammatory networks. In this review, we discuss the local effects of BMAT on bone homeostasis and the hematopoietic niche, age-related inflammatory changes associated with BMAT accrual, and the downstream effect on endocrine function, energy expenditure, and metabolism. Furthermore, we address therapeutic strategies to prevent BMAT accumulation and associated dysfunction during aging. In sum, BMAT is emerging as a critical player in aging and its explicit characterization still requires further research.
Collapse
Affiliation(s)
- Nicole Aaron
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pharmacology, Columbia University, New York, NY, United States
| | - Samantha Costa
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Clifford J. Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
- *Correspondence: Clifford J. Rosen, ; Li Qiang,
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology, Columbia University, New York, NY, United States
- *Correspondence: Clifford J. Rosen, ; Li Qiang,
| |
Collapse
|
12
|
Aires R, Porto ML, de Assis LM, Pereira PAN, Carvalho GR, Côco LZ, Vasquez EC, Pereira TMC, Campagnaro BP, Meyrelles SS. DNA damage and aging on hematopoietic stem cells: Impact of oxidative stress in ApoE -/ - mice. Exp Gerontol 2021; 156:111607. [PMID: 34715304 DOI: 10.1016/j.exger.2021.111607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
The effects of aging on ROS production and DNA damage were assessed in hematopoietic stem cells (HSCs) from apolipoprotein E-deficient (ApoE-/-) mice (2-, 12- and 24-month-old), a traditional experimental model of atherogenic dyslipidemia. HSCs from aged ApoE-/- mice were associated with increased ROS levels, leading to loss quiescence, DNA damage, apoptosis and telomere shortening. The concurrence of lack of ApoE and aging result in exhaustion and senescence of HSCs accompanied by increased oxidative stress and inflammation. Therefore, our data open avenues to a better understanding of age-related changes and genetic factors, which may synergistically compromise the efficacy of aged HSC recovery and/or transplantation.
Collapse
Affiliation(s)
- R Aires
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil.
| | - M L Porto
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - L M de Assis
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - P A N Pereira
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - G R Carvalho
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - L Z Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - E C Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - T M C Pereira
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil; Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - B P Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - S S Meyrelles
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| |
Collapse
|
13
|
Budamagunta V, Foster TC, Zhou D. Cellular senescence in lymphoid organs and immunosenescence. Aging (Albany NY) 2021; 13:19920-19941. [PMID: 34382946 PMCID: PMC8386533 DOI: 10.18632/aging.203405] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Immunosenescence is a multi-faceted phenomenon at the root of age-associated immune dysfunction. It can lead to an array of pathological conditions, including but not limited to a decreased capability to surveil and clear senescent cells (SnCs) and cancerous cells, an increased autoimmune responses leading to tissue damage, a reduced ability to tackle pathogens, and a decreased competence to illicit a robust response to vaccination. Cellular senescence is a phenomenon by which oncogene-activated, stressed or damaged cells undergo a stable cell cycle arrest. Failure to efficiently clear SnCs results in their accumulation in an organism as it ages. SnCs actively secrete a myriad of molecules, collectively called senescence-associated secretory phenotype (SASP), which are factors that cause dysfunction in the neighboring tissue. Though both cellular senescence and immunosenescence have been studied extensively and implicated in various pathologies, their relationship has not been greatly explored. In the wake of an ongoing pandemic (COVID-19) that disproportionately affects the elderly, immunosenescence as a function of age has become a topic of great importance. The goal of this review is to explore the role of cellular senescence in age-associated lymphoid organ dysfunction and immunosenescence, and provide a framework to explore therapies to rejuvenate the aged immune system.
Collapse
Affiliation(s)
- Vivekananda Budamagunta
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Thomas C Foster
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
14
|
Redox Control in Acute Lymphoblastic Leukemia: From Physiology to Pathology and Therapeutic Opportunities. Cells 2021; 10:cells10051218. [PMID: 34067520 PMCID: PMC8155968 DOI: 10.3390/cells10051218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy originating from B- or T-lymphoid progenitor cells. Recent studies have shown that redox dysregulation caused by overproduction of reactive oxygen species (ROS) has an important role in the development and progression of leukemia. The application of pro-oxidant therapy, which targets redox dysregulation, has achieved satisfactory results in alleviating the conditions of and improving the survival rate for patients with ALL. However, drug resistance and side effects are two major challenges that must be addressed in pro-oxidant therapy. Oxidative stress can activate a variety of antioxidant mechanisms to help leukemia cells escape the damage caused by pro-oxidant drugs and develop drug resistance. Hematopoietic stem cells (HSCs) are extremely sensitive to oxidative stress due to their low levels of differentiation, and the use of pro-oxidant drugs inevitably causes damage to HSCs and may even cause severe bone marrow suppression. In this article, we reviewed research progress regarding the generation and regulation of ROS in normal HSCs and ALL cells as well as the impact of ROS on the biological behavior and fate of cells. An in-depth understanding of the regulatory mechanisms of redox homeostasis in normal and malignant HSCs is conducive to the formulation of rational targeted treatment plans to effectively reduce oxidative damage to normal HSCs while eradicating ALL cells.
Collapse
|
15
|
Shinde P, Kuhikar R, Kulkarni R, Khan N, Limaye L, Kale V. Curcumin restores the engraftment capacity of aged hematopoietic stem cells and also reduces PD-1 expression on cytotoxic T cells. J Tissue Eng Regen Med 2021; 15:388-400. [PMID: 33590722 DOI: 10.1002/term.3180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/03/2021] [Indexed: 01/13/2023]
Abstract
Aging affects the functionality of hematopoietic stem cells (HSCs), and therefore, aged individuals are not preferred as donors in HSC transplantation. Such elimination leads to the restriction of donor cohort. Several efforts are being done to rejuvenate aged HSCs. Here, we show that treatment of aged mice with curcumin rejuvenates their HSCs by restoring the expression of autophagy-inducing messenger RNAs in them, and improves their engraftment capacity. Importantly, we show that curcumin is effective in rejuvenation of HSCs when administered via both, intraperitoneal as well as oral routes. Aging also affects the immune system. While elderly individuals are not immuno-deficient, they do not respond optimally to immunizations, and hence, a strategy needs to be developed to make them immunologically responsive. Programmed cell death 1 (PD-1), one of the inhibitory coreceptors, plays an important role in the regulation of autoimmunity, infectious immunity, and cancer immunity. Its expression on T cells is indicative of their exhaustion. Here, we show that curcumin reduces the frequency of PD1+ cytotoxic T cells in the spleens of aged mice. Curcumin has a proven safety profile, and hence, can be used to treat aged donors to boost the functionality of their HSCs and also to improve the immunological profile of aged individuals. These data could have implications in various other regenerative medicine protocols as well.
Collapse
Affiliation(s)
- Prajakta Shinde
- Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007, India
| | - Rutuja Kuhikar
- Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007, India
| | - Rohan Kulkarni
- Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007, India
| | - Nikhat Khan
- Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007, India
| | - Lalita Limaye
- Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007, India
| | - Vaijayanti Kale
- Department of Stem Cell Biology, National Centre for Cell Science, Pune, 411007, India
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International University, Pune, 412115, India
| |
Collapse
|
16
|
Abstract
Blood is generated throughout life by continued proliferation and differentiation of hematopoietic progenitors, while at the top of the hierarchy, hematopoietic stem cells (HSCs) remain largely quiescent. This way HSCs avoid senescence and preserve their capacity to repopulate the hematopoietic system. But HSCs are not always quiescent, proliferating extensively in conditions such as those found in the fetal liver. Understanding the elusive mechanisms that regulate HSC fate would enable us to comprehend a crucial piece of HSC biology and pave the way for ex-vivo HSC expansion with clear clinical benefit. Here we review how metabolism, endoplasmic reticulum stress and oxidative stress condition impact HSCs decision to self-renew or differentiate and how these signals integrate into the mammalian target of rapamycin (mTOR) pathway. We argue that the bone marrow microenvironment continuously favors differentiation through the activation of the mTOR complex (mTORC)1 signaling, while the fetal liver microenvironment favors self-renewal through the inverse mechanism. In addition, we also postulate that strategies that have successfully achieved HSC expansion, directly or indirectly, lead to the inactivation of mTORC1. Finally, we propose a mechanism by which mTOR signaling, during cell division, conditions HSC fate. This mechanism has already been demonstrated in mature hematopoietic cells (T-cells), that face a similar decision after activation, either undergoing clonal expansion or differentiation.
Collapse
|
17
|
Broxmeyer HE, Liu Y, Kapur R, Orschell CM, Aljoufi A, Ropa JP, Trinh T, Burns S, Capitano ML. Fate of Hematopoiesis During Aging. What Do We Really Know, and What are its Implications? Stem Cell Rev Rep 2020; 16:1020-1048. [PMID: 33145673 PMCID: PMC7609374 DOI: 10.1007/s12015-020-10065-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
There is an ongoing shift in demographics such that older persons will outnumber young persons in the coming years, and with it age-associated tissue attrition and increased diseases and disorders. There has been increased information on the association of the aging process with dysregulation of hematopoietic stem (HSC) and progenitor (HPC) cells, and hematopoiesis. This review provides an extensive up-to date summary on the literature of aged hematopoiesis and HSCs placed in context of potential artifacts of the collection and processing procedure, that may not be totally representative of the status of HSCs in their in vivo bone marrow microenvironment, and what the implications of this are for understanding aged hematopoiesis. This review covers a number of interactive areas, many of which have not been adequately explored. There are still many unknowns and mechanistic insights to be elucidated to better understand effects of aging on the hematopoietic system, efforts that will take multidisciplinary approaches, and that could lead to means to ameliorate at least some of the dysregulation of HSCs and HPCs associated with the aging process. Graphical Abstract.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| | - Yan Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - James P Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Thao Trinh
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Sarah Burns
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| |
Collapse
|
18
|
Involvement of GPx-3 in the Reciprocal Control of Redox Metabolism in the Leukemic Niche. Int J Mol Sci 2020; 21:ijms21228584. [PMID: 33202543 PMCID: PMC7696155 DOI: 10.3390/ijms21228584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
The bone marrow (BM) microenvironment plays a crucial role in the development and progression of leukemia (AML). Intracellular reactive oxygen species (ROS) are involved in the regulation of the biology of leukemia-initiating cells, where the antioxidant enzyme GPx-3 could be involved as a determinant of cellular self-renewal. Little is known however about the role of the microenvironment in the control of the oxidative metabolism of AML cells. In the present study, a coculture model of BM mesenchymal stromal cells (MSCs) and AML cells (KG1a cell-line and primary BM blasts) was used to explore this metabolic pathway. MSC-contact, rather than culture with MSC-conditioned medium, decreases ROS levels and inhibits the Nrf-2 pathway through overexpression of GPx3 in AML cells. The decrease of ROS levels also inactivates p38MAPK and reduces the proliferation of AML cells. Conversely, contact with AML cells modifies MSCs in that they display an increased oxidative stress and Nrf-2 activation, together with a concomitant lowered expression of GPx-3. Altogether, these experiments suggest that a reciprocal control of oxidative metabolism is initiated by direct cell–cell contact between MSCs and AML cells. GPx-3 expression appears to play a crucial role in this cross-talk and could be involved in the regulation of leukemogenesis.
Collapse
|
19
|
Al-Azab M, Wang B, Elkhider A, Walana W, Li W, Yuan B, Ye Y, Tang Y, Almoiliqy M, Adlat S, Wei J, Zhang Y, Li X. Indian Hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway. Aging (Albany NY) 2020; 12:5693-5715. [PMID: 32235006 PMCID: PMC7185126 DOI: 10.18632/aging.102958] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
Premature senescence of bone marrow-derived mesenchymal stem cells (BMSC) remains a major concern for their application clinically. Hedgehog signaling has been reported to regulate aging-associated markers and MSC skewed differentiation. Indian Hedgehog (IHH) is a ligand of Hedgehog intracellular pathway considered as an inducer in chondrogenesis of human BMSC. However, the role of IHH in the aging of BMSC is still unclear. This study explored the role IHH in the senescence of BMSC obtained from human samples and senescent mice. Isolated BMSC were transfected with IHH siRNA or incubated with exogenous IHH protein and the mechanisms of aging and differentiation investigated. Moreover, the interactions between IHH, and mammalian target of rapamycin (mTOR) and reactive oxygen species (ROS) were evaluated using the corresponding inhibitors and antioxidants. BMSC transfected with IHH siRNA showed characteristics of senescence-associated features including increased senescence-associated β-galactosidase activity (SA-β-gal), induction of cell cycle inhibitors (p53/p16), development of senescence-associated secretory phenotype (SASP), activation of ROS and mTOR pathways as well as the promotion of skewed differentiation. Interestingly, BMSC treatment with IHH protein reversed the senescence markers and corrected biased differentiation. Moreover, IHH shortage-induced senescence signs were compromised after mTOR and ROS inhibition. Our findings presented anti-aging activity for IHH in BMSC through down-regulation of ROS/mTOR pathways. This discovery might contribute to increasing the therapeutic, immunomodulatory and regenerative potency of BMSC and introduce a novel remedy in the management of aging-related diseases.
Collapse
Affiliation(s)
- Mahmoud Al-Azab
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.,Department of Immunology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Abdalkhalig Elkhider
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Williams Walana
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.,Department of Clinical Microbiology, University for Development Studies, Tamale, Ghana
| | - Weiping Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Bo Yuan
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yunshan Ye
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Marwan Almoiliqy
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Liaoning, China
| | - Salah Adlat
- Key Laboratory of Molecular Epigenetics of MOE, School of Life Science, Northeast Normal University, Changchun, Jilin Province, China
| | - Jing Wei
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yan Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| |
Collapse
|
20
|
Reactive Oxygen Species and Nrf2: Functional and Transcriptional Regulators of Hematopoiesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5153268. [PMID: 31827678 PMCID: PMC6885799 DOI: 10.1155/2019/5153268] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are characterized by self-renewal and multilineage differentiation potentials. Although they play a central role in hematopoietic homeostasis and bone marrow (BM) transplantation, they are affected by multiple environmental factors in the BM. Here, we review the effects of reactive oxygen species (ROS) and Nrf2 on HSC function and BM transplantation. HSCs reside in the hypoxic microenvironment of BM, and ROS play an important role in HSPC regulation. Recently, an extraphysiologic oxygen shock/stress phenomenon was identified in human cord blood HSCs collected under ambient air conditions. Moreover, Nrf2 has been recently recognized as a master transcriptional factor that regulates multiple antioxidant enzymes. Since several years, the role of Nrf2 in hematopoiesis has been extensively studied, which has functional similarities of cellular oxygen sensor hypoxia-inducible factor-1 as transcriptional factors. Increasing evidence has revealed that abnormally elevated ROS production due to factors such as genetic defects, aging, and ionizing radiation unexceptionally resulted in lethal impairment of HSC function and hematopoiesis. Both experimental and clinical studies have identified elevated ROS levels as a major culprit of ineffective BM transplantation. Lastly, we discuss the possibility of using small molecule antioxidants, such as N-acetyl cysteine, resveratrol, and curcumin, to augment HSC function and improve the therapeutic efficacy of BM transplantation. Further research on the function of ROS levels and improving the efficacy of BM transplantation may have a great potential for broad clinical applications of HSCs.
Collapse
|
21
|
Overexpression of BRCA1 in Neural Stem Cells Enhances Cell Survival and Functional Recovery after Transplantation into Experimental Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8739730. [PMID: 31073355 PMCID: PMC6470423 DOI: 10.1155/2019/8739730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/16/2018] [Indexed: 01/09/2023]
Abstract
Transplantation of neural stem cells (NSCs) is a promising therapy for ischemic stroke. However, the effectiveness of this approach is limited by grafted cell death. Breast cancer susceptibility protein 1 (BRCA1) could suppress apoptosis in neural progenitors and modulate oxidative stress in neurons. In this study, we found that BRCA1 was upregulated by oxygen-glucose deprivation/reoxygenation (OGD/R). Overexpression of BRCA1 in NSCs reduced cell apoptosis and oxidative stress after OGD/R insult. The molecule overexpression also stimulated cellular proliferation in OGD/R NSCs and increased the survival rate of grafted cells. Further, the transplantation of BRCA1-transfected NSCs into mice with ischemic stroke increased brain-derived neurotropic factor and nerve growth factor expression in the brain and elicited neurological function improvement. In addition, we found that RING finger domain and BRCT domain of BRCA1 could physically interact with p53 in NSCs. The cross talk between BRCA1 RING finger domain and p53 was responsible for p53 ubiquitination and degradation. Our findings indicate that modification with BRCA1 could enhance the efficacy of NSCs transplantation in ischemic stroke.
Collapse
|
22
|
Paliwal S, Kakkar A, Sharma R, Airan B, Mohanty S. Differential reduction of reactive oxygen species by human tissuespecific mesenchymal stem cells from different donors under oxidative stress. J Biosci 2018; 42:373-382. [PMID: 29358551 DOI: 10.1007/s12038-017-9691-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Clinical trials using human Mesenchymal Stem Cells (MSCs) have shown promising results in the treatment of various diseases. Different tissue sources, such as bone marrow, adipose tissue, dental pulp and umbilical cord, are being routinely used in regenerative medicine. MSCs are known to reduce increased oxidative stress levels in pathophysiological conditions. Differences in the ability of MSCs from different donors and tissues to ameliorate oxidative damage have not been reported yet. In this study, for the first time, we investigated the differences in the reactive oxygen species (ROS) reduction abilities of tissue-specific MSCs to mitigate cellular damage in oxidative stress. Hepatic Stellate cells (LX-2) and cardiomyocytes were treated with Antimycin A (AMA) to induce oxidative stress and tissue specific MSCs were co-cultured to study the reduction in ROS levels. We found that both donor's age and source of tissue affected the ability of MSCs to reduce increased ROS levels in damaged cells. In addition, the abilities of same MSCs differed in LX-2 and cardiomyocytes in terms of magnitude of reduction of ROS, suggesting that the type of recipient cells should be kept in consideration when using MSCs in regenerative medicine for treatment purposes.
Collapse
Affiliation(s)
- Swati Paliwal
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
23
|
Epigenetic and microenvironmental alterations in bone marrow associated with ROS in experimental aplastic anemia. Eur J Cell Biol 2018; 97:32-43. [DOI: 10.1016/j.ejcb.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/04/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
|
24
|
Angelica sinensis Polysaccharides Ameliorate Stress-Induced Premature Senescence of Hematopoietic Cell via Protecting Bone Marrow Stromal Cells from Oxidative Injuries Caused by 5-Fluorouracil. Int J Mol Sci 2017; 18:ijms18112265. [PMID: 29143796 PMCID: PMC5713235 DOI: 10.3390/ijms18112265] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023] Open
Abstract
Myelosuppression is the most common complication of chemotherapy. Decline of self-renewal capacity and stress-induced premature senescence (SIPS) of hematopoietic stem cells (HSCs) induced by chemotherapeutic agents may be the cause of long-term myelosuppression after chemotherapy. Whether the mechanism of SIPS of hematopoietic cells relates to chemotherapeutic injury occurred in hematopoietic microenvironment (HM) is still not well elucidated. This study explored the protective effect of Angelica sinensis polysaccharide (ASP), an acetone extract polysaccharide found as the major effective ingredients of a traditional Chinese medicinal herb named Chinese Angelica (Dong Quai), on oxidative damage of homo sapiens bone marrow/stroma cell line (HS-5) caused by 5-fluorouracil (5-FU), and the effect of ASP relieving oxidative stress in HM on SIPS of hematopoietic cells. Tumor-suppressive doses of 5-FU inhibited the growth of HS-5 in a dose-dependent and time-dependent manner. 5-FU induced HS-5 apoptosis and also accumulated cellular hallmarks of senescence including cell cycle arrest and typical senescence-associated β-galactosidase positive staining. The intracellular reactive oxygen species (ROS) was increased in 5-FU treated HS-5 cells and coinstantaneous with attenuated antioxidant capacity marked by superoxide dismutase and glutathione peroxidase. Oxidative stress initiated DNA damage indicated by increased γH2AX and 8-OHdG. Oxidative damage of HS-5 cells resulted in declined hematopoietic stimulating factors including stem cell factor (SCF), stromal cell-derived factor (SDF), and granulocyte-macrophage colony-stimulating factor (GM-CSF), however, elevated inflammatory chemokines such as RANTES. In addition, gap junction channel protein expression and mediated intercellular communications were attenuated after 5-FU treatment. Significantly, co-culture on 5-FU treated HS-5 feeder layer resulted in less quantity of human umbilical cord blood-derived hematopoietic cells and CD34+ hematopoietic stem/progenitor cells (HSPCs), and SIPS of hematopoietic cells. However, it is noteworthy that ASP ameliorated SIPS of hematopoietic cells by the mechanism of protecting bone marrow stromal cells from chemotherapeutic injury via mitigating oxidative damage of stromal cells and improving their hematopoietic function. This study provides a new strategy to alleviate the complication of conventional cancer therapy using chemotherapeutic agents.
Collapse
|
25
|
Guidi N, Sacma M, Ständker L, Soller K, Marka G, Eiwen K, Weiss JM, Kirchhoff F, Weil T, Cancelas JA, Florian MC, Geiger H. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J 2017; 36:840-853. [PMID: 28254837 PMCID: PMC5376966 DOI: 10.15252/embj.201694969] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/08/2016] [Accepted: 01/18/2017] [Indexed: 01/08/2023] Open
Abstract
Upon aging, hematopoietic stem cells (HSCs) undergo changes in function and structure, including skewing to myeloid lineages, lower reconstitution potential and loss of protein polarity. While stem cell intrinsic mechanisms are known to contribute to HSC aging, little is known on whether age-related changes in the bone marrow niche regulate HSC aging. Upon aging, the expression of osteopontin (OPN) in the murine bone marrow stroma is reduced. Exposure of young HSCs to an OPN knockout niche results in a decrease in engraftment, an increase in long-term HSC frequency and loss of stem cell polarity. Exposure of aged HSCs to thrombin-cleaved OPN attenuates aging of old HSCs, resulting in increased engraftment, decreased HSC frequency, increased stem cell polarity and a restored balance of lymphoid and myeloid cells in peripheral blood. Thus, our data suggest a critical role for reduced stroma-derived OPN for HSC aging and identify thrombin-cleaved OPN as a novel niche informed therapeutic approach for ameliorating HSC phenotypes associated with aging.
Collapse
Affiliation(s)
- Novella Guidi
- Institute of Molecular Medicine and Aging Research Center Ulm, University of Ulm, Ulm, Germany
| | - Mehmet Sacma
- Institute of Molecular Medicine and Aging Research Center Ulm, University of Ulm, Ulm, Germany
| | - Ludger Ständker
- Kompetenzzentrum Ulm Peptide Pharmaceuticals, University of Ulm, Ulm, Germany
| | - Karin Soller
- Institute of Molecular Medicine and Aging Research Center Ulm, University of Ulm, Ulm, Germany
| | - Gina Marka
- Institute of Molecular Medicine and Aging Research Center Ulm, University of Ulm, Ulm, Germany
| | - Karina Eiwen
- Institute of Molecular Medicine and Aging Research Center Ulm, University of Ulm, Ulm, Germany
| | - Johannes M Weiss
- Department of Dermatology and Allergic Diseases, Universitätsklinikum Ulm, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Universitätsklinikum Ulm, Ulm, Germany
| | - Tanja Weil
- Institute of Organic Chemistry III, University of Ulm, Ulm, Germany
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maria Carolina Florian
- Institute of Molecular Medicine and Aging Research Center Ulm, University of Ulm, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine and Aging Research Center Ulm, University of Ulm, Ulm, Germany .,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
26
|
Abstract
Until recently, there was broad consensus in the stem cell aging field that the phenotype of aged hematopoietic stem cells (HSCs) is fixed-dominated by cell-intrinsic regulatory mechanisms that cannot be altered by pharmacological or genetic means. The conventional thinking was that HSC aging could not be reverted by therapeutic intervention. This paradigm has started to shift dramatically, primarily because hallmarks of aged HSCs have been successfully reverted by distinct experimental approaches by multiple laboratories. We will discuss in this review these hallmarks of HSCs aging and the novel approaches that successfully ameliorated or even reverted aging-associated hallmarks of aged HSCs.
Collapse
Affiliation(s)
- Novella Guidi
- Institute for Molecular Medicine, Ulm University, Ulm, Germany.
| | - Hartmut Geiger
- Institute for Molecular Medicine, Ulm University, Ulm, Germany; Division of Experimental Hematology and Cancer Biology, Cincinnati Children׳s Hospital Medical Center, Cincinnati, OH, USA; Aging Research Center, Ulm University, Ulm, Germany.
| |
Collapse
|
27
|
Inhibition of HSP90 Promotes Neural Stem Cell Survival from Oxidative Stress through Attenuating NF- κB/p65 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3507290. [PMID: 27818721 PMCID: PMC5080492 DOI: 10.1155/2016/3507290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 01/19/2023]
Abstract
Stem cell survival after transplantation determines the efficiency of stem cell treatment, which develops as a novel potential therapy for several central nervous system (CNS) diseases in recent decades. The engrafted stem cells face the damage of oxidative stress, inflammation, and immune response at the lesion point in host. Among the damaging pathologies, oxidative stress directs stem cells to apoptosis and even death through several signalling pathways and DNA damage. However, the in-detail mechanism of stem cell survival from oxidative stress has not been revealed clearly. Here, in this study, we used hydrogen peroxide (H2O2) to induce the oxidative damage on neural stem cells (NSCs). The damage was in consequence demonstrated involving the activation of heat shock protein 90 (HSP90) and NF-κB/p65 signalling pathways. Further application of the pharmacological inhibitors, respectively, targeting at each signalling indicated an upper-stream role of HSP90 upon NF-κB/p65 on NSCs survival. Preinhibition of HSP90 with the specific inhibitor displayed a significant protection on NSCs against oxidative stress. In conclusion, inhibition of HSP90 would attenuate NF-κB/p65 activation by oxidative induction and promote NSCs survival from oxidative damage. The HSP90/NF-κB mechanism provides a new evidence on rescuing NSCs from oxidative stress and also promotes the stem cell application on CNS pathologies.
Collapse
|
28
|
Ma X, Feng Y. Hypercholesterolemia Tunes Hematopoietic Stem/Progenitor Cells for Inflammation and Atherosclerosis. Int J Mol Sci 2016; 17:E1162. [PMID: 27447612 PMCID: PMC4964534 DOI: 10.3390/ijms17071162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022] Open
Abstract
As the pathological basis of cardiovascular disease (CVD), atherosclerosis is featured as a chronic inflammation. Hypercholesterolemia is an independent risk factor for CVD. Accumulated studies have shown that hypercholesterolemia is associated with myeloid cell expansion, which stimulates innate and adaptive immune responses, strengthens inflammation, and accelerates atherosclerosis progression. Hematopoietic stem/progenitor cells (HSPC) in bone marrow (BM) expresses a panel of lipoprotein receptors to control cholesterol homeostasis. Deficiency of these receptors abrogates cellular cholesterol efflux, resulting in HSPC proliferation and differentiation in hypercholesterolemic mice. Reduction of the cholesterol level in the lipid rafts by infusion of reconstituted high-density lipoprotein (HDL) or its major apolipoprotein, apoA-I, reverses hypercholesterolemia-induced HSPC expansion. Apart from impaired cholesterol metabolism, inhibition of reactive oxygen species production suppresses HSPC activation and leukocytosis. These data indicate that the mechanisms underlying the effects of hypercholesterolemia on HSPC proliferation and differentiation could be multifaceted. Furthermore, dyslipidemia also regulates HSPC-neighboring cells, resulting in HSPC mobilization. In the article, we review how hypercholesterolemia evokes HSPC activation and mobilization directly or via its modification of BM microenvironment. We hope this review will bring light to finding key molecules to control HSPC expansion, inflammation, and atherosclerosis for the treatment of CVD.
Collapse
Affiliation(s)
- Xiaojuan Ma
- Beijing Key Laboratory of Diabetes Prevention and Research, Lu He Hospital, Capital Medical University, Beijing 101149, China.
- Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing 101149, China.
| | - Yingmei Feng
- Beijing Key Laboratory of Diabetes Prevention and Research, Lu He Hospital, Capital Medical University, Beijing 101149, China.
- Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing 101149, China.
| |
Collapse
|